1
|
Wei P, Xiao L, Gou Y, He F, Wang P. A novel fluorescent probe based on a tripeptide-Cu(II) complex system for detection of histidine and its application on test strips and smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122290. [PMID: 36608521 DOI: 10.1016/j.saa.2022.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Herein, we reported a novel peptide-based fluorescent probe DSSH for highly selective and sensitive detections of both Cu2+ and l-histidine (l-His). DSSH exhibited different color changes and fluorescence "on-off" response toward Cu2+ with a 2:1 binding stoichiometry, and the limit of detection (LOD) for Cu2+ was calculated to be 22.9 nM. The in situ formed DSSH-Cu2+ ensemble showed obvious fluorescence "off-on" response to l-His based on replacement reaction with Cu2+, as well as the discernable color changes under 365 nm UV lamp irradiation with "naked eye". The specificity of Cu2+/l-His interactions allowed l-His to be determined without interference from other amino acids, and the detection limit of DSSH-Cu2+ ensemble response to l-His was determined as 25.7 nM. Notably, DSSH was successfully applied for detecting Cu2+ and l-His in RKO living cells owing to its remarkable fluorescence behavior and low cytotoxicity. Test strips experiments suggested that DSSH can recognize Cu2+ and l-His together by a remarkable fluorescence change. More importantly, smartphone was combined with l-His solutions of different concentrations and converted into digital values through RGB channels, which was successfully used for semi-quantitative identification of l-His, and the limit of detection (LOD) was 0.97 μM.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yuting Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Fang He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
2
|
Chakma B, Jain P, Singh NK, Goswami P. Development of Electrochemical Impedance Spectroscopy Based Malaria Aptasensor Using HRP-II as Target Biomarker. ELECTROANAL 2018. [DOI: 10.1002/elan.201800142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Babina Chakma
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| | - Priyamvada Jain
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| | - Naveen Kumar Singh
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| |
Collapse
|
3
|
Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista PV. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics (Basel) 2016; 6:diagnostics6040043. [PMID: 27879660 PMCID: PMC5192518 DOI: 10.3390/diagnostics6040043] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/13/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.
Collapse
Affiliation(s)
- Mílton Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
- Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Fábio Ferreira Carlos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Pedro Pedrosa
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - António Lopez
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
4
|
Chakma B, Jain P, Singh NK, Goswami P. Development of an Indicator Displacement Based Detection of Malaria Targeting HRP-II as Biomarker for Application in Point-of-Care Settings. Anal Chem 2016; 88:10316-10321. [DOI: 10.1021/acs.analchem.6b03315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Babina Chakma
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyamvada Jain
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Naveen K. Singh
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting. Sci Rep 2016; 6:28645. [PMID: 27345590 PMCID: PMC4921854 DOI: 10.1038/srep28645] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 01/16/2023] Open
Abstract
Rapid diagnostic tests (RDTs) have been widely deployed in low-resource settings. These tests are typically read by visual inspection, and accurate record keeping and data aggregation remains a substantial challenge. A successful malaria elimination campaign will require new strategies that maximize the sensitivity of RDTs, reduce user error, and integrate results reporting tools. In this report, an unmodified mobile phone was used to photograph RDTs, which were subsequently uploaded into a globally accessible database, REDCap, and then analyzed three ways: with an automated image processing program, visual inspection, and a commercial lateral flow reader. The mobile phone image processing detected 20.6 malaria parasites/microliter of blood, compared to the commercial lateral flow reader which detected 64.4 parasites/microliter. Experienced observers visually identified positive malaria cases at 12.5 parasites/microliter, but encountered reporting errors and false negatives. Visual interpretation by inexperienced users resulted in only an 80.2% true negative rate, with substantial disagreement in the lower parasitemia range. We have demonstrated that combining a globally accessible database, such as REDCap, with mobile phone based imaging of RDTs provides objective, secure, automated, data collection and result reporting. This simple combination of existing technologies would appear to be an attractive tool for malaria elimination campaigns.
Collapse
|
6
|
Debus B, Kirsanov D, Yaroshenko I, Sidorova A, Piven A, Legin A. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta 2015; 895:71-9. [PMID: 26454461 DOI: 10.1016/j.aca.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
In clinical analysis creatinine is a routine biomarker for the assessment of renal and muscular dysfunctions. Although several techniques have been proposed for a fast and accurate quantification of creatinine in human serum or urine, most of them require expensive or complex apparatus, advanced sample preparation or skilled operators. To circumvent these issues, we propose two home-made platforms based on a CD Spectroscope (CDS) and Computer Screen Photo-assisted Technique (CSPT) for the rapid assessment of creatinine level in human urine. Both systems display a linear range (r(2) = 0.9967 and 0.9972, respectively) from 160 μmol L(-1) to 1.6 mmol L(-1) for standard creatinine solutions (n = 15) with respective detection limits of 89 μmol L(-1) and 111 μmol L(-1). Good repeatability was observed for intra-day (1.7-2.9%) and inter-day (3.6-6.5%) measurements evaluated on three consecutive days. The performance of CDS and CSPT was also validated in real human urine samples (n = 26) using capillary electrophoresis data as reference. Corresponding Partial Least-Squares (PLS) regression models provided for mean relative errors below 10% in creatinine quantification.
Collapse
Affiliation(s)
- Bruno Debus
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Dmitry Kirsanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg 197101, Russia.
| | - Irina Yaroshenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg 197101, Russia; Bioanalytical Laboratory CSU "Analytical Spectrometry", St. Petersburg State Polytechnical University, St. Petersburg 198220, Russia
| | - Alla Sidorova
- Bioanalytical Laboratory CSU "Analytical Spectrometry", St. Petersburg State Polytechnical University, St. Petersburg 198220, Russia
| | - Alena Piven
- Bioanalytical Laboratory CSU "Analytical Spectrometry", St. Petersburg State Polytechnical University, St. Petersburg 198220, Russia
| | - Andrey Legin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|