1
|
Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Kalynovska L, Paliienko K, Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol 2024; 185:114449. [PMID: 38215962 DOI: 10.1016/j.fct.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Heavy metals, Cd2+ and Pb2+, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd2+/Pb2+-induced neurotoxicity, and vice versa, was monitored using biological system, i.e. isolated presynaptic rat cortex nerve terminals. Combined application of Pb2+ and WPs/MPs to nerve terminals in an acute manner revealed that smoke preparations did not change a Pb2+-induced increase in the extracellular levels of excitatory neurotransmitter L-[14C]glutamate and inhibitory one [3H]GABA, thereby demonstrating additive result and no interference of neurotoxic effects of Pb2+ and particulate matter. Whereas, both smoke preparations decreased a Cd2+-induced increase in the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminals. In fluorimetric measurements, the metals and smoke preparations demonstrated additive effects on the membrane potential of nerve terminals causing membrane depolarisation. WPs/MPs-induced reduction of spontaneous ROS generation was mitigated by Cd2+ and Pb2+. Therefore, a potential variety of multipollutant heavy metal-/airborne particulate-induced effects on key presynaptic processes was revealed. Multipollutant reciprocal neurological hazard through disturbance of the excitation-inhibition balance, membrane potential and ROS generation was evidenced. This multipollutant approach and data contribute to up-to-date environmental quality/health risk estimation.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Liliia Kalynovska
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| |
Collapse
|
2
|
Dudarenko MV, Pozdnyakova NG. Perinatal hypoxia and thalamus brain region: increased efficiency of antiepileptic drug levetiracetam to inhibit GABA release from nerve terminals. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes
Collapse
|
3
|
Paliienko K, Korbush M, Krisanova N, Pozdnyakova N, Borysov A, Tarasenko A, Pastukhov A, Dudarenko M, Kalynovska L, Grytsaenko V, Garmanchuk L, Dovbynchuk T, Tolstanova G, Borisova T. Similar in vitro response of rat brain nerve terminals, colon preparations and COLO 205 cells to smoke particulate matter from different types of wood. Neurotoxicology 2022; 93:244-256. [DOI: 10.1016/j.neuro.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
4
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Shatursky O, Gnatyuk O, Afonina U, Pyrshev K, Dovbeshko G, Yesylevskyy S, Borisova T. Amphiphilic anti-SARS-CoV-2 drug remdesivir incorporates into the lipid bilayer and nerve terminal membranes influencing excitatory and inhibitory neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183945. [PMID: 35461828 PMCID: PMC9023372 DOI: 10.1016/j.bbamem.2022.183945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/05/2022]
Abstract
Remdesivir is a novel antiviral drug, which is active against the SARS-CoV-2 virus. Remdesivir is known to accumulate in the brain but it is not clear whether it influences the neurotransmission. Here we report diverse and pronounced effects of remdesivir on transportation and release of excitatory and inhibitory neurotransmitters in rat cortex nerve terminals (synaptosomes) in vitro. Direct incorporation of remdesivir molecules into the cellular membranes was shown by FTIR spectroscopy, planar phospholipid bilayer membranes and computational techniques. Remdesivir decreases depolarization-induced exocytotic release of L-[14C] glutamate and [3H] GABA, and also [3H] GABA uptake and extracellular level in synaptosomes in a dose-dependent manner. Fluorimetric studies confirmed remdesivir-induced impairment of exocytosis in nerve terminals and revealed a decrease in synaptic vesicle acidification. Our data suggest that remdesivir dosing during antiviral therapy should be precisely controlled to prevent possible neuromodulatory action at the presynaptic level. Further studies of neurotropic and membranotropic effects of remdesivir are necessary.
Collapse
Affiliation(s)
- Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Oleg Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Olena Gnatyuk
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Uliana Afonina
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Kyrylo Pyrshev
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Galina Dovbeshko
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Semen Yesylevskyy
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine.
