1
|
Siampani M, Lazanas AC, Spyrou K, Prodromidis MI. Eco-friendly spark-generated Co xO y nanoparticle-modified graphite screen-printed sensing surfaces for the determination of H 2O 2 in energy drinks. Mikrochim Acta 2024; 191:150. [PMID: 38386132 PMCID: PMC10884044 DOI: 10.1007/s00604-024-06233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
The modification of graphite screen-printed electrodes (SPEs) is reported using an eco-friendly and extremely fast method based on the direct cobalt pin electrode-to-SPE spark discharge at ambient conditions. This approach does not utilize any liquids or chemical templates, does not produce any waste, and allows the in-situ generation of CoxOy nanoparticles onto the electrode surface and the development of efficient electrocatalytic sensing surfaces for the determination of H2O2. Co-spark SPEs were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and x-ray photoelectron spectroscopy (XPS), revealing the formation of surface confined CoxOy nanoparticles and the diverse oxidation states of cobalt species. Co-spark SPEs were also characterized with cyclic voltammetry and electrochemical impedance spectroscopy. Redox transitions of the surface confined electrocatalysts are demonstrated by electrochemical polarization studies, showing the formation of different oxides (CoxOy), varying the XPS results. Amperometric measurements at 0.3 V vs. Ag/AgCl revealed a linear relationship between the current response and the concentration of H2O2 over the range 1 - 102 μM, achieving a limit of detection (3σ/m) of 0.6 μM. The interference effect of various electroactive species was effectively addressed by employing dual measurements in the absence and presence of the enzyme catalase. The analytical utility of the method was evaluated in antioxidant rich real-world samples, such as energy drinks, demonstrating sufficient recovery.
Collapse
Affiliation(s)
- Maria Siampani
- Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| | | | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 451 10, Ioannina, Greece
| | | |
Collapse
|
2
|
Emerging Electrochemical Sensor Based on Bimetallic AuPt NPs for On-Site Detection of Hydrogen Peroxide Adulteration in Raw Cow Milk. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Trachioti MG, Hrbac J, Prodromidis MI. Determination of 8−hydroxy−2ˊ−deoxyguanosine in urine with “linear” mode sparked graphite screen-printed electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Papavasileiou AV, Trachioti MG, Hrbac J, Prodromidis MI. Simultaneous determination of guanine and adenine in human saliva with graphite sparked screen-printed electrodes. Talanta 2021; 239:123119. [PMID: 34864536 DOI: 10.1016/j.talanta.2021.123119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Saliva represents one of the most useful biological samples for non-invasive testing of health status and diseases prognosis and therefore, the development of advanced sensors enabling the determination of biomarkers in unspiked human whole saliva is of immense importance. Herein, we report on the development of a screen-printed graphite sensor modified with carbon nanomaterials generated by spark discharge for the determination of guanine and adenine in unspiked human whole saliva. The designed sensor was developed with a "green", extremely simple, fast (16 s), fully automated "linear mode" sparking process implemented with a 2D positioning device. Carbon nanomaterial-modified surfaces exhibit outstanding electrocatalytic properties enabling the determination of guanine and adenine over the concentration range 5 - 1000 nM and 25 - 1000 nM, while achieving limits of detection (S/N 3) as low as 2 nM and 8 nM, respectively. The sensor was successfully applied to the determination of purine bases in unspiked human whole saliva following a simple assay protocol based on ultrafiltration that effectively alleviates biofouling issues. Recovery was 96-108%.
