1
|
Rajamanikandan R, Sasikumar K, Ju H. Ti 3C 2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples. Anal Chim Acta 2024; 1322:343069. [PMID: 39182987 DOI: 10.1016/j.aca.2024.343069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium carbide (Ti3C2) were fabricated. Recently, MXene quantum dots (MX-QDs), the rapidly emerging zero-dimensional nanomaterials made from two-dimensional transition metal carbides, have attracted much interest due to their unique physical and chemical features. These include the extremely large surface-to-volume ratio, biocompatibility, luminescence tunability, and hybridization capability while retaining properties of their two-dimensional counterpart including good conductivity and charge transferability. RESULTS The fabricated Ti3C2 MX-QDs had a quantum yield of 8.13 % at the emission wavelength of λem = 465 nm and displayed excellent photostability with great colloidal stability. It was found that introducing QC to near Ti3C2 MX-QDs reduced their fluorescence signals due to quenching effects. These quenching effects that occurred in a very broad linear range of QC (25-600 nM) enabled QC to be sensed quantitatively with the limit of detection of QC (1.35 nM), being the lowest ever reported to date. The quenching phenomena that caused such excellent sensitivity could be accounted for by combined effects of static quenching/radiation-free complex formation and inner filter effects (IFE) of Ti3C2 MX-QDs with QC. SIGNIFICANCE In addition, the quenching-based detection demonstrated excellent specificity against structurally relevant interferants. Therefore, the presented sensing strategies with Ti3C2 MX-QDs-based fluorescence quenching can be one of the strongest candidates as a reliable and cost-effective solution to highly sensitive quantification of QC in food samples.
Collapse
Affiliation(s)
| | - Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
2
|
Feng S, Tang F, Wu F, Zhang J. One-pot synthesis of nano Zr-based metal-organic frameworks for fluorescence determination of quercetin and Hg 2. Food Chem 2024; 432:137173. [PMID: 37633149 DOI: 10.1016/j.foodchem.2023.137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
In this study, a nanoscale Zr-based metal-organic framework (nano-Zr-MOF) was prepared by one-pot method using meso-tetra(4-carboxyphenyl)porphyrin as organic ligand and Zr4+ as metal unit. The nanoscale structure endows it with excellent dispersion in water. The nano-Zr-MOF exhibited intense red fluorescence, which could be significantly quenched by the addition of quercetin, probably due to its electron-rich framework. The high selectivity for quercetin detection was verified with analogues and common ions as interfering agents. Moreover, the nano-Zr-MOF could be used as a highly selective and sensitive sensor for the detection of Hg2+. The detection limits for quercetin and Hg2+ were 0.026 μM and 0.039 μM, respectively. This fluorometric method was successfully applied to detect quercetin in red wine and food samples with satisfactory recoveries ranging from 83.7-112.3% and 81.8-115.9%, respectively. The recovery in detection of Hg2+ in lake water were ranging from 97.1-109.2%.
Collapse
Affiliation(s)
- Shitao Feng
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Furong Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
3
|
Hu H, Wu Y, Gong X. Organosilicon-Based Carbon Dots and Their Versatile Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305933. [PMID: 37661362 DOI: 10.1002/smll.202305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Carbon dots (CDs) are a newly discovered type of fluorescent material that has gained significant attention due to their exceptional optical properties, biocompatibility, and other remarkable characteristics. However, single CDs have some drawbacks such as self-quenching, low quantum yield (QY), and poor stability. To address these issues, researchers have turned to organosilicon, which is known for its green, economical, and abundant properties. Organosilicon is widely used in various fields including optics, electronics, and biology. By utilizing organosilicon as a synthetic precursor, the biocompatibility, QY, and resistance to self-quenching of CDs can be improved. Meanwhile, the combination of organosilicon with CDs enables the functionalization of CDs, which significantly expands their original application scenarios. This paper comprehensively analyzes organosilicon in two main categories: precursors for CD synthesis and matrix materials for compounding with CDs. The role of organosilicon in these categories is thoroughly reviewed. In addition, the paper presents various applications of organosilicon compounded CDs, including detection and sensing, anti-counterfeiting, optoelectronic applications, and biological applications. Finally, the paper briefly discusses current development challenges and future directions in the field.
