1
|
Cheng G, Wang B, Bai N, Li W. ABCoRT: Retention Time Prediction for Metabolite Identification via Atom-Bond Co-Learning. J Chem Inf Model 2025; 65:1419-1427. [PMID: 39818945 DOI: 10.1021/acs.jcim.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Liquid chromatography retention time (RT) prediction plays a crucial role in metabolite identification, a challenging and essential task in untargeted metabolomics. Accurate molecular representation is vital for reliable RT prediction. To address this, we propose a novel molecular representation learning framework, ABCoRT(Atom-Bond Co-learning for Retention Time prediction), designed for predicting metabolite retention times. Our model transforms molecular graphs into dual hypergraphs, enabling the collaborative updating of atomic and bond information within both molecular graphs and hypergraphs, thereby producing highly informative molecular representations. We evaluated ABCoRT on a large-scale Small Molecule Retention Time (SMRT) data set comprising 80,038 molecules. Our model achieved a mean absolute error (MAE) of 25.75 s and a mean relative error (MRE) of 3.24% after removing nonretained molecules. Additionally, we fine-tuned pretrained ABCoRT models on six additional data sets from PredRet, achieving the lowest MAEs on five of them. Additionally, in metabolite screening conducted on the MetaboBASE and RIKEN_PlaSM data sets from the MassBank of North America, ABCoRT demonstrates its capability to filter out 38.35 and 28.46% of candidate compounds, respectively.
Collapse
Affiliation(s)
- Guangbin Cheng
- School of Information Science and Engineering, Yunnan University, Kunming650091,China
| | - Bingyi Wang
- Yunnan Police College, Kunming650223, China
- Key Laboratory of Smart Drugs Control (Yunnan Police College), Ministry of Education, Kunming650223, China
| | - Nannan Bai
- Yunnan Police College, Kunming650223, China
- Key Laboratory of Smart Drugs Control (Yunnan Police College), Ministry of Education, Kunming650223, China
| | - Weihua Li
- School of Information Science and Engineering, Yunnan University, Kunming650091,China
| |
Collapse
|
2
|
Boban A, Vrhovsek U, Masuero D, Milanović V, Budić-Leto I. Effect of Indigenous Non- Saccharomyces Yeasts on Lipid Compositions of Maraština Wine. Foods 2025; 14:269. [PMID: 39856934 PMCID: PMC11765114 DOI: 10.3390/foods14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study is the first to investigate the impact of indigenous non-Saccharomyces yeasts, including Hypopichia pseudoburtonii, Metschnikowia sinensis/shanxiensis, Metschnikowia chrysoperlae, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, Hanseniaspora pseudoguilliermondii, Pichia kluyveri, and Starmerella apicola on the lipid composition of sterile Maraština grape juice and wines using the UHPLC-MS/MS method. Yeasts were tested in monoculture and sequential fermentations alongside commercial Saccharomyces cerevisiae. Indigenous non-Saccharomyces yeasts showed the potential to improve fermentation performance and enable the development of new wine styles through the biosynthesis of an unsaturated fatty acid pathway, which was identified as the most significant pathway. In monoculture fermentations, L. thermotolerans, H. uvarum, H. guilliermondii, H. pseudoguilliermondii, and P. kluyveri significantly reduced lignoceric acid, potentially influencing wine aroma through the formation of esters and higher alcohols. Hyp. pseudoburtonii, M. chrysoperlae, M. pulcherrima, P. kluyveri, and S. apicola increased the demand for lipids, such as stearic acid, which may help preserve membrane permeability by integrating into the membrane in response to ethanol shock. The most significant impact on free fatty esters was observed in fermentations with H. pseudoguilliermondii. Furthermore, L. thermotolerans in sequential fermentations significantly reduced arachidic, stearic, and palmitic acid. P. kluyveri reduced the content of erucic and linoleic acid.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| |
Collapse
|
3
|
Chen Y, He S, Wang Y, Hu C, Cheng W, Zhou L, Ji N, Chen H, Shen X. Physiological and Transcriptional Responses to Phosphorus Deficiency and Glucose-6-Phosphate Supplementation in Neopyropia yezoensis. Int J Mol Sci 2024; 25:12894. [PMID: 39684604 DOI: 10.3390/ijms252312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Neopyropia yezoensis, a marine red algae species, has significant economic and ecological value. However, phosphorus (P) deficiency has emerged as a growing concern in many cultivation regions, negatively impacting its growth. To adapt to P deficiency, algae have evolved various strategies, including using dissolved organic phosphorus (DOP) sources to sustain growth. Despite its prevalence as a form of DOP, the utilization mechanism of glucose-6-phosphate (G6P) by N. yezoensis remains unclear. In this study, the physiological and transcriptional responses of N. yezoensis to P deficiency and G6P supplementation were examined. The results demonstrated that prolonged P deficiency significantly inhibited the growth of N. yezoensis and had a negative impact on physiological indicators such as photosynthetic pigments and antioxidant enzyme activity. However, G6P treatment gradually alleviated these adverse effects over time. Both P deficiency and G6P treatment were associated with increased expression of genes involved in signal transduction and P starvation responses while concurrently downregulating genes related to photosynthesis and antioxidant defenses. In contrast, the suppression of gene expression was less significant under G6P treatment. This study elucidates the adaptive strategies of N. yezoensis in response to P deficiency and clarifies the regulatory pathways involved in G6P utilization, providing novel insights into its P nutrient acquisition and metabolic regulation.
Collapse
Affiliation(s)
- Yujiao Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Senhao He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yinghao Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chuanming Hu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Weitao Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lingjie Zhou
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haihong Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Kang Q, Fang P, Zhang S, Qiu H, Lan Z. Deep graph convolutional network for small-molecule retention time prediction. J Chromatogr A 2023; 1711:464439. [PMID: 37865024 DOI: 10.1016/j.chroma.2023.464439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
The retention time (RT) is a crucial source of data for liquid chromatography-mass spectrometry (LCMS). A model that can accurately predict the RT for each molecule would empower filtering candidates with similar spectra but differing RT in LCMS-based molecule identification. Recent research shows that graph neural networks (GNNs) outperform traditional machine learning algorithms in RT prediction. However, all of these models use relatively shallow GNNs. This study for the first time investigates how depth affects GNNs' performance on RT prediction. The results demonstrate that a notable improvement can be achieved by pushing the depth of GNNs to 16 layers by the adoption of residual connection. Additionally, we also find that graph convolutional network (GCN) model benefits from the edge information. The developed deep graph convolutional network, DeepGCN-RT, significantly outperforms the previous state-of-the-art method and achieves the lowest mean absolute percentage error (MAPE) of 3.3% and the lowest mean absolute error (MAE) of 26.55 s on the SMRT test set. We also finetune DeepGCN-RT on seven datasets with various chromatographic conditions. The mean MAE of the seven datasets largely decreases 30% compared to previous state-of-the-art method. On the RIKEN-PlaSMA dataset, we also test the effectiveness of DeepGCN-RT in assisting molecular structure identification. By 30% lessening the number of potential structures, DeepGCN-RT is able to improve top-1 accuracy by about 11%.