Collapse
Affiliation(s)
| | - Maria G Trachioti
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Jan Hrbac
- Department of Chemistry, Masaryk University, 625 00, Brno, Czech Republic
| | - Mamas I Prodromidis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece.
| |
Collapse
|
5
|
Furletov A, Apyari V, Garshev A, Dmitrienko S. A Comparative Study on the Oxidation of Label-Free Silver Triangular Nanoplates by Peroxides: Main Effects and Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20174832. [PMID: 32867039 PMCID: PMC7506893 DOI: 10.3390/s20174832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, analytical systems based on silver triangular nanoplates (AgTNPs) have been shown as good prospects for chemical sensing. However, they still remain relatively poorly studied as colorimetric probes for sensing various classes of compounds. This study shows that these nanoparticles are capable of being oxidized by peroxides, including both hydrogen peroxide and its organic derivatives. The oxidation was found to result in a decrease in the AgTNPs' local surface plasmon resonance band intensity at 620 nm. This was proposed for peroxide-sensitive spectrophotometric determination. Five peroxides differing in their structure and number of functional groups were tested. Three of them easily oxidized AgTNPs. The effects of a structure of analytes and main exterior factors on the oxidation are discussed. The detection limits of peroxides in the selected conditions increased in the series peracetic acid < hydrogen peroxide < tert-butyl hydroperoxide, coming to 0.08, 1.6 and 24 μmol L-1, respectively. tert-Butyl peroxybenzoate and di-tert-butyl peroxide were found to have no effect on the spectral characteristics of AgTNPs. By the example of hydrogen peroxide, it was found that the determination does not interfere with 100-4000-fold quantities of common inorganic ions. The proposed approach was successfully applied to the analysis of drugs, cosmetics and model mixtures.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| | - Alexey Garshev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Stanislava Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| |
Collapse
|
6
|
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. BIOSENSORS 2020; 10:E9. [PMID: 32024126 PMCID: PMC7167755 DOI: 10.3390/bios10020009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023]
Abstract
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Collapse
Affiliation(s)
| | | | | | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI-Parque Tecnológico de Asturias, 33428 Llanera, Spain; (D.A.-J.); (M.B.G.-G.); (D.H.-S.)
| |
Collapse
|
7
|
Construction of manganese oxide nanowire-like cluster arrays on a DNA template: Application to detection of hydrogen peroxide. Bioelectrochemistry 2019; 132:107419. [PMID: 31837615 DOI: 10.1016/j.bioelechem.2019.107419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
Improved electron transfer properties and catalytic activity of manganese oxide (MnOx) was demonstrated following its electrochemical deposition on a deoxyribonucleic acid (DNA) modified glassy carbon electrode. The MnOx showed different morphologies, electrocatalytic properties and electrochemical kinetics. Scanning electron microscopy showed that electrodeposition of MnOx on a bare glassy carbon electrode led to the formation of irregular-shapes while a nanowire cluster (NWC) was formed on a GCE/DNA due to the DNA serving as a template. Electrochemical impedance spectroscopy (EIS) revealed lower charge transfer resistance of the MnOxNWC compared with MnOx. A new mechanism is presented for the electrodeposition of MnOx on the surface of a GC/DNA electrode. An electrochemical biosensor was fabricated based on depositing MnOx onto a glassy carbon /DNA electrode (GCE/DNA/MnOxNWC) and was used to detect hydrogen peroxide (H2O2). The MnOx nanowire cluster and DNA exhibited significant electrocatalytic activity for simultaneous electrocatalytic oxidation at two oxidation potentials (0.6 V and 0.98 V vs Ag/AgCl) and one reduction potential (-0.5 V vs Ag/AgCl) for H2O2 at pH 6.0. A new mechanism for the detection of H2O2 is presented. Excellent electrocatalytic activity, stability and facility for simultaneous detection of H2O2 at different of applied potentials are proposed advantages of the proposed electrochemical biosensor.
Collapse
|
8
|
Guarin-Guio PA, Cano-Calle HDJ, Castillo-León JJ. Detección electroquímica de peróxido de hidrógeno usando peroxidasa de pasto Guinea (Panicum maximum) inmovilizada sobre electrodos serigrafiados de puntos cuánticos. REVISTA ION 2019. [DOI: 10.18273/revion.v32n2-2019007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Los biosensores electroquímicos son herramientas analíticas de rápida y confiable respuesta que han adquirido especial interés en los últimos años gracias a la posibilidad de integrar biomoléculas con electrodos hechos a base de materiales nanométricos. En este trabajo se desarrolló un biosensor electroquímico para detección de peróxido de hidrógeno (H2O2) usando peroxidasa de pasto Guinea (PPG) inmovilizada sobre electrodos serigrafiados de puntos cuánticos (ESPC). La PPG fue aislada y parcialmente purificada a partir de hojas de pasto Guinea con una actividad específica de 602 U mg-1. Posteriormente, la PPG fue inmovilizada sobre la superficie del ESPC mediante adsorción física y el estudio del comportamiento electroquímico fue llevado a cabo mediante voltamperometría cíclica y cronoamperometría. La PPG reveló una pareja bien definida de señales redox a 17 mV/-141 mV correspondientes al proceso redox del grupo hemo (Fe2+/Fe3+) de las peroxidasas. La reducción bioelectrocatalítica del peróxido de hidrógeno se observó a un potencial redox de -645 mV vs Ag. Este proceso fue controlado por difusión de las especies en la superficie del electrodo en un rango de velocidad de barrido lineal de 50-500 mV/s. La cronoamperometría permitió la construcción de curvas de calibración entre la corriente de reducción y la concentración del H2O2 para la determinación de parámetros analíticos como sensibilidad, rango lineal y nivel mínimo de detección. El desarrollo de este biosensor amperométrico se convierte en un paso preliminar para la construcción de un dispositivo portátil y de respuesta rápida para el análisis de H2O2 en muestras de interés ambiental y biomédico.
Collapse
|
9
|
Rice KM, Ginjupalli GK, Manne NDPK, Jones CB, Blough ER. A review of the antimicrobial potential of precious metal derived nanoparticle constructs. NANOTECHNOLOGY 2019; 30:372001. [PMID: 30840941 DOI: 10.1088/1361-6528/ab0d38] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The field of nanotechnology is rapidly growing. The promise of pharmacotherapeutics emerging from this vast field has drawn the attention of many researchers. However, with the increase in the prevalence of antibiotic resistant microorganisms, the manifestations of these promises are needed now more than ever. Many have postulated the antimicrobial potential of nanoparticle constructs derived from precious metals/noble metals nanoparticles (NMNPs), such as silver nanoparticles that show activity against multidrug resistant bacteria. In this review we will evaluate the current studies and explore the data to obtain a clear picture of the potential of these particles and the validity of the claims of drug resistant treatments with NMNPs.
Collapse
Affiliation(s)
- Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States of America. Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States of America. Biotechnology Graduate Program West Virginia State University, Institute, WV, United States of America. Department of Health and Human Service, School of Kinesiology, Marshall University, Huntington, WV, United States of America
| | | | | | | | | |
Collapse
|
10
|
David M, Serban A, Radulescu C, Danet AF, Florescu M. Bioelectrochemical evaluation of plant extracts and gold nanozyme-based sensors for total antioxidant capacity determination. Bioelectrochemistry 2019; 129:124-134. [PMID: 31158797 DOI: 10.1016/j.bioelechem.2019.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
The antioxidant properties of different plant extracts are usually claimed and used by food, medicine and cosmetic industry due to their health promoting capacities. In this study the presence of antioxidant compounds and the total antioxidant capacity of water-soluble extracts, prepared using two extraction methods and a variety of solvents, have been determined and a rapid screening method has been developed. Plant extracts characterisation, composition and antioxidant properties were confirmed by FTIR and Raman spectroscopies. Voltammetry, amperometry and electrochemical impedance were used to highlight the total antioxidant capacity of each extract using an electrochemical gold nanozyme-sensor based on the enzyme-like catalytic activity of gold nanoparticles. Both anodic area of cyclic voltammograms (10.31 μA V) and electrochemical index (153) calculated using differential potential voltammetry show the total content of antioxidant compounds, allowing to discriminate between different extracts. Amperometric total antioxidant capacity measurements were associated with those from classical chemiluminescence and good correlation has been found (Pearson's correlation coefficient of 0.958).
Collapse
Affiliation(s)
- Melinda David
- Faculty of Medicine, Transilvania University of Brasov, Colina Universitatii nr 1, Corp C, room CI30, Brasov 500068, Romania
| | - Adrian Serban
- Faculty of Medicine, Transilvania University of Brasov, Colina Universitatii nr 1, Corp C, room CI30, Brasov 500068, Romania
| | - Cristiana Radulescu
- Faculty of Science and Arts, Department of Science and Advanced Technologies, Romania and Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 18 - 24 Unirii Boulevard, Targoviste 130082, Romania
| | - Andrei Florin Danet
- Department of Analytical Chemistry, University of Bucharest, Şos. Panduri 90-92, Bucharest 050657, Romania
| | - Monica Florescu
- Faculty of Medicine, Transilvania University of Brasov, Colina Universitatii nr 1, Corp C, room CI30, Brasov 500068, Romania.
| |
Collapse
|
11
|
Abdelwahab AA, Abdel‐Hakim M, Abdelmottaleb M, Elshahawy AS. Palladium Nanoclusters Uniformly Enveloped Electrochemically Activated Graphene for Highly Sensitive Hydrogen Peroxide Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adel A. Abdelwahab
- Chemistry Department, Faculty of Science and ArtsJouf University Qurayyat 75911 Saudi Arabia E-mail: aabdelwahab
- Chemistry Department, Faculty of ScienceAl-Azhar University Assiut 71524 Egypt
| | - M. Abdel‐Hakim
- Chemistry Department, Faculty of ScienceAl-Azhar University Assiut 71524 Egypt
| | | | - Anwar S. Elshahawy
- Chemistry Department, Faculty of ScienceAssiut University Assiut 71524 Egypt
| |
Collapse
|
12
|
Li Z, Jiang Y, Wang Z, Wang W, Yuan Y, Wu X, Liu X, Li M, Dilpazir S, Zhang G, Wang D, Liu C, Jiang J. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. Mikrochim Acta 2018; 185:501. [PMID: 30302565 DOI: 10.1007/s00604-018-3032-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
Core-shell structured particles were prepared from carbonized zeolitic imidazolate frameworks (ZIFs) and reduced graphene oxide (rGO). The particles possess a nitrogen content of up to 10.6%. The loss of nitrogen from the ZIF is avoided by utilizing the reduction and agglomeration of graphene oxide with suitable size (>2 μm) during pyrolysis. The resulting carbonized ZIF@rGO particles were deposited on a glassy carbon electrode to give an amperometric sensor for H2O2, typically operated at a voltage of -0.4 V (vs. Ag/AgCl). The sensor has a wide detection range (from 5 × 10-6 to 2 × 10-2 M), a 3.3 μM (S/N = 3) detection limit and a 0.272 μA·μM-1·cm-2 sensitivity, much higher than that of directly carbonized ZIFs. The sensor material was also deposited on a screen-printed electrode to explore the possibility of application. Graphical abstract Nitrogen doped carbon (NC) derived from carbonized zeolitic imidazolate frameworks is limited because of low nitrogen content. Here, nitrogen-rich NC@reduced graphene oxide (rGO) core-shell structured particles are described. The NC@rGO particles show distinctly better H2O2 detection performance than NC.
Collapse
Affiliation(s)
- Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuheng Jiang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhuoya Wang
- School of chemical & Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| | - Wenbo Wang
- Beijing Engineering Research Center of Process Pollution Control Division of Environmental Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Yuan
- School of chemical & Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| | - Xiaoxue Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xingchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mingjie Li
- Qingdao Institute of Biomass Energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Sobia Dilpazir
- Beijing Engineering Research Center of Process Pollution Control Division of Environmental Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guangjin Zhang
- Beijing Engineering Research Center of Process Pollution Control Division of Environmental Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dongbin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chenming Liu
- Beijing Engineering Research Center of Process Pollution Control Division of Environmental Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
13
|
A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim Acta 2018; 185:87. [DOI: 10.1007/s00604-017-2646-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023]
|
14
|
Choleva TG, Gatselou VA, Tsogas GZ, Giokas DL. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Mikrochim Acta 2017; 185:22. [PMID: 29594622 DOI: 10.1007/s00604-017-2582-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/19/2017] [Indexed: 11/30/2022]
Abstract
The intrinsic peroxidase-like activity of rhodium nanoparticles (RhNPs) and their use as catalytic labels for sensitive colorimetric assays is presented. RhNPs catalyze the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue reaction product with a maximum absorbance at 652 nm. Kinetic studies show catalysis to follow Michaelis-Menten kinetics and a "ping-pong" mechanism. The calculated kinetic parameters indicate high affinity of RhNPs for both the substrate TMB and H2O2. In fact, they are better than other peroxidase mimicking nanomaterials and even the natural enzyme horseradish peroxidase. On the other hand, RhNPs exhibit no reactivity towards saccharides, thiols, amino acids and ascorbic acid. Based on these findings, a sensitive and selective colorimetric method was worked out for the determination of H2O2 in real samples with a linear response in the 1-100 μM concentration range. By employing glucose oxidase, the glucose assay has a linear range that covers the 5 to 125 μM glucose concentration range. The detection limits are <0.75 μM for both species. The methods were applied to the determination of H2O2 in spiked pharmaceutical formulations, and of glucose in soft drinks and blood plasma. Figures of merit include (a) good accuracy (with errors of <6%), (b) high recoveries (96.5-103.7%), and (c) satisfactory reproducibility (<6.3%). Graphical abstract Rhodium nanoparticles catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue reaction product. The effect is exploited in photometric assays for hydrogen peroxide and glucose.
Collapse
Affiliation(s)
- Tatiana G Choleva
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Vasiliki A Gatselou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - George Z Tsogas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Dimosthenis L Giokas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
15
|
Petroni JM, Lucca BG, Ferreira VS. Simple and Inexpensive Electrochemical Platform Based on Novel Homemade Carbon Ink and its Analytical Application for Determination of Nitrite. ELECTROANAL 2017. [DOI: 10.1002/elan.201700117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Bruno Gabriel Lucca
- Departamento de Ciências Naturais; Universidade Federal do Espírito Santo; São Mateus, ES 29932-540 Brazil
| | - Valdir Souza Ferreira
- Instituto de Química; Universidade Federal de Mato Grosso do Sul; Campo Grande, MS 79074-460 Brazil
| |
Collapse
|
16
|
N'Diaye J, Poorahong S, Hmam O, Izquierdo R, Siaj M. Facile synthesis rhodium nanoparticles decorated single layer graphene as an enhancement hydrogen peroxide sensor. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Trojanowicz M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Gatselou V, Christodouleas DC, Kouloumpis A, Gournis D, Giokas DL. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles. Anal Chim Acta 2016; 932:80-7. [DOI: 10.1016/j.aca.2016.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
19
|
Novel design of non-enzymatic sensor for rapid monitoring of hydrogen peroxide in water matrix. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Abdelwahab AA. Electrochemical Pretreatment of Graphene Composite CNT Encapsulated Au Nanoparticles for H2O2Sensor. ELECTROANAL 2016. [DOI: 10.1002/elan.201600032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adel A. Abdelwahab
- Department of Chemistry, Faculty of Science; Al-Azhar University; Assiut 71524 Egypt
| |
Collapse
|
21
|
Su CY, Lan WJ, Chu CY, Liu XJ, Kao WY, Chen CH. Photochemical Green Synthesis of Nanostructured Cobalt Oxides as Hydrogen Peroxide Redox for Bifunctional Sensing Application. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|