Collapse
Affiliation(s)
- Huajiang Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yongzhong Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
4
|
Sasikumar K, Rajamanikandan R, Ju H. Nitrogen- and Sulfur-Codoped Strong Green Fluorescent Carbon Dots for the Highly Specific Quantification of Quercetin in Food Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7686. [PMID: 38138829 PMCID: PMC10744681 DOI: 10.3390/ma16247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Carbon dots (CDs) doped with heteroatoms have garnered significant interest due to their chemically modifiable luminescence properties. Herein, nitrogen- and sulfur-codoped carbon dots (NS-CDs) were successfully prepared using p-phenylenediamine and thioacetamide via a facile process. The as-developed NS-CDs had high photostability against photobleaching, good water dispersibility, and excitation-independent spectral emission properties due to the abundant amino and sulfur functional groups on their surface. The wine-red-colored NS-CDs exhibited strong green emission with a large Stokes shift of up to 125 nm upon the excitation wavelength of 375 nm, with a high quantum yield (QY) of 28%. The novel NS-CDs revealed excellent sensitivity for quercetin (QT) detection via the fluorescence quenching effect, with a low detection limit of 17.3 nM within the linear range of 0-29.7 μM. The fluorescence was quenched only when QT was brought near the NS-CDs. This QT-induced quenching occurred through the strong inner filter effect (IFE) and the complex bound state formed between the ground-state QT and excited-state NS-CDs. The quenching-based detection strategies also demonstrated good specificity for QT over various interferents (phenols, biomolecules, amino acids, metal ions, and flavonoids). Moreover, this approach could be effectively applied to the quantitative detection of QT (with good sensing recovery) in real food samples such as red wine and onion samples. The present work, consequently, suggests that NS-CDs may open the door to the sensitive and specific detection of QT in food samples in a cost-effective and straightforward manner.
Collapse
Affiliation(s)
| | | | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (K.S.); (R.R.)
| |
Collapse
|
5
|
Momeni S, Ramezani AM, Talebi S, Nabipour I. Synthesis of intrinsic fluorescent dopamine/quercetin copolymer nanoparticles and their application as a dual-mode assay for detection of quercetin. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Jeevika A, Alagarsamy G, Celestina JJ. Biogenic synthesis of carbon quantum dots from garlic peel bio-waste for use as a fluorescent probe for sensing of quercetin. LUMINESCENCE 2022; 37:1991-2001. [PMID: 36063384 DOI: 10.1002/bio.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
Highly fluorescent and water-soluble carbon quantum dots (CQDs) were synthesized from the bio-waste source of garlic peels (renovation of bio-waste into bio-asset) using a controlled carbonization method. Synthesized CQDs were characterized by various analytical methods and explored as a fluorogenic probe for the recognition of quercetin (QT). UV-Vis result shows an absorption maximum at 275 nm attributed to the conjugation of C=C and C=O of CQDs and demonstrates a blue emission in the range of 330-410 nm. Selectivity was performed with various biomolecules, except for QT, all other do not exhibit any considerable change in the fluorescence of CQDs. On the interaction with QT, emission was completely quenched due to FET, confirming the high selective to QT. Effect of pH, sensitivity, and stability studies displayed excellent results under optimized conditions. The LOD fluorescent probe was found to be 6.73 μM. Our approach may suggest a new platform for the development of quick and low-cost CQDs-based sensors for environmental and biological purposes.
Collapse
Affiliation(s)
- Alagan Jeevika
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | | | - Joseph Jone Celestina
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| |
Collapse
|
7
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
8
|
Zhang Y, Sun M, Peng M, Du E, Xu X, Wang CC. The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ma Y, Yang X, Leng X, Liu X, Schipper D. A high-nuclearity Cd( ii)–Nd( iii) nanocage for the rapid ratiometric fluorescent detection of quercetin. CrystEngComm 2022. [DOI: 10.1039/d2ce00556e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 32-metal Cd(ii)–Nd(iii) nanocage was constructed, and it shows rapid and stable ratiometric fluorescent response to quercetin.
Collapse
Affiliation(s)
- Yanan Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xilong Leng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Desmond Schipper
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, 78712, USA
| |
Collapse
|
10
|
Novel blue-emitting probes of polyethyleneimine-capped copper nanoclusters for fluorescence detection of quercetin. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Fan Y, Yao J, Huang M, Linghu C, Guo J, Li Y. Non-conjugated polymer dots for fluorometric and colorimetric dual-mode detection of quercetin. Food Chem 2021; 359:129962. [PMID: 33945984 DOI: 10.1016/j.foodchem.2021.129962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 01/28/2023]
Abstract
Due to the biochemical and pharmacological activities, the convenient and effective detection of quercetin (Qc) is very important for biochemistry, pharmaceutical chemistry and clinical medicine. A kind of non-conjugated polymer dots (NCPDs) was used as a versatile and sensitive dual-mode optical output for Qc detection, which was synthesized by hyperbranched poly(ethylenimine) (PEI) and l-threonine via environmentallyfriendly way. The dual-mode method proposed in this work had high sensitivity and definiteselectivity for Qc detection. Additionally, it was convenient for the naked eyes to observe the fluorescence brightness and color change.
Collapse
Affiliation(s)
- Yu Fan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jie Yao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengke Huang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenxi Linghu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
12
|
Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Li X, Lin H, Li Q, Xue J, Xu Y, Zhuang L. Recyclable Magnetic Fluorescent Fe 3O 4@SiO 2 Core–Shell Nanoparticles Decorated with Carbon Dots for Fluoride Ion Removal. ACS APPLIED NANO MATERIALS 2021. [DOI: 10.1021/acsanm.1c00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaolei Li
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Han Lin
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Qianli Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Jingyi Xue
- Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, Floor 17, Tower Wing, London Bridge, London SE1 9RT, U.K
| | - Yue Xu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
14
|
Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9020388] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dots have gained tremendous interest attributable to their unique features. Two approaches are involved in the fabrication of quantum dots (Top-down and Bottom-up). Most of the synthesis methods are usually multistep, required harsh conditions, and costly carbon sources that may have a toxic effect, therefore green synthesis is more preferable. Herein, the current review presents the green synthesis of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) that having a wide range of potential applications in bio-sensing, cellular imaging, and drug delivery. However, some drawbacks and limitations are still unclear. Other biomedical and biotechnological applications are also highlighted.
Collapse
|
15
|
Niu M, Yang X, Ma Y, Wang C, Schipper D. NIR luminescent detection of quercetin based on an octanuclear Zn( ii)–Nd( iii) salen nanocluster. RSC Adv 2021; 11:35893-35897. [PMID: 35492787 PMCID: PMC9043252 DOI: 10.1039/d1ra06494k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
A NIR luminescent octanuclear Zn(ii)–Nd(iii) nanocluster 1 was constructed by the use of a salen-type Schiff base ligand. 1 exhibits a lanthanide luminescent response to Que with high sensitivity. The quenching constant of Que to the lanthanide emission is 2.6 × 104 M−1, and the detection limit of 1 to Que is 2.5 μM. The response behavior of 1 to Que is not affected by the existence of some potential interferents such as biomolecules. An octanuclear Zn(ii)–Nd(iii) nanocluster was constructed by the use of a salen-type Schiff base ligand, and it shows an interesting NIR lanthanide luminescent response to quercetin with high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
- Mengyu Niu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Yanan Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Chengri Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Desmond Schipper
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, 78712, USA
| |
Collapse
|
16
|
Xu Y, Li P, Cheng D, Wu C, Lu Q, Yang W, Zhu X, Yin P, Liu M, Li H, Zhang Y. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J Mater Chem B 2020; 8:10290-10308. [PMID: 33103712 DOI: 10.1039/d0tb01881c] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group IV nanodots (NDs) mainly including carbon (C), silicon (Si), germanium (Ge) have aroused much attention as one type of important nanomaterials that are widely studied in optoelectronics, semiconductors, sensors and biomedicine-related fields owing to the low cost of synthesis, good stability, excellent biocompatibility, and some attractive newly emerged properties. In this review, the synthesis, surface engineering and application in bioimaging and biotherapy of group IV NDs are summarized and discussed. The recent progress in the rational synthesis and functionalization, specific therapy-related properties, together with in vivo and in vitro bioimaging are highlighted. Their new applications in biotherapy such as photothermal therapy (PTT) and photodynamic therapy (PDT) are illustrated with respect to C, Si and Ge NDs. The current challenges and future applications of these emerging materials in bioimaging and biotherapy are presented. This review provides readers with a distinct perspective of the group IV NDs nanomaterials for synthesis and surface engineering, and newly emerging properties related to applications in biomedicine.
Collapse
Affiliation(s)
- Yaxin Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peipei Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Dan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Weipeng Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
17
|
Qian J, Kai G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J Pharm Biomed Anal 2020; 190:113548. [PMID: 32861928 DOI: 10.1016/j.jpba.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied for the prevention and cure of various diseases for centuries. Ingredient with pharmacological activity is the key to the application of TCM. Hence, it is of significance to separate and detect active ingredients in TCM effectively. Micro/nanomaterial is the promising candidate for adsorption and sensing due to its unique physical and chemical properties. For years, many efforts have been made to develop functional micro/nanomaterials to realize the effective adsorption or sensing of bioactive compounds in TCM. In this review, we discussed recent progresses in the application of various functional micro/nanomaterials for adsorption or detection (electrochemical detection, fluorescent detection, and colorimetric detection) of active ingredients. Based on the kind of matrix materials, micro/nano-adsorbents or sensors can be classified into following categories: metal-based micro/nanomaterials, porous materials, carbon-based materials, graphene/graphite-liked micro/nanomaterials and hybrid micro/nanomaterials.
Collapse
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
18
|
Determination of acrylamide in food products based on the fluorescence enhancement induced by distance increase between functionalized carbon quantum dots. Talanta 2020; 218:121152. [DOI: 10.1016/j.talanta.2020.121152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
|
19
|
Kadian S, Manik G. Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin. Food Chem 2020; 317:126457. [PMID: 32106009 DOI: 10.1016/j.foodchem.2020.126457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
20
|
Cai Z, Zhu R, Zhang C, Hao E, Zhao J, Wu T. One-pot green synthesis of l-proline-stabilized copper nanoclusters for quercetin sensing. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Sahu V, Khan F. Synthesis of bovine serum albumin capped boron-doped carbon dots for sensitive and selective detection of Pb(II) ion. Heliyon 2020; 6:e03957. [PMID: 32435713 PMCID: PMC7232084 DOI: 10.1016/j.heliyon.2020.e03957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/12/2020] [Accepted: 05/06/2020] [Indexed: 10/26/2022] Open
Abstract
Carbon dots have tremendous potential to be used for biochemical sensing and environmental testing due to its superior optical properties and excellent biocompatibility. The surface of carbon dots can be easily functionalized. In the present study boron doped carbon dots have been synthesized using one pot approach by microwave treatment method. The surface of boron doped carbon dots is capped with bovine serum albumin. The maximum fluorescence emission observed at 444 nm when excited upon 345 nm of wavelength. In the normal light, it is light green in colour but when exposed in long wavelength UV light it exhibited blue fluorescence. The carbon dots have an irregular shape with a diameter below 5 nm. The applicability of synthesized carbon dots as the fluorescent sensor has been checked using different metal ions. It is observed that Pb(II) ion shows appreciable and selective quenching. Linear relationship is exist between the decrease in fluorescence intensity and the concentrations of Pb(II) ion in the range from 1 ppb to 10 ppb concentration. Limit of detection is found to be 0.08 ppb. This study will be helpful in the development of new fluorescent nano-biosensors.
Collapse
Affiliation(s)
- Vinayak Sahu
- Department of Chemistry, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
22
|
Hatamluyi B, Modarres Zahed F, Es'haghi Z, Darroudi M. Carbon Quantum Dots Co‐catalyzed with ZnO Nanoflowers and Poly (CTAB) Nanosensor for Simultaneous Sensitive Detection of Paracetamol and Ciprofloxacin in Biological Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.201900412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Hatamluyi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
- Student Research CommitteeMashhad University of Medical Sciences Mashhad Iran
| | | | - Zarrin Es'haghi
- Department of ChemistryPayame Noor University 19395-4697 Tehran I.R. of IRAN
| | - Majid Darroudi
- Nuclear Medicine Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology and Nanotechnology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
23
|
Wei Q, Liu T, Pu H, Sun D. Development of a fluorescent m
icrowave‐assisted
synthesized carbon dots/Cu
2+
probe for rapid detection of tea polyphenols. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qingyi Wei
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Ting Liu
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Hongbin Pu
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Da‐Wen Sun
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science CentreUniversity College Dublin, National University of Ireland Dublin Ireland
| |
Collapse
|
24
|
Nghia NN, Huy BT, Lee YI. Highly sensitive and selective optosensing of quercetin based on novel complexation with yttrium ions. Analyst 2020; 145:3376-3384. [PMID: 32239000 DOI: 10.1039/d0an00117a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and fast method was developed for the determination of quercetin. The concentration of quercetin can be determined based on the fluorescence emission resulting from the coordinative interactions between quercetin and the yttrium ion (Y3+). Notably, a portable platform to quantitatively analyze quercetin was constructed. This platform incorporates our custom-built homemade reader based on a photodiode, and Arduino hardware, which accepts a paper ribbon on which Y3+ is deposited as an input. In addition, the color change of the paper ribbon was identified using a smartphone via the hue values of the photographs. The limits of detection for quercetin using spectroscopy, a smartphone, and a custom-built reader were calculated to be 27, 110, and 129 nM, respectively. The use of a custom-built device and a smartphone for detecting quercetin via fluorescence from the prepared paper ribbon reduces the time and cost of quercetin detection. This approach could be employed for on-site sensing of quercetin in real samples.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea.
| | | | | |
Collapse
|
25
|
Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Mikrochim Acta 2020; 187:130. [PMID: 31938866 DOI: 10.1007/s00604-019-4106-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Thiolated β-cyclodextrin functionalized gold nanoparticles (Au-β-CDs) with layered wrinkled flower structure were prepared. Au-β-CDs were electrostatically combined with protonated aminated graphene quantum dots (NH2-GQDs) to form a nanocomposite with better supramolecular recognition, conductivity, catalysis and dispersion properties. For constructing a quercetin (QU) sensor, the nanocomposites were one-step electrodeposited by a cyclic voltammetry (CV) method onto a glassy carbon electrode to form a stable film. Under optimized conditions, the sensor showed a wide linear response range of 1-210 nM, with a lower detection limit of 285 pM. At the same time, flavonoids with similar structures hardly interfere with the determination of QU. The sensor has been used to determine QU in honey, tea, honeysuckle and human serum with satisfactory results. Graphical abstractSchematic representation of the fabrication of an ultrasensitive quercetin electrochemical sensor based on aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles (NH2-GQDs/Au-β-CD/GCE).
Collapse
|
26
|
Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 18:703-727. [PMID: 32206050 PMCID: PMC7088420 DOI: 10.1007/s10311-020-00984-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/01/2020] [Indexed: 05/18/2023]
Abstract
Carbon and graphene quantum dots are prepared using top-down and bottom-up methods. Sustainable synthesis of quantum dots has several advantages such as the use of low-cost and non-toxic raw materials, simple operations, expeditious reactions, renewable resources and straightforward post-processing steps. These nanomaterials are promising for clinical and biomedical sciences, especially in bioimaging, diagnosis, bioanalytical assays and biosensors. Here we review green methods for the fabrication of quantum dots, and biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajender S. Varma
- Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
27
|
Gao B, Sun Y, Miao Y, Xu L, Wang Z. Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes. Analyst 2019; 145:115-121. [PMID: 31746826 DOI: 10.1039/c9an02077b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly luminescent nitrogen and phosphorus co-doped graphene-analogous flakes (NPCGFs) were synthesized by a one-pot simple hydrothermal reaction using β-cyclodextrin (β-CD), vinylphosphoric acid (VPA), and o-phenylenediamine (oPD) as the precursors. VPA, as an important organic P-containing monomer, was selected as the phosphorus source to generate additional conjugated and effective binding sites on the surface of the NPCGFs. This synthetic strategy not only allows enhancement of structural rigidity, but also effectively eliminates surface traps of the NPCGFs, resulting in an improved fluorescence quantum yield (FL QY) of the NPCGFs. Additionally, oPD simultaneously acts as a nitrogen source and enables amino functionalisation of the NPCGF surface in the synthesis process. The NPCGFs (QY, 32.49%) are irregularly shaped with a typical diameter of approximately 54 nm and display strong fluorescence, with excitation/emission maxima of 360/445 nm. It was found that the NPCGFs can serve as a multifunctional FL probe for pH measurement and quercetin (Qc) detection. A linear relationship exists between the decrease in FL intensity and the concentration of Qc in the range from 0.35 to 30 μg mL-1 as well as the pH variation between 4.0 and 7.0. The probe was further applied to the determination of Qc in living cells.
Collapse
Affiliation(s)
- Buhong Gao
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | |
Collapse
|
28
|
Gao YF, Jin X, Kong FY, Wang ZX, Wang W. One-pot green and simple synthesis of actinian nickel-doped carbon nanoflowers for ultrasensitive sensing of quercetin. Analyst 2019; 144:7283-7289. [PMID: 31697283 DOI: 10.1039/c9an01907c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this contribution, a one-pot method possessing the advantages of easy preparation, rapidness, efficiency and environmental friendliness has been developed for the first time for the facile synthesis of highly fluorescent actinian nickel-doped carbon nanoflowers (Ni-CNFWs) by using nickel(ii)acetylacetonate as a metal-carbon source. Various characterization studies indicate that metal nickel atoms have been successfully doped into carbon nanoflower frameworks with a weight percentage of 1.46 wt%. The Ni-CNFWs showed a "shell-core" actinian structure with ∼400 nm diameter and highly efficient fluorescence quenching ability in the presence of quercetin (Qut) due to the formed Meisenheimer complexes via the conjugation effect of p, π-electrons between Ni-CNFWs and Qut, which allowed the analysis of Qut in a very facile method. Under the optimal conditions, the decreased fluorescence of Ni-CNFWs showed a good linear relationship with the concentration of Qut ranging from 0.5 to 300.0 μM, and the limit of detection was 0.137 μM (3σ/k). Finally, the content of Qut in bovine serum was successfully detected with the novel on-off sensor, and the recoveries were 97.3-101.9%, which indicate that the constructed on-off sensor has a high selectivity and accuracy.
Collapse
Affiliation(s)
- Yuan-Fei Gao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | | | | | | | | |
Collapse
|
29
|
Samoilov A, Minenko S, Sushynskyi O, Lisetski L, Lebovka N. Optical and calorimetric studies of quercetin-doped liquid crystals: Effects of molecular aggregation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
|
31
|
Du F, Shuang S, Guo Z, Gong X, Dong C, Xian M, Yang Z. Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes. Talanta 2019; 206:120243. [PMID: 31514864 DOI: 10.1016/j.talanta.2019.120243] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 11/19/2022]
Abstract
A facile and rapid synthesis of multifunctional carbon nanodots (CNDs) was developed by using the acid-base neutralization spontaneous heat with glucose as precursor, 1,2-ethylenediamine (EDA) and concentrated nitric acid as dual N-dopants. The CND has a tremendous antioxidant potency, which represents effective inhibitory concentrations of reactive oxygen species that are significantly lower than ascorbic acid. Furthermore, minimum inhibitory concentration (MIC) assay revealed CNDs possessed significant antimicrobial activity for Gram-positive S. aureus and Gram-negative E. coli. Moreover, the CNDs are endowed with favorable fluorescence (FL) behaviors including the quantum yield (QY) of 14.2% and stable FL within a wide range of pH and high tolerance to external ionic strength, rendering them applicable in quercetin (QCT) detection as a FL nanoprobe. The CNDs were effectively quenched by QCT due to static quenching which takes place by the electrostatic interaction between basic groups of CNDs and QCT of 3-hydroxyl. This nanoprobe had profitable selectivity and sensitivity towards QCT with a linearity ranging from 1 μM to 47 μM and a low detection limit of 172.4 nM and were successfully performed for QCT detection in human serum and urine samples.
Collapse
Affiliation(s)
- Fangfang Du
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zhonghui Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Zhenhua Yang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
32
|
Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 2019; 270:165-190. [PMID: 31265929 DOI: 10.1016/j.cis.2019.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs), as a new type of luminescent zero-dimensional carbon nanomaterial, have been applied in a variety of fields. Currently, functionalization of CDs is an extremely useful method for effectively tuning their intrinsic structure and surface state. Heteroatom doping and surface modification are two functionalization strategies for improving the photophysical performance and broadening the range of applications for fluorescent CDs. Heteroatom doping in CDs can be used to tune their intrinsic properties, which has received significant research interests because of its simplicity. Surface modification can be applied for varying active sites and the functional groups on the CDs surface, which can endow fluorescent CDs with the unique properties resulting from functional ligand. In this review, we summarize the structural and physicochemical properties of functional CDs. We focused our review on the latest developments in functionalization strategies for CDs and discuss the detailed characteristics of different functionalization methods. Ultimately, we hope to inform researchers on the latest progress in functionalization of CDs and provide perspectives on future developments for functionalization of CDs and their potential applications.
Collapse
|
33
|
Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol 2019; 128:240-255. [PMID: 30991130 DOI: 10.1016/j.fct.2019.04.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death across the world. Different environmental and anthropogenic factors initiate mutations in different functional genes of growth factors and their receptors, anti-apoptotic proteins, self-renewal developmental proteins, tumor suppressors, transcription factors, etc. This phenomenon leads to altered protein homeostasis of the cell which in turn induces cancer initiation, development, progression and survival. From ancient times various natural products have been used as traditional medicine against different diseases. Natural products are readily applicable, inexpensive, accessible and acceptable therapeutic approach with minimum cytotoxicity. As most of the target-specific anticancer drugs failed to achieve the expected result so far, new multi-targeted therapies using natural products have become significant. In this review, we have summarized the efficacy of different natural compounds against cancer. They are capable of modulating cancer microenvironment and diverse cell signaling cascades; thus playing a major role in combating cancer. These compounds are found to be effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway and Hedgehog pathway). This review article is expected to be helpful in understanding the recent progress of natural product research for the development of anticancer drug.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
34
|
Xie Y, Zheng J, Wang Y, Wang J, Yang Y, Liu X, Chen Y. One-step hydrothermal synthesis of fluorescence carbon quantum dots with high product yield and quantum yield. NANOTECHNOLOGY 2019; 30:085406. [PMID: 30523804 DOI: 10.1088/1361-6528/aaf3fb] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A one-step hydrothermal synthesis of nitrogen and silicon co-doped fluorescence carbon quantum dots (N,Si-CQDs), from citric acid monohydrate and silane coupling agent KH-792 with a high product yield (PY) of 52.56% and high quantum yield (QY) of 97.32%, was developed. This greatly improves both the PY and QY of CQDs and provides a new approach for a large-scale production of high-quality CQDs. Furthermore, N,Si-CQDs were employed as phosphors without dispersants to fabricate white light-emitting diodes (WLEDs) with the color coordinates at (0.29, 0.32). It is suggested that N,Si-CQDs have great potential as promising fluorescent materials to be applied in WLEDs.
Collapse
Affiliation(s)
- Yanting Xie
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China. Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Song TQ, Yuan K, Qiao WZ, Shi Y, Dong J, Gao HL, Yang XP, Cui JZ, Zhao B. Water Stable [Tb4] Cluster-Based Metal–Organic Framework as Sensitive and Recyclable Luminescence Sensor of Quercetin. Anal Chem 2019; 91:2595-2599. [DOI: 10.1021/acs.analchem.8b05281] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tian-Qun Song
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Kuo Yuan
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Wan-Zhen Qiao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Hong-Ling Gao
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiu-Pei Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Jian-Zhong Cui
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Wang ZX, Gao YF, Jin X, Yu XH, Tao X, Kong FY, Fan DH, Wang W. Excitation-independent emission carbon nanoribbon polymer as a ratiometric photoluminescent probe for highly selective and sensitive detection of quercetin. Analyst 2019; 144:2256-2263. [DOI: 10.1039/c9an00094a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, sulfur–nitrogen co-doped carbon nanoribbon (SNCNR) polymers with stable dual-emission fluorescence were synthesized using a one-step traditional hydrothermal method of 6-mercaptopurine in an aqueous methanol solution.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
| | - Yuan-Fei Gao
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| | - Xing Jin
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| | - Xian-He Yu
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| | - Xi Tao
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| | - Da-He Fan
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- PR China
| |
Collapse
|
37
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
38
|
Li Q, Mu X, Xiao S, Wang C, Chen Y, Yuan X. Porous aromatic networks with amine linkers for adsorption of hydroxylated aromatic hydrocarbons. J Appl Polym Sci 2018. [DOI: 10.1002/app.46919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Q. Li
- College of Chemistry & Chemical Engineering; Chongqing University; Chongqing 401331 China
| | - X. Mu
- College of Chemistry & Chemical Engineering; Chongqing University; Chongqing 401331 China
| | - S. Xiao
- College of Chemistry & Chemical Engineering; Chongqing University; Chongqing 401331 China
| | - C. Wang
- College of Material Science & Engineering; Chongqing University; Chongqing 400045 China
| | - Y. Chen
- College of Chemistry & Chemical Engineering; Chongqing University; Chongqing 401331 China
| | - X. Yuan
- College of Chemistry & Chemical Engineering; Chongqing University; Chongqing 401331 China
| |
Collapse
|
39
|
Abstract
Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum.
Collapse
Affiliation(s)
- Luca Malfatti
- LMNT- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, Via Vienna 2, 07040, Sassari, University of Sassari, Italy
| | - Plinio Innocenzi
- LMNT- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, Via Vienna 2, 07040, Sassari, University of Sassari, Italy
| |
Collapse
|
40
|
Qu JH, Wei Q, Sun DW. Carbon dots: Principles and their applications in food quality and safety detection. Crit Rev Food Sci Nutr 2018; 58:2466-2475. [DOI: 10.1080/10408398.2018.1437712] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jia-Huan Qu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Food Refrigeration and Computerised Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
41
|
Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6G. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3279-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
A novel multi-purpose enzymatic system and procedures for the rapid fluorescent determination of flavonoids in herbal pharmaceuticals and plant materials. Talanta 2017; 171:108-114. [PMID: 28551116 DOI: 10.1016/j.talanta.2017.04.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/14/2023]
Abstract
The paper presents a novel multi-purpose enzymatic system and procedures for fluorescent determination of several flavonoids in herbal pharmaceuticals and plant materials after their enzyme-catalyzed oxidation by hydrogen peroxide and further derivatization with meso-1,2-diphenylethylenediamine. This system may be used for rapid (15-30min/20 samples) simultaneous screening of samples containing a certain flavonoid in a standard microplate, or as a HPLC detection system for analyzing plant extracts with uncertain composition. In the first case, this indicator system provides sensitive and reproducible microplate determination of quercetin, epicatechin, caffeic acid, and taxifolin in the ranges 0.1-5, 1-10, 0.1-10, 0.5-5μM, respectively. In the second case, quercetin, epicatechin, and caffeic acid can be determined in the ranges 0.05-0.75, 0.05-0.75, and 0.01-0.75µg/ml (0.16-2.5, 0.17-2.6, 0.06-4.2μM), respectively. We have demonstrated the application of the system for the analysis of 3 pharmaceuticals and 3 types of plants.
Collapse
|
43
|
Thirumalraj B, Rajkumar C, Chen SM, Dhenadhayalan N, Lin KC. Light-Controlled Photochemical Synthesis of Gelatin-Capped Gold Nanoparticles for Spectral Activity and Electro-oxidation of Quercetin. ChemElectroChem 2017. [DOI: 10.1002/celc.201700552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Balamurugan Thirumalraj
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No.1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (R.O.C)
| | - Chellakannu Rajkumar
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No.1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (R.O.C)
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No.1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (R.O.C)
| | | | - King-Chuen Lin
- Institute of Atomic and Molecular Sciences; Academia Sinica; Taipei 106 Taiwan
- Department of Chemistry; National Taiwan University; Taipei 106 Taiwan
| |
Collapse
|
44
|
He Y, Liang L, Liu Q, Guo J, Liang D, Liu H. Green preparation of nitrogen doped carbon quantum dot films as fluorescent probes. RSC Adv 2017. [DOI: 10.1039/c7ra11332c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and economical hydrothermal method was developed for the preparation of highly luminescent NCDs by using cabbage juice as carbon source and PP as nitrogen source. The fluorescence intensity of CA-NCDs was quenched by Fe3+ with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yanfei He
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Lina Liang
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Qinghao Liu
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Jinchun Guo
- School of Environmental and Safety Engineering
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Dong Liang
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Hongyan Liu
- Institute of Plant Protection
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| |
Collapse
|
45
|
Kong D, Yan F, Luo Y, Ye Q, Zhou S, Chen L. Amphiphilic carbon dots for sensitive detection, intracellular imaging of Al 3. Anal Chim Acta 2016; 953:63-70. [PMID: 28010744 DOI: 10.1016/j.aca.2016.11.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 02/09/2023]
Abstract
In this paper, a simple and effective method was designed to synthesize hydrophobic carbon dots. Subsequently, amphiphilic fluorescent carbon dots (A-CDs) were synthesized by further surface modification. The result A-CDs show excellent optical properties with a quantum yield of 16.9%. It was interestingly found that morin (MR) and its fluorescent metal-ion complex (MR-Al3+) can successfully coordinate on the surface of A-CDs, the emission of A-CDs completely overlapped the absorption peak of MR-Al3+. Thus, the prepared A-CDs can be used as an effective fluorescent probe for Al3+ based on a fluorescence resonance energy transfer process. The sensing platform can realize real-time detection of Al3+ within 0.5 min. The fluorescence signals of the system were linearly correlated with the concentration of Al3+ over a range of 8-20 μM, with a detection limit of 0.113 μM. The method was also successfully applied to image the distribution of Al3+ in Human Umbilical Vein Endothelial Cells.
Collapse
Affiliation(s)
- Depeng Kong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Yunmei Luo
- Department of Pharmacology/Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou 563000, PR China
| | - Qianghua Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Siyushan Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| |
Collapse
|
46
|
Yuan Y, Zhao X, Qiao M, Zhu J, Liu S, Yang J, Hu X. Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 167:106-110. [PMID: 27262658 DOI: 10.1016/j.saa.2016.05.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/22/2023]
Abstract
Fluorescent carbon dots was prepared by heating N-(2-hydroxyethyl)ethylene diaminetriacetic acid in air. The carbon dots were not only highly soluble in water but also uniform in size, and possessed strong blue fluorescence and excitation wavelength-dependent emission properties with the maximum excitation and emission wavelength at 366nm and 423nm, respectively. Food colorant sunset yellow whose excitation and emission wavelength at 303nm and 430nm could selectively quench the fluorescence of carbon dots, efficient fluorescent resonance energy transfer between the carbon dots and sunset yellow is achieved. This was exploited to design a method for the determination of sunset yellow in the concentration range from 0.3 to 8.0μmolL(-1), with a limit of detection (3σ/k) of 79.6nmolL(-1). Furthermore the fluorimetric detection method was established and validated for sunset yellow in soft drinks samples with satisfactory results.
Collapse
Affiliation(s)
- Yusheng Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Man Qiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jinghui Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jidong Yang
- College of Chemical and Environmental Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Vilian AE, Puthiaraj P, Kwak CH, Choe SR, Huh YS, Ahn WS, Han YK. Electrochemical determination of quercetin based on porous aromatic frameworks supported Au nanoparticles. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Yan F, Kong D, Luo Y, Ye Q, Wang Y, Chen L. Carbon nanodots prepared for dopamine and Al(3+) sensing, cellular imaging and logic gate operation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:732-738. [PMID: 27524074 DOI: 10.1016/j.msec.2016.05.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/04/2016] [Accepted: 05/27/2016] [Indexed: 01/14/2023]
Abstract
Fluorescent carbon nanodots (CNDs) were synthesized through a facile, economic and green one-step hydrothermal process. The CNDs exhibit various merits including excellent solubility, superior photostability and low toxicity. Besides, the CNDs can be used as an effective fluorescent probe for dopamine and Al(3+). What's more, this CNDs based fluorescent probe was favorably applied to the analyses of dopamine in biological fluids and Al(3+) in food samples. This CDs based sensing platform shows its potential applications in the field of biology and food analysis with extraordinary advantages such as fast and simple as well as environmental-friendly. Inspired by these results, the prepared CNDs can be utilized as logic gates at the molecular level.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Depeng Kong
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yunmei Luo
- Department of Pharmacology/Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou 563000, PR China
| | - Qianghua Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yinyin Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| |
Collapse
|
49
|
Zhang F, Feng X, Zhang Y, Yan L, Yang Y, Liu X. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. NANOSCALE 2016; 8:8618-8632. [PMID: 27049931 DOI: 10.1039/c5nr08838k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photoluminescent organosilane-functionalized carbon quantum dots (CQDs), 3.0-3.5 nm in diameter, were synthesized via a facile hydrothermal method using citric acid monohydrate as a precursor and N-(3-(trimethoxysilyl) propyl) ethylenediamine as a coordinating and passivation agent. The optical properties of the as-obtained CQDs were investigated in detail. The CQD aqueous solution emits bright blue-white light under ultraviolet (UV) illumination with a quantum yield of 57.3% and high red-green-blue (RGB) spectral composition of 60.1%, and in particular the CQDs exhibit excitation-independent photoluminescence. The CQDs have a narrow size distribution around 3.1 nm and good film-forming ability through simple heat-treatment. By virtue of these excellent optical characteristics and good film-forming ability, a white light-emitting device (LED) was fabricated by combining a UV-LED chip with a single CQD phosphor film, which exhibited cool white light with a CIE coordinate of (0.31, 0.36), a color rendering index of 84 and a correlated color temperature of 6282 K. In addition, the white LED exhibits good optical stability under various working currents and for different working time intervals. Moreover, the interaction between the carbogenic core and surface groups was discussed using the DMol(3) program based on density functional theory. This research suggests the great potential of CQDs for solid-state lighting systems and reveals the effect of the surface state on the photoluminescent mechanism of CQDs.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
50
|
Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L. Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1788-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|