| |
Collapse
|
5
|
Pozdnyakova N, Krisanova N, Pastukhov A, Tarasenko A, Dudarenko M, Chernykh A, Pashenko A, Ryabukhin S, Tolstanova G, Volochnyuk D, Borisova T. Neuromodulation by selective angiotensin-converting enzyme 2 inhibitors. Neuroscience 2022; 498:155-173. [PMID: 35817218 DOI: 10.1016/j.neuroscience.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/25/2022]
Abstract
Here, neuromodulatory effects of selective angiotensin-converting enzyme 2 (ACE2) inhibitors were investigated. Two different types of small molecule ligands for ACE2 inhibition were selected using chemical genetic approach, they were synthesized using developed chemical method and tested using presynaptic rat brain nerve terminals (synaptosomes). EBC-36032 (1 µM) increased in a dose-dependent manner spontaneous and stimulated ROS generation in nerve terminals that was of non-mitochondrial origin. Another inhibitor EBC-36033 (MLN-4760) was inert regarding modulation of ROS generation. EBC-36032 and EBC-36033 (100 µM) did not modulate the exocytotic release of L-[14C]glutamate, whereas both inhibitors decreased the initial rate of uptake, but not accumulation (10 min) of L-[14C]glutamate by nerve terminals. EBC-36032 (100 µM) decreased the exocytotic release as well as the initial rate and accumulation of [3H]GABA by nerve terminals. EBC-36032 and EBC-36033 did not change the extracellular levels and transporter-mediated release of [3H]GABA and L-[14C]glutamate, and tonic leakage of [3H]GABA from nerve terminals. Therefore, synthesized selective ACE2 inhibitors decreased uptake of glutamate and GABA as well as exocytosis of GABA at the presynaptic level. The initial rate of glutamate uptake was the only parameter that was mitigated by both ACE2 inhibitors despite stereochemistry issues. In terms of ACE2-targeted antiviral/anti-SARS-CoV-2 and other therapies, novel ACE2 inhibitors should be checked on the subject of possible renin-angiotensin system (RAS)-independent neurological side effects.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Anton Chernykh
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine
| | - Alexander Pashenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine
| | - Sergey Ryabukhin
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine
| | - Ganna Tolstanova
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine
| | - Dmitriy Volochnyuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine; Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, Kyiv 02094, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine.
| |
Collapse
|
6
|
Tarasenko A, Pozdnyakova N, Paliienko K, Borysov A, Krisanova N, Pastukhov A, Stanovyi O, Gnatyuk O, Dovbeshko G, Borisova T. A comparative study of wood sawdust and plastic smoke particulate matter with a focus on spectroscopic, fluorescent, oxidative, and neuroactive properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38315-38330. [PMID: 35079971 PMCID: PMC8789210 DOI: 10.1007/s11356-022-18741-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Here, water-suspended smoke aerosol preparation was synthesized from biomass-based fuel, i.e., a widespread product for residential heating, wood sawdust (WP) (pine, poplar, and birch mixture), and its properties were compared in parallel experiments with the smoke preparation from plastics (PP). Molecular groups in the PM preparations were analyzed using Raman and Fourier-transform infrared spectroscopy. WP was assessed in neurotoxicity studies using rat cortex nerve terminals (synaptosomes). Generation of spontaneous and H2O2-evoked reactive oxygen species (ROS) detected using fluorescent dye 2',7'-dichlorofluorescein in nerve terminals was decreased by WP. In comparison with PP, WP demonstrated more pronounced reduction of spontaneous and H2O2-evoked ROS production. WP completely inhibited glutamate receptor agonist kainate-induced ROS production, thereby affecting the glutamate receptor-mediated signaling pathways. WP decreased the synaptosomal membrane potential in fluorimetric experiments and the synaptosomal transporter-mediated uptake of excitatory and inhibitory neurotransmitters, L-[14C]glutamate and [3H] γ-aminobutyric acid (GABA), respectively. PP decreased the ambient synaptosomal level of [3H]GABA, whereas it did not change that of L-[14C]glutamate. Principal difference between WP and PP was found in their ability to influence the ambient synaptosomal level of [3H]GABA (an increase and decrease, respectively), thereby showing riskiness in mitigation of synaptic inhibition by PP and triggering development of neuropathology.
Collapse
Affiliation(s)
- Alla Tarasenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Konstantin Paliienko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Natalia Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Olexander Stanovyi
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kiev, 03680, Ukraine
| | - Olena Gnatyuk
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kiev, 03680, Ukraine
| | - Galina Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kiev, 03680, Ukraine
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| |
Collapse
|
7
|
Yuan L, Liu L, Bai Y, Qin J, Chen M, Feng F. A novel ratiometric fluorescent probe for detection of l-glutamic acid based on dual-emission carbon dots. Talanta 2022; 245:123416. [PMID: 35427947 DOI: 10.1016/j.talanta.2022.123416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/27/2022]
Abstract
In this article, we report for the first time the use of a dual-emission carbon dots (CDs) with orange-yellow fluorescence for the detection of l-glutamic acid (L-Glu). The CDs was synthesized through a facile strategy of one-pot hydrothermal route using o-phenylenediamine (oPD) and oxalic acid. The CDs exhibit two fluorescence emission peaks around 453 nm and 560 nm when the excitation wavelength is at 390 nm. In the existence of L-Glu the fluorescence at 560 nm was decreased, whereas the fluorescence at 453 nm was constant. The fluorescence intensity ratio at 560 nm and 453 nm (F560/F453) expressed two great linear relationships in the L-Glu concentration range from 0 to 200 μM and 200-400 μM, respectively, with a detection limit (LOD) of about 0.085 μM. In addition, it was used to analyze L-Glu in fetal bovine serum samples successfully, which recoveries were ranging from 97.07 to 103.7%. Those results demonstrate CDs can be further explored in biomedicine studies.
Collapse
Affiliation(s)
- Lin Yuan
- Shanxi Datong University, Datong 037009, PR China
| | - Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China.
| | - Yunfeng Bai
- Shanxi Datong University, Datong 037009, PR China
| | - Jun Qin
- Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
8
|
Pozdnyakova N, Krisanova N, Dudarenko M, Vavers E, Zvejniece L, Dambrova M, Borisova T. Inhibition of sigma-1 receptors substantially modulates GABA and glutamate transport in presynaptic nerve terminals. Exp Neurol 2020; 333:113434. [PMID: 32795464 DOI: 10.1016/j.expneurol.2020.113434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/07/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
Sigma-1 receptors (Sig-1Rs) have been implicated in many neurological and psychiatric disorders and are a novel target for the treatment of such disorders. Sig-1R expression/activity deficits are linked to neurodegeneration, whereas the mechanisms mediated by Sig-1R are still unclear. Here, presynaptic [3H]GABA and L-[14C]glutamate transport was analysed in rat brain nerve terminals (synaptosomes) in the presence of the Sig-1R antagonist NE-100. NE-100 at doses of 1 and 10 μM increased the initial rate of synaptosomal [3H]GABA uptake, whereas 50 and 100 μM NE-100 decreased this rate, exerting a biphasic mode of action.Antagonists of GABAA and GABAB receptors, flumazenil and saclofen, respectively, prevented an increase in [3H]GABA uptake caused by 10 μM NE-100. L-[14C]glutamate uptake was decreased by 10-100 μM NE-100. A decrease in the uptake of both neurotransmitters mediated by NE-100 (50-100 μM) may have resulted from simultaneous antagonist-induced membrane depolarization, which was measured using the potential-sensitive fluorescent dye rhodamine 6G. The extracellular level of [3H]GABA was decreased by 1-10 μM NE-100, but that of L-[14C]glutamate remained unchanged. The tonic release of [3H]GABA measured in the presence of NO-711 was not changed by the antagonist, suggesting that NE-100 did not disrupt membrane integrity. The KCl- and FCCP-induced transporter-mediated release of L-[14C]glutamate was decreased by the antagonist; this may underlie the neuroprotective action of the antagonist in hypoxia/ischaemia. NE-100 (10-100 μM) decreased the KCl-evoked exocytotic release of [3H]GABA and L-[14C]glutamate, whereas the induction of the release of both neurotransmitters by the Ca2+ ionophore ionomycin was not affected by the antagonist; therefore, the mitigation of KCl-evoked exocytosis was associated with the NE-100-induced dysfunction of potential-dependent Ca2+ channels. Therefore, the Sig-1R antagonist can specifically act in an acute manner at the presynaptic level through the modulation of GABA and glutamate uptake, transporter-mediated release and exocytosis.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, 01030 Kiev, Ukraine
| | - Natalia Krisanova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, 01030 Kiev, Ukraine
| | - Marina Dudarenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, 01030 Kiev, Ukraine
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Aizkraukles Str, 21, Riga LV1006, Latvia
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Aizkraukles Str, 21, Riga LV1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str, 21, Riga LV1006, Latvia
| | - Tatiana Borisova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, 01030 Kiev, Ukraine.
| |
Collapse
|
9
|
Ferreira CP, Techera Antunes FT, Rebelo IN, da Silva CA, Vilanova FN, Corrêa DS, de Souza AH. Application of the UV–vis spectrophotometry method for the determination of glutamate in the cerebrospinal fluid of rats. J Pharm Biomed Anal 2020; 186:113290. [DOI: 10.1016/j.jpba.2020.113290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
|
10
|
Pastukhov A, Krisanova N, Pyrshev K, Borisova T. Dual benefit of combined neuroprotection: Cholesterol depletion restores membrane microviscosity but not lipid order and enhances neuroprotective action of hypothermia in rat cortex nerve terminals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183362. [PMID: 32445746 DOI: 10.1016/j.bbamem.2020.183362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
Here, both neuroprotectants, i.e. cholesterol depletion of the plasma membrane of rat brain nerve terminals (synaptosomes) using methyl-β-cyclodextrin (MβCD) and deep/propound hypothermia, were analyzed during their combined administration and regarding additive neuroprotective effect. The extracellular synaptosomal level of L-[14C]glutamate significantly increased after treatment with MβCD in both deep and profound hypothermia. Cholesterol depletion gradually enhanced inhibiting effect of deep and profound hypothermia on glutamate uptake and "excitotoxic" transporter-mediated release of L-[14C]glutamate. A decrease in L-[14C]glutamate release via heteroexchange from nerve terminals in deep and profound hypothermia was enhanced by cholesterol deficiency that confirmed previous result. Fluorometric studies with probes NR12S and DCVJ revealed oppositely directed effects of cholesterol depletion and hypothermia on synaptosomal membrane lipid order and microviscosity showing that cholesterol depletion can normalise up to the control hypothermia-induced increase in microviscosity, but not the lipid order of the synaptosomal membrane. Dynamics of changes in exocytosis in nerve terminals, which involved membrane fusion stage, was different from transporter-dependent ones. Hypothermia did not augment effects of cholesterol depletion on exocytotic L-[14C]glutamate release and lowering cholesterol enhanced the impact of deep, but not profound hypothermia on this parameter. Therefore, dual benefit of combined neuroprotection was demonstrated. Cholesterol depletion enhanced neuroprotective effects of hypothermia intensifying inhibition of "excitotoxic" transporter-mediated glutamate release and can normalise a hypothermia-induced increase in microviscosity of the synaptosomal membrane. This feature is prospective in mitigation of side effects of therapeutic hypothermia, and also for brain conservation preserving normal physical and chemical properties of the cellular membranes.
Collapse
Affiliation(s)
- A Pastukhov
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine.
| | - N Krisanova
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - K Pyrshev
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine; Dep. of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - T Borisova
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| |
Collapse
|
11
|
Kucherenko D, Kucherenko I, Soldatkin O, Topolnikova Y, Dzyadevych S, Soldatkin A. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry 2019; 128:100-108. [DOI: 10.1016/j.bioelechem.2019.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
12
|
Ci Q, Liu J, Qin X, Han L, Li H, Yu H, Lim KL, Zhang CW, Li L, Huang W. Polydopamine Dots-Based Fluorescent Nanoswitch Assay for Reversible Recognition of Glutamic Acid and Al 3+ in Human Serum and Living Cell. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35760-35769. [PMID: 30255705 DOI: 10.1021/acsami.8b12087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed a facile and feasible fluorescent nanoswitch assay for reversible recognition of glutamate (Glu) and Al3+ in human serum and living cell. The proposed nanoswitch assay is based on our recently developed method for controlled synthesis of fluorescent polydopamine dots (PDADs) at room temperature with dopamine as the sole precursor. The fluorescence of nanoswitch assay could be quickly and efficiently quenched by Glu (turn-Off), and the addition of Al3+ could recover the fluorescence of the PDADs-Glu system (turn-On). Meanwhile, the reversible recognition of Glu and Al3+ in this nanoswitch system was stable after three cycles. Additionally, the system displayed excellent performance for Glu and Al3+ determination with a low detection limit of 0.12 and 0.2 μM, respectively. Moreover, PDADs are successfully applied to determine Glu and monitor Al3+ in human serum. Noteworthy, the nanoswitch assay is transported into HepG2 cells and realized "Off" detection of Glu and "On" sensing Al3+ in the living cells. Therefore, this PDADs-based nanoswitch assay provides a strategy to develop reversible recognition biosensors for intracellular and external molecular analysis.
Collapse
Affiliation(s)
- Qiaoqiao Ci
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Linqi Han
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Haidong Yu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Kah-Leong Lim
- Department of Physiology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117593
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| |
Collapse
|
13
|
Pastukhov A, Borisova T. Combined Application of Glutamate Transporter Inhibitors and Hypothermia Discriminates Principal Constituent Processes Involved in Glutamate Homo- and Heteroexchange in Brain Nerve Terminals. Ther Hypothermia Temp Manag 2018; 8:143-149. [DOI: 10.1089/ther.2017.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
14
|
Kucherenko DY. APPLICATION OF GLUTAMATE-SENSITIVE BIOSENSOR FOR ANALYSIS OF FOODSTUFF. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Borisova T, Kucherenko D, Soldatkin O, Kucherenko I, Pastukhov A, Nazarova A, Galkin M, Borysov A, Krisanova N, Soldatkin A, El Skaya A. An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Anal Chim Acta 2018; 1022:113-123. [PMID: 29729731 DOI: 10.1016/j.aca.2018.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
An excess of the excitatory neurotransmitter, glutamate, in the synaptic cleft during hypoxia/ischemia provokes development of neurotoxicity and originates from the reversal of Na+-dependent glutamate transporters located in the plasma membrane of presynaptic brain nerve terminals. Here, we have optimized an electrochemical glutamate biosensor using glutamate oxidase and developed a biosensor-based methodological approach for analysis of rates of tonic, exocytotic and transporter-mediated glutamate release from isolated rat brain nerve terminals (synaptosomes). Changes in the extracellular glutamate concentrations from 11.5 ± 0.9 to 11.7 ± 0.9 μΜ for 6 min reflected a low tonic release of endogenous glutamate from nerve terminals. Depolarization-induced exocytotic release of endogenous glutamate was equal to 7.5 ± 1.0 μΜ and transporter reversal was 8.0 ± 1.0 μΜ for 6 min. The biosensor data correlated well with the results obtained using radiolabelled L-[14C]glutamate, spectrofluorimetric glutamate dehydrogenase and amino acid analyzer assays. The blood plasma glutamate concentration was also tested, and reliability of the biosensor measurements was confirmed by glutamate dehydrogenase assay. Therefore, the biosensor-based approach for accurate monitoring rates of tonic, exocytotic and transporter-mediated release of glutamate in nerve terminals was developed and its adequacy was confirmed by independent analytical methods. The biosensor measurements provided precise data on changes in the concentrations of endogenous glutamate in nerve terminals in response to stimulation. We consider that the glutamate biosensor-based approach can be applied in clinics for neuromonitoring glutamate-related parameters in brain samples, liquids and blood plasma in stroke, brain trauma, therapeutic hypothermia treatment, etc., and also in laboratory work to record glutamate release and uptake kinetics in nerve terminals.
Collapse
Affiliation(s)
- T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv, 01601, Ukraine
| | - D Kucherenko
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01003, Ukraine
| | - O Soldatkin
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01003, Ukraine.
| | - I Kucherenko
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine
| | - A Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv, 01601, Ukraine
| | - A Nazarova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv, 01601, Ukraine
| | - M Galkin
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv, 01601, Ukraine
| | - A Borysov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv, 01601, Ukraine
| | - N Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv, 01601, Ukraine
| | - A Soldatkin
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01003, Ukraine
| | - A El Skaya
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine
| |
Collapse
|
16
|
Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens Bioelectron 2017; 102:540-552. [PMID: 29220802 DOI: 10.1016/j.bios.2017.11.069] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Neurotransmitters are important biochemical molecules that control behavioral and physiological functions in central and peripheral nervous system. Therefore, the analysis of neurotransmitters in biological samples has a great clinical and pharmaceutical importance. To date, various methods have been developed for their assay. Of the various methods, the electrochemical sensors demonstrated the potential of being robust, selective, sensitive, and real time measurements. Recently, conducting polymers (CPs) and their composites have been widely employed in the fabrication of various electrochemical sensors for the determination of neurotransmitters. Hence, this review presents a brief introduction to the electrochemical biosensors, with the detailed discussion on recent trends in the development and applications of electrochemical neurotransmitter sensors based on CPs and their composites. The review covers the sensing principle of prime neurotransmitters, including glutamate, aspartate, tyrosine, epinephrine, norepinephrine, dopamine, serotonin, histamine, choline, acetylcholine, nitrogen monoxide, and hydrogen sulfide. In addition, the combination with other analytical techniques was also highlighted. Detection challenges and future prospective of the neurotransmitter sensors were discussed for the development of biomedical and healthcare applications.
Collapse
Affiliation(s)
- Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Rajendra N Goyal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
17
|
Celiešiūtė R, Radzevič A, Žukauskas A, Vaitekonis Š, Pauliukaite R. A Strategy to Employ Polymerised Riboflavin in the Development of Electrochemical Biosensors. ELECTROANAL 2017. [DOI: 10.1002/elan.201700218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raimonda Celiešiūtė
- Department of Material Science and Technology; Center for Physical Sciences and Technology; Sauletekio Ave. 3 LT-10222 Vilnius Lithuania
- Department of Nanoengineering; Center for Physical Sciences and Technology; Savanoriu Ave. 231 LT-02300 Vilnius Lithuania
| | - Aneta Radzevič
- Department of Nanoengineering; Center for Physical Sciences and Technology; Savanoriu Ave. 231 LT-02300 Vilnius Lithuania
| | - Airidas Žukauskas
- Department of Nanoengineering; Center for Physical Sciences and Technology; Savanoriu Ave. 231 LT-02300 Vilnius Lithuania
- Department of Laser Technologies; Center for Physical Sciences and Technology; Savanoriu Ave. 231 LT-02300 Vilnius Lithuania
| | - Šarūnas Vaitekonis
- Department of Nanoengineering; Center for Physical Sciences and Technology; Savanoriu Ave. 231 LT-02300 Vilnius Lithuania
| | - Rasa Pauliukaite
- Department of Nanoengineering; Center for Physical Sciences and Technology; Savanoriu Ave. 231 LT-02300 Vilnius Lithuania
| |
Collapse
|
18
|
Pastukhov A, Krisanova N, Maksymenko V, Borisova T. Personalized approach in brain protection by hypothermia: individual changes in non-pathological and ischemia-related glutamate transport in brain nerve terminals. EPMA J 2016; 7:26. [PMID: 27999623 PMCID: PMC5157095 DOI: 10.1186/s13167-016-0075-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/21/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Both deep and profound hypothermia are effectively applied in cardiac surgery of the aortic arch, when the reduction of cerebral circulation facilitates operations, and for the prevention of ischemic stroke consequences. Neurochemical discrimination of the effects of deep and profound hypothermia (27 and 17 °C, respectively) on non-pathological and pathological ischemia-related mechanisms of presynaptic glutamate transport with its potential contribution to predictive, preventive and personalized medicine (PPPM) was performed. METHODS Experiments were conducted using nerve terminals isolated from rat cortex (synaptosomes). Glutamate transport in synaptosomes was analyzed using radiolabel l-[14C]glutamate. Diameter of synaptosomes was assessed by dynamic light scattering. RESULTS Synaptosomal transporter-mediated uptake and tonic release of l-[14C]glutamate (oppositely directed processes, dynamic balance of which determines the physiological extracellular level of the neurotransmitter) decreased in a different range in deep/profound hypothermia. As a result, hypothermia-induced changes in extracellular l-[14C]glutamate are not evident (in one half of animals it increased, and in other it decreased). A progressive decrease from deep to profound hypothermia was shown for pathological mechanisms of presynaptic glutamate transport, that is, transporter-mediated l-[14C]glutamate release (*) stimulated by depolarization of the plasma membrane and (**) during dissipation of the proton gradient of synaptic vesicles by the protonophore FCCP. CONCLUSIONS Therefore, the direction of hypothermia-induced changes in extracellular glutamate is unpredictable in "healthy" nerve terminals and depends on hypothermia sensitivity of uptake vs. tonic release. In affected nerve terminals (e.g., in brain regions suffering from a reduction of blood circulation during cardiac surgery, and core and penumbra zones of the insult), pathological transporter-mediated glutamate release from nerve terminals decreases with progressive significance from deep to profound hypothermia, thereby underlying its potent neuroprotective action. So, alterations in extracellular glutamate during hypothermia can be unique for each patient. An extent of a decrease in pathological glutamate transporter reversal depends on the size of damaged brain zone in each incident. Therefore, test parameters and clinical criteria of neuromonitoring for the evaluation of individual hypothermia-induced effects should be developed and delivered in practice in PPPM.
Collapse
Affiliation(s)
- Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str, Kyiv, 01601 Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str, Kyiv, 01601 Ukraine
| | - Vitalii Maksymenko
- Amosov Institute of Cardiovascular Surgery of the Academy of Medical Sciences of Ukraine, 6 N. Amosov Str, Kyiv, 03110 Ukraine ; Faculty of Biomedical Engineering, National Technical University of Ukraine "KPI", 16/2 Yangel Str, Kyiv, 56 Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str, Kyiv, 01601 Ukraine
| |
Collapse
|
19
|
Borisova T, Pozdnyakova N, Shaitanova E, Gerus I, Dudarenko M, Haufe G, Kukhar V. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [ 3H]GABA from rat brain nerve terminals. Bioorg Med Chem 2016; 25:759-764. [PMID: 27956036 DOI: 10.1016/j.bmc.2016.11.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 11/26/2022]
Abstract
Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF3-β-OH (1), β-CF3 (2); β-CF2CF2H (3), are able to increase the initial rate of [3H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [3H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [3H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [3H]GABA in synaptosomal preparations. Exocytotic release of [3H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [3H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [3H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application.
Collapse
Affiliation(s)
- T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine.
| | - N Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine.
| | - E Shaitanova
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Murmanskaya Street. 1, Kiev 02094, Ukraine.
| | - I Gerus
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Murmanskaya Street. 1, Kiev 02094, Ukraine.
| | - M Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine.
| | - G Haufe
- Organic Chemistry Institute, Corrensstr. 40, D-48149 Münster, Germany.
| | - V Kukhar
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Murmanskaya Street. 1, Kiev 02094, Ukraine.
| |
Collapse
|
20
|
Kucherenko DY, Siediuko DV, Knyzhnykova DV, Soldatkin OO, Soldatkin AP. Development of amperometric biosensor for choline determination. ACTA ACUST UNITED AC 2016. [DOI: 10.7124/bc.000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- D. Yu. Kucherenko
- Institute of Molecular Biology and Genetics, NAS of Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
| | | | - D. V. Knyzhnykova
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
| | - O. O. Soldatkin
- Institute of Molecular Biology and Genetics, NAS of Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
| | - A. P. Soldatkin
- Institute of Molecular Biology and Genetics, NAS of Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
| |
Collapse
|
21
|
Borisova T, Borysov A. Putative duality of presynaptic events. Rev Neurosci 2016; 27:377-83. [DOI: 10.1515/revneuro-2015-0044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
AbstractThe main structure in the brain responsible not only for nerve signal transmission but also for its simultaneous regulation is chemical synapse, where presynaptic nerve terminals are of considerable importance providing release of neurotransmitters. Analyzing transport of glutamate, the major excitatory neurotransmitter in the mammalian CNS, the authors suggest that there are two main relatively independent mechanisms at the presynaptic level that can influence the extracellular glutamate concentration, and so signaling, and its regulation. The first one is well-known precisely regulated compound exocytosis of synaptic vesicles containing neurotransmitters stimulated by membrane depolarization, which increases significantly glutamate concentration in the synaptic cleft and initiates glutamate signaling through postsynaptic glutamate receptors. The second one is permanent glutamate turnover across the plasma membrane that occurs without stimulation and is determined by simultaneous non-pathological transporter-mediated release of glutamate thermodynamically synchronized with uptake. Permanent glutamate turnover is responsible for maintenance of dynamic glutamatein/glutamateoutgradient resulting in the establishment of a flexible extracellular level of glutamate, which can be unique for each synapse because of dependence on individual presynaptic parameters. These two mechanisms, i.e. exocytosis and transporter-mediated glutamate turnover, are both precisely regulated but do not directly interfere with each other, because they have different intracellular sources of glutamate in nerve terminals for release purposes, i.e. glutamate pool of synaptic vesicles and the cytoplasm, respectively. This duality can set up a presynaptic base for memory consolidation and storage, maintenance of neural circuits, long-term potentiation, and plasticity. Arguments against this suggestion are also considered.
Collapse
Affiliation(s)
- Tatiana Borisova
- 1Palladin Institute of Biochemistry, Department of Neurochemistry, NAS of Ukraine, 9 Leontovicha Str, Kiev 01601, Ukraine
| | - Arsenii Borysov
- 1Palladin Institute of Biochemistry, Department of Neurochemistry, NAS of Ukraine, 9 Leontovicha Str, Kiev 01601, Ukraine
| |
Collapse
|
22
|
Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis MI, Fiore V, Manetti R, Serra PA. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. SENSORS 2016; 16:s16060780. [PMID: 27249001 PMCID: PMC4934206 DOI: 10.3390/s16060780] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented.
Collapse
Affiliation(s)
- Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Angela Spanu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Giordano Madeddu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Grazia Galleri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Susanna Nuvoli
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Paola Bagella
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Maria Ilaria Demartis
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Vito Fiore
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| |
Collapse
|
23
|
Borisova T, Borysov A, Pastukhov A, Krisanova N. Dynamic Gradient of Glutamate Across the Membrane: Glutamate/Aspartate-Induced Changes in the Ambient Level of l-[14C]glutamate and d-[3H]aspartate in Rat Brain Nerve Terminals. Cell Mol Neurobiol 2016; 36:1229-1240. [DOI: 10.1007/s10571-015-0321-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
|
24
|
Immobilization of Ni-Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection. Anal Chim Acta 2015; 896:137-42. [PMID: 26481997 DOI: 10.1016/j.aca.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/28/2022]
Abstract
The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni-Pd/core-shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni-Pd/core-shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM(-1) cm(-2)), and a wide, useful linear range (0.1-500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages.
Collapse
|
25
|
Pozdnyakova N, Dudarenko M, Borisova T. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals. Neuroscience 2015. [DOI: 10.1016/j.neuroscience.2015.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Borisova T, Pozdnyakova N, Shaitanova E, Gerus I, Dudarenko M, Mironets R, Haufe G, Kukhar V. Synthesis of new fluorinated analogs of GABA, Pregabalin bioisosteres, and their effects on [(3)H]GABA uptake by rat brain nerve terminals. Bioorg Med Chem 2015; 23:4316-4323. [PMID: 26138193 DOI: 10.1016/j.bmc.2015.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Fluorinated analogs of natural substances take an essential place in the design of new biologically active compounds. New fluorinated analogs of γ-aminobutyric acid, that is, β-polyfluoroalkyl-GABAs (FGABAs), were synthesized with substituents: β-CF3-β-OH (1), β-CF3 (2); β-CF2CF2H (3). FGABAs are bioisosteres of Pregabalin (Lyrica®, Pfizer's blockbuster drug, β-i-Bu-GABA), and have lipophilicity close to this medicine. The effects of synthesized FGABAs on [(3)H]GABA uptake by isolated rat brain nerve terminals (synaptosomes) were assessed and compared with those of Pregabalin. FGABAs 1-3 (100μM) did not influence the initial velocity of [(3)H]GABA uptake when applied acutely, whereas an increase in this parameter was found after preliminary incubation of FGABAs with synaptosomes. Pregabalin after preliminary incubation with synaptosomes caused unidirectional changes in the initial velocity of [(3)H]GABA uptake. Using specific inhibitors of GAT1 and GAT3, NO-711 and SNAP5114, respectively, the ability of FGABAs 1-3 to influence non-GAT1 and non-GAT3 uptake activity of nerve terminals was analyzed, but no specificity was found. Therefore, new synthesized FGABAs are structural but not functional analogs of GABA (because they did not inhibit synaptosomal [(3)H]GABA uptake). Moreover, FGABAs are able to increase the initial velocity of [(3)H]GABA uptake by synaptosomes, and this effect is higher than that of Pregabalin.
Collapse
Affiliation(s)
- T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine.
| | - N Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
| | - E Shaitanova
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanskaya Str. 1, Kiev 02094, Ukraine
| | - I Gerus
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanskaya Str. 1, Kiev 02094, Ukraine
| | - M Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
| | - R Mironets
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanskaya Str. 1, Kiev 02094, Ukraine
| | - G Haufe
- Organic Chemistry Institute, Corrensstr. 40, D-48149 Münster, Germany
| | - V Kukhar
- The Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanskaya Str. 1, Kiev 02094, Ukraine
| |
Collapse
|