Collapse
Affiliation(s)
- Qiyue Kang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Pengfei Fang
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Shuai Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Huachuan Qiu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Zhenzhong Lan
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
5
|
Cerulli A, Napolitano A, Olas B, Masullo M, Piacente S. Corylus avellana "Nocciola Piemonte": metabolomics focused on polar lipids and phenolic compounds in fresh and roasted hazelnuts. FRONTIERS IN PLANT SCIENCE 2023; 14:1252196. [PMID: 37885660 PMCID: PMC10598857 DOI: 10.3389/fpls.2023.1252196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
The common hazel plant (Corylus avellana L., Betulaceae) is one of the most popular tree nuts widespread in Europe and Asia. In Italy, there are different cultivars among which the cultivar affording the valuable hazelnut "Tonda Gentile Trilobata," also known as "Tonda Gentile delle Langhe," covered by the Protected Geographical Indication (PGI) label "Nocciola Piemonte" (NP), known for its sweetness, cooked-bread aroma, and the low intensity of the burnt aroma. In order to obtain a detailed and in-depth characterization of the polar fraction of fresh (NPF) and roasted (NPR) kernels of NP the analysis of the n-butanol extracts by liquid chromatography coupled to electrospray ionization and high-resolution mass spectrometry (LC-ESI/HRMS) was carried out. Moreover, to evaluate the quantitative distribution of the most representative polar lipids in NPF and NPR, the analysis by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) was performed. To unambiguously identify the phenolic compounds highlighted by the LC-ESI/HRMS profiles, they were isolated from the n-butanol extract and characterized by Nuclear Magnetic Resonance (NMR) experiments. Finally, the ability of the isolated compounds to exert radical scavenging activity and to inhibit the lipid peroxidation induced by H2O2 or H2O2/Fe2+ was tested by Trolox Equivalent Antioxidant Capacity (TEAC) and thiobarbituric acid reactive substances (TBARS) assays, respectively. The LC-ESI/HRMS allowed to ascertain the presence of phenolic compounds and multiple classes of polar lipids including phospholipids, glycolipids, sphingolipids, and oxylipins. The quantitative analysis highlighted in NPR fraction a lipid content three times higher than in NPF, evidencing lyso-phospholipids and phospholipids as the most represented lipid classes in both NPF and NPR, together accounting for 94 and 97% of the considered lipids, respectively. Furthermore, phytochemical analysis permitted to identify flavonoid and diarylheptanoid derivatives. In particular, quercetin 3-O-β-D-galactopyranosyl-(1→2)-β-D-glucopyranoside and myricetin-3-O-α-L-rhamnopyranoside showed the highest antioxidant activity, exhibiting TEAC values similar to that of quercetin, used as reference compound (2.00 ± 0.03 and 2.06 ± 0.03 mM vs 2.03 ± 0.03 mM, respectively). Moreover, most of the tested compounds were found to reduce lipid peroxidation induced by H2O2 and H2O2/Fe2+ more than curcumin used as positive control, with myricetin-3-O-α-L-rhamnopyranoside determining 44.4 % and 34.1 % inhibition percentage, respectively.
Collapse
Affiliation(s)
| | | | - Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Milena Masullo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
6
|
Untargeted lipidomic profiling of grapes highlights the importance of modified lipid species beyond the traditional compound classes. Food Chem 2023; 410:135360. [PMID: 36628919 DOI: 10.1016/j.foodchem.2022.135360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The aim of this paper is to provide a detailed characterisation of grape lipidome. To achieve this objective, it starts by describing a pipeline implemented in R software to allow the semi-automatic annotation of the detected lipid species. It also provides an extensive description of the different properties of each molecule (such as retention time dependencies, mass accuracy, adduct formation and fragmentation patterns), which allowed the annotations to be made more accurately. Most annotated lipids in the grape samples were (lyso)glycerophospholipids and glycerolipids, although a few free fatty acids, hydroxyceramides and sitosterol esters were also observed. The proposed pipeline also allowed the identification of a series of methylated glycerophosphates never previously observed in grapes. The current results highlight the importance of expanding chemical analyses beyond the classical lipid categories.
Collapse
|
7
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Sigler A, Wu J, Pfaff A, Adetunji O, Nam P, James D, Burton C, Shi H. Repeated Low-Level Blast Exposure Alters Urinary and Serum Metabolites. Metabolites 2023; 13:metabo13050638. [PMID: 37233679 DOI: 10.3390/metabo13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC-tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings.
Collapse
Affiliation(s)
- Austin Sigler
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Jiandong Wu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Olajide Adetunji
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Paul Nam
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Casey Burton
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
- Phelps Health, Rolla, MO 65401, USA
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
9
|
Otify AM, Mohamed OG, El-Amier YA, Saber FR, Tripathi A, Younis IY. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia species using UPLC-qTOF-MS/MS and Molecular Networking. Metabolomics 2023; 19:16. [PMID: 36892715 DOI: 10.1007/s11306-023-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Compared to synthetic herbicides, natural products with allelochemical properties can inhibit weed germination, aiding agricultural output with less phytotoxic residue in water and soil. OBJECTIVES To identify natural product extracts of three Cassia species; C. javanica, C. roxburghii, and C. fistula and to investigate the possible phytotoxic and allelopathic potential. METHODS Allelopathic activity of three Cassia species extracts was evaluated. To further investigate the active constituents, untergated metabolomics using UPLC-qTOF-MS/MS and ion-identity molecular networking (IIMN) approach was performed to identify and determine the distribution of metabolites in different Cassia species and plant parts. RESULTS We observed in our study that the plant extracts showed consistent allelopathic activity against seed germination (P < 0.05) and the inhibition of shoot and root development of Chenopodium murale in a dose-dependent manner. Our comprehensive study identified at least 127 compounds comprising flavonoids, coumarins, anthraquinones, phenolic acids, lipids, and fatty acid derivatives. We also report the inhibition of seed germination, shoot growth, and root growth when treated with enriched leaf and flower extracts of C. fistula, and C. javanica, and the leaf extract of C. roxburghii. CONCLUSION The present study recommends further evaluation of Cassia extracts as a potential source of allelopathic compounds in agricultural systems.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yasser A El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
10
|
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties. Int J Mol Sci 2023; 24:ijms24044072. [PMID: 36835477 PMCID: PMC9958630 DOI: 10.3390/ijms24044072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.
Collapse
|
11
|
Ciubotaru RM, Franceschi P, Vezzulli S, Zulini L, Stefanini M, Oberhuber M, Robatscher P, Chitarrini G, Vrhovsek U. Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112157. [PMID: 36798701 PMCID: PMC9927228 DOI: 10.3389/fpls.2023.1112157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Silvia Vezzulli
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
12
|
Vittani L, Populin F, Stuerz S, Buehlmann A, Khomenko I, Biasioli F, Bühlmann-Schütz S, Vrhovsek U, Masuero D, Zanella A, Busatto N, Costa F. Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, 'Granny Smith' and 'Ladina'. FRONTIERS IN PLANT SCIENCE 2023; 14:1150046. [PMID: 37152125 PMCID: PMC10157158 DOI: 10.3389/fpls.2023.1150046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in 'Granny Smith' and 'Ladina' apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in 'Granny Smith'. 'Ladina', more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in 'Granny Smith' apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.
Collapse
Affiliation(s)
- Lorenzo Vittani
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
| | - Francesca Populin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Andreas Buehlmann
- Strategic Research Division Food Microbial Systems, Agroscope, Wädenswil, Switzerland
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Urska Vrhovsek
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
| | - Domenico Masuero
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Fabrizio Costa
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
- *Correspondence: Fabrizio Costa,
| |
Collapse
|
13
|
Phytochemical Characterization of Chamomile ( Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential. Molecules 2022; 27:molecules27238508. [PMID: 36500602 PMCID: PMC9736673 DOI: 10.3390/molecules27238508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Matricaria recutita L., German chamomile, is one of the most widely used medicinal plants, whose efficacy has been proven in numerous studies. However, its roots have attracted only little interest so far, since mainly above-ground plant parts are used for medicinal purposes. To broaden the knowledge of chamomile roots, a profound phytochemical characterization was performed along with a bioactivity screening of corresponding root extracts. While volatile constituents such as chamomillol and polyynes were detected using GC-MS, HPLC-MSn analyses revealed the occurrence of four coumarin glycosides, more than ten phenolic acid esters and five glyceroglycolipids. Furthermore, the antioxidant activity of the extracts was evaluated. Polar extracts revealed IC50 values ranging from 13 to 57 µg/mL in the DPPH radical scavenging assay, which is in the same range as reported for chamomile flower extracts. In addition, superoxide radical scavenging potential and mild antibacterial effects against S. aureus und B. subtilis were demonstrated. Moreover, to assess interspecies variation in chamomile roots, extracts of M. recutita were compared to those of M. discoidea DC. Interestingly, the latter revealed stronger antioxidant activity. The presented results aim at the valorization of chamomile roots, previously discarded as by-product of chamomile flower production, as a sustainable source of bioactive phytochemicals.
Collapse
|
14
|
Lee SH, Seo HS, Seo SJ, Kim CD, Hong SP. Screening of Plant-Derived Natural Extracts to Identify a Candidate Extract Capable of Enhancing Lipid Synthesis in Keratinocytes. Ann Dermatol 2022; 34:331-339. [PMID: 36198624 DOI: 10.5021/ad.21.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Reduced lipid content in the stratum corneum is a major cause of skin-barrier dysfunction in various pathological conditions. Promoting lipid production is a potential strategy to improve skin-barrier function. Recent evidence supports the beneficial effects of adiponectin on lipid metabolism and senescence in keratinocytes. OBJECTIVE This study aimed to investigate whether plant extracts can enhance skin-barrier function. METHODS We screened fruit and herb extracts that enhance the lipid synthesis of keratinocytes via AMP-activated protein kinase (AMPK) activation and SIRT1 signaling in the adiponectin pathway. The levels of major lipid synthesis enzymes and transcription factors as well as epidermal barrier lipids involved in adiponectin-associated epidermal barrier formation were evaluated in the herbal extracts- or adiponectin-treated human epidermal keratinocyte and equivalent models. The mRNA expression of major lipid synthesis enzymes increased following treatment with Lycii Fructus , Prunus tomentosa , and Melia toosendan extracts. RESULTS The expression of transcription factors SIRT1, liver X receptor α, peroxisome proliferator-activated receptors (PPARs), and sterol regulatory element-binding proteins (SREBPs) were upregulated. Levels of free fatty acids, cholesterol, and ceramides were elevated. The expression of keratinocyte differentiation markers increased. In particular, among fruit extracts with a detectable effect, Melia toosendan induced the highest expression of lipid synthase. CONCLUSION These results indicate that Melia toosendan is a promising candidate for improving skin-barrier function.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hee-Seok Seo
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Seung-Phil Hong
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
15
|
Differential Metabolomic Fingerprinting of the Crude Extracts of Three Asteraceae Species with Assessment of Their In Vitro Antioxidant and Enzyme-Inhibitory Activities Supported by In Silico Investigations. Processes (Basel) 2022. [DOI: 10.3390/pr10101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Asteraceae is a large family, rich in ornamental, economical, and medicinally valuable plants. The current study involves the analytical and pharmacological assessment of the methanolic extracts of three less investigated Asteraceae plants, namely Echinops ritro, Centaurea deflexa, and Tripleurospermum decipiens, obtained by three different extraction methodologies viz. maceration (MAC), ultrasound-assisted extraction (UAE), and homogenizer-assisted extraction (HAE). LC-MS-MS analysis of E. ritro, C. deflexa, and T. decipiens extracts led to the identification of ca. 29, 20, and 33 metabolites, respectively, belonging to flavonoids, phenolic acids, and fatty acids/amides. Although there were significant differences in the quantitative metabolite profiles in the extracts of E. ritro and T. decipiens based on the used extraction method, no significant variation was observed in the extracts of C. deflexa in the three implemented extraction techniques. The antioxidant activities of the nine extracts were assessed in vitro using six different assays viz. DPPH, ABTS, CUPRAC, FRAP, PDA, and metal chelation assay (MCA). The HAE/UAE extracts of E. ritro and the UAE/ MAC extracts of C. deflexa displayed the highest antioxidant activity in the DPPH assay, while the UAE extract of T. decipiens showed the strongest antioxidant activity in both the CUPRAC and MCA assays. The enzyme inhibitory activities of the nine extracts were studied in vitro on five different enzymes viz. tyrosinase, α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinestrase (BChE), affecting various pathological diseases. Concerning C. deflexa, its MAC /UAE extracts showed the strongest inhibition on α-amylase, while its UAE/HAE extracts displayed strong inhibitory power on AChE. However, no significant difference was observed on their effects on tyrosinase or BChE. For T. decipiens, its UAE/HAE showed potent inhibition to α-glucosidase, MAC/ HAE significantly inhibited AChE and BChE, while UAE could strongly inhibit tyrosinase enzyme. For E. ritro, all extracts equally inhibited α-amylase and α-glucosidase, MAC/HAE strongly affected tyrosinase, HAE/MAC best inhibited BChE, while HAE inhibited AChE to a greater extent. Chemometric analysis using PCA plot was able to discriminate between the plant samples and between the implemented extraction modes. The in vitro enzyme inhibitory activities of the extracts were supported by in silico data, where metabolites, such as the lignan arctiin and the flavonoid vicenin-2, dominating the extract of C. deflexa, displayed strong binding to AChE. Similarly, chlorogenic and dicaffeoyl quinic acids, which are some of the major metabolites in the extracts of E. ritro and T. decipiens, bound with high affinity to α-glucosidase.
Collapse
|
16
|
Song B, Zhou Y, Zhan R, Zhu L, Chen H, Ma Z, Chen X, Lu Y. Effects of Different Pesticides on the Brewing of Wine Investigated by GC-MS-Based Metabolomics. Metabolites 2022; 12:metabo12060485. [PMID: 35736418 PMCID: PMC9228690 DOI: 10.3390/metabo12060485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The application of pesticides is critical during the growth of high-quality grape for wine making. However, pesticide residues have significant influence on the wine flavor. In this study, gas chromatography-mass spectrometry (GC-MS) was performed and the obtained datasets were analyzed with multivariate statistical methods to investigate changes in flavor substances in wine during fermentation. The principal component analysis (PCA) score plot showed significant differences in the metabolites of wine treated with various pesticides. In trials using five pesticides (hexaconazole, difenoconazole, flutriafol, tebuconazole, and propiconazole), more than 86 metabolites were changed. Most of these metabolites were natural flavor compounds, like carbohydrates, amino acids, and short-chain fatty acids and their derivatives, which essentially define the appearance, aroma, flavor, and taste of the wine. Moreover, the five pesticides added to grape pulp exhibited different effects on the metabolic pathways, involving mainly alanine, aspartate and glutamate metabolism, butanoate metabolism, arginine, and proline metabolism. The results of this study will provide new insight into the potential impact of pesticide residues on the metabolites and sensory profile of wine during fermentation.
Collapse
|
17
|
Jung SW, Park GH, Kim E, Yoo KM, Kim HW, Lee JS, Chang MY, Shin KO, Park K, Choi EH. Rosmarinic Acid, as an NHE1 Activator, Decreases Skin Surface pH and Improves the Skin Barrier Function. Int J Mol Sci 2022; 23:3910. [PMID: 35409270 PMCID: PMC8999067 DOI: 10.3390/ijms23073910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Stratum corneum (SC) pH regulates skin barrier functions and elevated SC pH is an important factor in various inflammatory skin diseases. Acidic topical formulas have emerged as treatments for impaired skin barriers. Sodium proton exchanger 1 (NHE1) is an important factor in SC acidification. We investigated whether topical applications containing an NHE1 activator could improve skin barrier functions. We screened plant extracts to identify NHE1 activators in vitro and found Melissa officinalis leaf extract. Rosmarinic acid, a component of Melissa officinalis leaf extract, significantly increased NHE1 mRNA expression levels and NHE1 production. Immunofluorescence staining of NHE1 in 3D-cultured skin revealed greater upregulation of NHE1 expression by NHE1 activator cream, compared to vehicle cream. Epidermal lipid analysis revealed that the ceramide level was significantly higher upon application of the NHE1 activator cream on 3D-cultured skin, compared to application of a vehicle cream. In a clinical study of 50-60-year-old adult females (n = 21), application of the NHE1 activator-containing cream significantly improved skin barrier functions by reducing skin surface pH and transepidermal water loss and increasing skin hydration, compared to patients who applied vehicle cream and those receiving no treatment. Thus, creams containing NHE1 activators, such as rosmarinic acid, could help maintain or recover skin barrier functions.
Collapse
Affiliation(s)
- Seung-Won Jung
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (S.-W.J.); (E.K.)
| | - Gi Hyun Park
- CMS LAB, Seoul 35324, Korea; (G.H.P.); (K.M.Y.); (H.W.K.); (J.S.L.)
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (S.-W.J.); (E.K.)
| | - Kang Min Yoo
- CMS LAB, Seoul 35324, Korea; (G.H.P.); (K.M.Y.); (H.W.K.); (J.S.L.)
| | - Hea Won Kim
- CMS LAB, Seoul 35324, Korea; (G.H.P.); (K.M.Y.); (H.W.K.); (J.S.L.)
| | - Jin Soo Lee
- CMS LAB, Seoul 35324, