1
|
Kim J, Nah Y, Kim S, Kim WJ. Transformation of nanoparticles via the transition of functional DNAs responsive to pH and vascular endothelial growth factor for photothermal anti-tumor therapy. Biomater Sci 2024; 12:1031-1041. [PMID: 38214329 DOI: 10.1039/d3bm01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study presents a novel approach for the development of DNA-functionalized gold nanoparticles (AuNPs) capable of responding to disease-specific factors and microenvironmental changes, resulting in an effective anti-tumor effect via photothermal therapy. The AuNPs are decorated with two types of DNAs, an i-motif duplex and a VEGF split aptamer, enabling recognition of changes in pH and VEGF, respectively. The formation of VEGF aptamers on the AuNPs induces their aggregation, further enhanced by VEGF ligands. The resulting changes in the optical properties of the AuNPs are detected by monitoring the absorbance. Upon irradiation with a near-infrared laser, the aggregated AuNPs generate heat due to their thermoplasmonic characteristic, leading to an anti-tumor effect. This study demonstrates the enhanced anti-tumor effect of DNA-functionalized AuNPs via photothermal therapy in both in vitro and in vivo tumor models. These findings suggest the potential utilization of such functional AuNPs for precise disease diagnosis and treatment by detecting disease-related factors in the microenvironment.
Collapse
Affiliation(s)
- Jinseong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Seongmin Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- OmniaMed Co., Ltd, Pohang, Republic of Korea
| |
Collapse
|
2
|
Yin SJ, Chen GY, Zhang CY, Wang JL, Yang FQ. Zeolitic imidazolate frameworks as light-responsive oxidase-like mimics for the determination of adenosine triphosphate and discrimination of phenolic pollutants. Mikrochim Acta 2022; 190:25. [PMID: 36515784 DOI: 10.1007/s00604-022-05602-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
In this study, 3,3',5,5'-tetramethylbenzidine (TMB) was selected as a chromogenic substrate to evaluate the light-responsive oxidase-like activity of different zeolitic imidazolate frameworks (ZIFs). The synthesized ZIFs were systematically characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Several main operational parameters, including ZIFs and TMB concentrations, pH value, radiation time, and working current, in the reaction process were optimized. The kinetic measurement results show that ZIF-90 exhibits higher affinity to the substrate than horseradish peroxidase. Furthermore, given that adenosine triphosphate (ATP) can specifically combine with Zn2+ binding site and destroy the structure of ZIF-90, a specific and sensitive colorimetric method was established for the quantitative detection of ATP within the range 10 - 240 μM. In addition, on the basis that phenolic pollutants can impact the reaction kinetics diversely on different ZIFs, a sensor array was constructed and successfully applied to differentiate five phenolic pollutants in lake water samples. This work is expected to shed light on the establishment of ZIF-based light-responsive oxidase-like nanozymes for the highly selective colorimetric detection and sensor array.
Collapse
Affiliation(s)
- Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Nandimandalam M, Costantini F, Lovecchio N, Iannascoli L, Nascetti A, de Cesare G, Caputo D, Manetti C. Split Aptamers Immobilized on Polymer Brushes Integrated in a Lab-on-Chip System Based on an Array of Amorphous Silicon Photosensors: A Novel Sensor Assay. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7210. [PMID: 34885364 PMCID: PMC8658169 DOI: 10.3390/ma14237210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Innovative materials for the integration of aptamers in Lab-on-Chip systems are important for the development of miniaturized portable devices in the field of health-care and diagnostics. Herein we highlight a general method to tailor an aptamer sequence in two subunits that are randomly immobilized into a layer of polymer brushes grown on the internal surface of microfluidic channels, optically aligned with an array of amorphous silicon photosensors for the detection of fluorescence. Our approach relies on the use of split aptamer sequences maintaining their binding affinity to the target molecule. After binding the target molecule, the fragments, separately immobilized to the brush layer, form an assembled structure that in presence of a "light switching" complex [Ru(phen)2(dppz)]2+, emit a fluorescent signal detected by the photosensors positioned underneath. The fluorescent intensity is proportional to the concentration of the target molecule. As proof of principle, we selected fragments derived from an aptamer sequence with binding affinity towards ATP. Using this assay, a limit of detection down to 0.9 µM ATP has been achieved. The sensitivity is compared with an assay where the original aptamer sequence is used. The possibility to re-use both the aptamer assays for several times is demonstrated.
Collapse
Affiliation(s)
- Manasa Nandimandalam
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
| | - Francesca Costantini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
- CREA-DC Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Nicola Lovecchio
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Lorenzo Iannascoli
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851/881, 00138 Rome, Italy;
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851/881, 00138 Rome, Italy;
| | - Giampiero de Cesare
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Domenico Caputo
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
| |
Collapse
|
4
|
Zhu Q, Liu L, Wang R, Zhou X. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123941. [PMID: 33264988 DOI: 10.1016/j.jhazmat.2020.123941] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
As antibiotic pollution is gaining prominence as a global issue, the demand for detection of streptomycin (STR), which is a widely used antibiotic with potential human health and ecological risks, has attracted increasing attention. Aptamer-based biosensors have been developed for the detection of STR in buffers and samples, however, the non-target signals due to the conformational variation of free aptamers possibly affect their sensitivity and stability. In this study, by introducing the STR-specific split aptamer (SPA), a sensitive evanescent wave fluorescent (EWF) biosensor is developed for the sandwich-type based detection of STR. The standard calibration curve obtained for STR has a detection limit of 33 nM with a linear range of 60-526 nM. This biosensor exhibited good selectivity, reliable reusability for at least 100 times measurements, and high recovery rates for spiked water samples; moreover, all detection steps are easy-to-operate and can be completed in 5 min. Therefore, it exhibits great promise for actual on-site environmental monitoring. Additionally, without introducing any other oligonucleotides or auxiliary materials, this SPA-based biosensing method shows potential as a simple, sensitive, and low-cost manner for the detection of other small molecular targets.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha, 410205, China.
| |
Collapse
|
5
|
Deng J, Walther A. ATP-Responsive and ATP-Fueled Self-Assembling Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002629. [PMID: 32881127 DOI: 10.1002/adma.202002629] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that plays an indispensable role in various cellular processes, from energy supply to cell-to-cell signaling. Nature has developed sophisticated strategies to use the energy stored in ATP for many metabolic and non-equilibrium processes, and to sense and bind ATP for biological signaling. The variations in the ATP concentrations from one organelle to another, from extracellular to intracellular environments, and from normal cells to cancer cells are one motivation for designing ATP-triggered and ATP-fueled systems and materials, because they show great potential for applications in biological systems by using ATP as a trigger or chemical fuel. Over the last decade, ATP has been emerging as an attractive co-assembling component for man-made stimuli-responsive as well as for fuel-driven active systems and materials. Herein, current advances and emerging concepts for ATP-triggered and ATP-fueled self-assemblies and materials are discussed, shedding light on applications and highlighting future developments. By bringing together concepts of different domains, that is from supramolecular chemistry to DNA nanoscience, from equilibrium to non-equilibrium self-assembly, and from fundamental sciences to applications, the aim is to cross-fertilize current approaches with the ultimate aim to bring synthetic ATP-dependent systems closer to living systems.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| |
Collapse
|
6
|
Sang F, Zhang X, Liu J, Yin S, Zhang Z. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:122-127. [PMID: 30928837 DOI: 10.1016/j.saa.2019.03.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
A facile and rapid colorimetric approach was described for selective and sensitive determination of adenosine triphosphate (ATP) based on a hairpin aptamer probe and the anti-aggregation of AuNPs. Poly(diallyldimethylammonium chloride) (PDDA) can induce the aggregation of AuNPs due to the electrostatic interaction causing a red to blue color change. Upon the addition of ATP, aptamer-based hairpin probe is opened and releases flexible ssDNA ends. The released flexible ssDNA ends can interact with PDDA and prevent PDDA-induced AuNPs aggregation. Thus, a visible color change from blue to red and a decrease in the absorption ratio (A610/A520) are observed. Under the optimal conditions, the hairpin aptamer-based colorimetric assay exhibits high sensibility and selectivity for the detection of ATP with a detection limit of 1.7nM. Moreover, this assay is successfully used in the rapid determination of ATP in spiked human serum samples with good recoveries in the range of 102.88 to 104.07%.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China.
| | - Xue Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Jia Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Suyao Yin
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Zhizhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| |
Collapse
|
7
|
Liu J, Zeng J, Tian Y, Zhou N. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 2018; 143:182-189. [PMID: 29168847 DOI: 10.1039/c7an01476g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lateral flow strip biosensor for fast, sensitive, low-cost and on-site detection of kanamycin was developed by using kanamycin-specific aptamer-modified gold nanoparticles (AuNPs-apt) as a probe and oligonucleotide DNA1-modified silver nanoparticles (AgNPs-DNA1) as a signal amplification element. Through the complementary sequences of DNA1 and the aptamer, the AgNP-DNA1-apt-AuNPs complex can be formed and further captured on the test zone of the strip, where a capture probe DNA2 complementary to the 3'-terminal of DNA1 was immobilized. In the presence of kanamycin, it can competitively bind to the aptamer, and then inhibit the formation of the complex and the accumulation of AuNPs on the test zone. AuNPs-apt can finally be captured on the control zone via the specific binding between biotin and streptavidin. The assay avoids multiple incubation and washing steps and can be completed within 10 min. By observing the color change of the test zone, a qualitative detection for kanamycin can be achieved by the naked eye, with the visual limit of 35 nM. Meanwhile, a linear detection range of 1-30 nM with a low detection limit of 0.0778 nM for quantitative analysis can be achieved by using a scanning reader. The lateral flow strip biosensor exhibited high specificity and stability. Moreover, it was applied to detect kanamycin in various food samples, indicating its great potential in field testing.
Collapse
Affiliation(s)
- Jing Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
8
|
Nie J, Yuan L, Jin K, Han X, Tian Y, Zhou N. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity. Biosens Bioelectron 2018; 122:254-262. [PMID: 30268963 DOI: 10.1016/j.bios.2018.09.072] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
An aptamer with the length of only 15 nucleotides specific for tobramycin was obtained through rationally designed truncation from a previously reported long sequence. The structural and binding properties of the aptamer were characterized. The dissociation constant (Kd) was determined to be 42.12 nM, indicating high affinity of the aptamer for tobramycin. Then an electrochemical sensor based on this aptamer was developed, which employed an enzymes-assisted dual signal amplification cycle through target recycling and strand-displacement DNA polymerization. A hairpin probe containing the aptamer sequence was designed and used to start the production cycle of a short ssDNA fragment in the presence of tobramycin, with the help of phi29 DNA polymerase and nicking endonuclease Nt.AlwI. The ssDNA fragment was captured by a signal transduction probe modified on gold electrode to form a triple-helix structure. With the help of [Ru(NH3)6]3+, a significant electrochemical signal was observed in differential pulse voltammetry (DPV). Under the optimal conditions, the current in DPV is linearly related with the concentration of tobramycin in the range of 10-200 nM, and the detection limit is 5.13 nM. The electrochemical sensor showed high specificity for tobramycin when it was challenged by other antibiotics. In addition, the constructed sensor was used to detect tobramycin in milk and water samples, and showed satisfactory performance. Therefore, the screened aptamer as well as the developed sensor has great application prospects in the fields of food safety control, medical test and environment monitoring.
Collapse
Affiliation(s)
- Jingjing Nie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Luyi Yuan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuyan Han
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaping Tian
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Anal Chim Acta 2017; 998:60-66. [PMID: 29153087 DOI: 10.1016/j.aca.2017.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/24/2022]
Abstract
In the present study, a facile fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks of N,N-bis(2-hydroxyethyl)dithiooxamidato copper(II) (H2dtoaCu) was developed for the sensitive detection of adenosine triphosphate (ATP). The sensing mechanism was based on the noncovalent interaction between FAM-labeled (fluorescein amidite) ATP aptamers and H2dtoaCu. In the absence of ATP, the FAM-labeled aptamer readily adsorbs onto H2dtoaCu, mainly via π-π stacking and hydrogen bond interactions between the nucleotide bases and the H2dtoaCu surface, leading to the reduction of fluorescence intensity of the FAM by photoinduced electron transfer (PET). In the presence of ATP, the FAM-labeled aptamer specifically forms ATP-binding aptamer complexes which exhibit only weak adsorption on the H2dtoaCu surface. Thus, the fluorescence of the FAM-labeled ATP aptamer remained largely unchanged. The fluorescence aptasensor exhibited a good linear relationship between the fluorescence intensity and the logarithm concentration of ATP over a range of 25-400 nM, with a detection limit of 8.19 nM (3S/N). ATP analogs such as guanosine triphosphate, uridine triphosphate, and cytidine triphosphate have negligible effect on the aptasensor performance due to the high selectivity of the ATP aptamer to its target, showing promising potential in real sample analysis.
Collapse
|
10
|
A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection. Biosens Bioelectron 2017; 97:292-298. [PMID: 28618365 DOI: 10.1016/j.bios.2017.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/04/2023]
Abstract
Localized surface plasmon resonance (LSPR) biosensors allow label-free detection of small molecules in molecular binding events; however, they are limited by a relatively low sensitivity and narrow dynamic range. Here, we report highly sensitive small-molecule detection by LSPR peak shift exploiting the G-quadruplex (GQx) structure-binding characteristic of known GQx binders to enhance the LSPR signal of a plasmonic aptasensor. Six known GQx binders (thiazole orange, malachite green, crystal violet, zinc protoporphyrin IX, thioflavin T, and berberine) were tested for their ability to enhance the LSPR signal. Among these, berberine (BER) induced the largest LSPR peak shift by interacting with the GQx structure formed by the aptamer/target binding event on a gold nanorod surface. This specific binding performance was confirmed by the fluorescence signal of BER and through repeated cycles of BER addition and washing on the plasmonic sensing chip. The proposed plasmonic aptasensor respectively showed limit of detection (LOD) of 0.56, 0.63, 0.87 and 1.05 pM for ochratoxin A, aflatoxin B1, adenosine triphosphate and potassium ions, which was 1000-fold higher than that in BER-free condition, and a wide dynamic range from 10 pM to 10μM. In addition, the proposed LSPR aptasensor could effectively be used to quantitatively analyze small molecules in real samples.
Collapse
|
11
|
Goux E, Dausse E, Guieu V, Azéma L, Durand G, Henry M, Choisnard L, Toulmé JJ, Ravelet C, Peyrin E. A colorimetric nanosensor based on a selective target-responsive aptamer kissing complex. NANOSCALE 2017; 9:4048-4052. [PMID: 28276559 DOI: 10.1039/c7nr00612h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we report a novel approach for the design of a colorimetric aptasensor based on functionalized gold nanoparticle probes. This approach relies on the conjugation of nanoparticles by two functional DNA and RNA hairpins that engage specific kissing (loop-loop) interactions in response to the addition of a small analyte ligand, leading to particle aggregation and then red-to-purple colour change of the colloidal solution.
Collapse
Affiliation(s)
- E Goux
- University Grenoble Alpes, DPM CNRS UMR 5063, F-38041 Grenoble, France.
| | - E Dausse
- Laboratoire ARNA, University of Bordeaux, Inserm U1212, CNRS UMR5320, F-33076 Bordeaux, France
| | - V Guieu
- University Grenoble Alpes, DPM CNRS UMR 5063, F-38041 Grenoble, France.
| | - L Azéma
- Laboratoire ARNA, University of Bordeaux, Inserm U1212, CNRS UMR5320, F-33076 Bordeaux, France
| | - G Durand
- Laboratoire ARNA, University of Bordeaux, Inserm U1212, CNRS UMR5320, F-33076 Bordeaux, France
| | - M Henry
- University Grenoble Alpes, DPM CNRS UMR 5063, F-38041 Grenoble, France.
| | - L Choisnard
- University Grenoble Alpes, DPM CNRS UMR 5063, F-38041 Grenoble, France.
| | - J-J Toulmé
- Laboratoire ARNA, University of Bordeaux, Inserm U1212, CNRS UMR5320, F-33076 Bordeaux, France
| | - C Ravelet
- University Grenoble Alpes, DPM CNRS UMR 5063, F-38041 Grenoble, France.
| | - E Peyrin
- University Grenoble Alpes, DPM CNRS UMR 5063, F-38041 Grenoble, France.
| |
Collapse
|
12
|
A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Talanta 2017; 168:279-285. [PMID: 28391854 DOI: 10.1016/j.talanta.2017.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
A simple and sensitive colorimetric aptasensor for rapid and facile detection of adenosine triphosphate (ATP) has been demonstrated here based on aptamer-based hairpin probes and unmodified gold nanoparticles (AuNPs). The hairpin probe is constructed by adding another five nucleotides to the 5'-end of an anti-ATP aptamer which can hybridize to nucleotides at the 3'-end of the aptamer, forming a hairpin-shaped structure. In the absence of ATP, the hairpin probes are rigid, and the AuNPs are susceptible to salt-induced aggregation. Conversely, upon binding with target ATP, the hairpin probes undergo conformational changes, forming aptamer-ATP complexes and exposing flexible ends which coat the surface of AuNPs to inhibit their aggregation in the high salt solution. Subsequently, a blue-to-red color change can be recognized by the naked eye. The aptasensor achieved selective responses toward ATP with a detection limit of 0.1μM, and exhibited high-quality detection performance in biological samples. In addition, this detection method is simple, rapid and cost-effective, holding great potential for further applications in point-of-care research.
Collapse
|
13
|
Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1905-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Ng S, Lim HS, Ma Q, Gao Z. Optical Aptasensors for Adenosine Triphosphate. Theranostics 2016; 6:1683-702. [PMID: 27446501 PMCID: PMC4955066 DOI: 10.7150/thno.15850] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Gao
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
15
|
|
16
|
|
17
|
Abstract
Recent advances in Au NP based optical sensing systems for various analytes based on absorption, fluorescence and SERS are summarized.
Collapse
Affiliation(s)
- Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung 95002
- Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
18
|
Bai Y, Feng F, Zhao L, Chen Z, Wang H, Duan Y. A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 2015; 139:1843-6. [PMID: 24608985 DOI: 10.1039/c4an00084f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A simple, sensitive and selective turn-on fluorescent aptasensor for adenosine detection was developed based on target-induced split aptamer fragment conjunction and different interactions of graphene oxide and the two states of the designed aptamer sequences.
Collapse
Affiliation(s)
- Yunfeng Bai
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Park JH, Byun JY, Shim WB, Kim SU, Kim MG. High-sensitivity detection of ATP using a localized surface plasmon resonance (LSPR) sensor and split aptamers. Biosens Bioelectron 2015; 73:26-31. [PMID: 26042875 DOI: 10.1016/j.bios.2015.05.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 01/24/2023]
Abstract
A highly sensitive localized surface plasmon resonance (LSPR) aptasensor for detection of adenosine triphosphate (ATP) has been developed. The sensor utilizes two split ATP aptamers, one (receptor fragment) being covalently attached to the surface of a gold nanorod (GNR) and the other labeled with a random DNA sequence and TAMRA dye (probe fragment). In the presence of both ATP and the probe fragment, a significant shift takes place in the wavelength of the LSPR band. This phenomenon is a consequence of the fact that the split fragments assemble into an intact folded structure in the presence of ATP, which brings about a decrease in the distance between the GNR surface and TAMRA dye and an associated LSPR wavelength. By using this sensor system, concentrations of ATP in the range of 10 pM-10 μM can be determined. In addition, by taking advantage of its denaturation properties, the LSPR aptasensor can be reused by simply subjecting it to quadruple salt-addition/2M NaCl washing steps. That the new method is applicable to biological systems was demonstrated by its use to measure ATP concentrations in E. coli and, thus to determine cell concentrations as low as 1.0×10(3) CFU.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712,Republic of Korea
| | - Ju-Young Byun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712,Republic of Korea
| | - Won-Bo Shim
- Food Analysis Research Team, Industry Service Research Center, World Institute of Kimchi an Annex of Korea Food Research Institute, 86 Kimchi-ro, Nam-gu, Gwangju, Republic of Korea
| | - Seong U Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712,Republic of Korea; Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
20
|
Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 2015; 71:230-242. [PMID: 25912679 DOI: 10.1016/j.bios.2015.04.041] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022]
Abstract
Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays.
Collapse
Affiliation(s)
- Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
21
|
Zhang S, Wang K, Li J, Li Z, Sun T. Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide–platinum/gold nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra13550h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The specific binding of ATP and its aptamer linked the split aptamer-modified GO/PDDA/PtAuNPs and magnetic beads together. Using magnetic separation, TMB was catalyzed into a colored product by nanocomposites, which enabled rapid detection of ATP.
Collapse
Affiliation(s)
- Siqi Zhang
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Kun Wang
- College of Sciences
- Northeastern University
- Shenyang
- China
- Department of Chemistry and Environmental Engineering
| | - Jiali Li
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Zhenyu Li
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Ting Sun
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
22
|
Cheng S, Zheng B, Wang M, Zhao Q, Lam MHW, Ge X. Determination of Adenosine Triphosphate by a Target Inhibited Catalytic Cycle Based on a Strand Displacement Reaction. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.841179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Liu B, Zhang B, Chen G, Yang H, Tang D. Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor. Biosens Bioelectron 2013; 53:390-8. [PMID: 24201002 DOI: 10.1016/j.bios.2013.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 12/16/2022]
Abstract
A new flow-through electrochemical aptasensor was designed for ultrasensitive monitoring of adenosine triphosphate (ATP) by coupling microvalve-programmable capillary column with CdS-functionalized DNA concatamer for signal amplification. Initially, a layer of primary DNA-conjugated polyacrylamide hydrogel was covalently linked onto the internal surface of capillary column, and then an automated sequenctial injection format with a syringe pump was employed for development of the programmable capillary-based aptasensor. In the presence of target DNA aptamer, the immobilized primary DNA hybridized with partial bases of the aptamer. The excess aptamer fregment could trigger the formation of DNA concatamer between auxiliary DNA1 and CdS-labeled auxiliary DNA2. Upon target ATP introduction, a specific ATP-aptamer reaction was excuated, thereby resulting in the release of CdS-functionalized DNA concatamer from the capillary. Subsenquent anodic stripping voltammetric detection of cadmium released under acidic conditions from the released CdS nanoparticles could be conducted in a homemade detection cell. Under optimal conditions, the dynamic concentration range spanned from 0.1 pM to 10nM ATP with a detection limit of 0.06 pM ATP. The electrochemical aptasensor showed good reproducibility, selectivity, and stability. In addition, the methodology was evaluated for the analysis of ATP spiked serum samples, and the recoveries was 81-140%.
Collapse
Affiliation(s)
- Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety, Ministry of Education & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | | | | | | | | |
Collapse
|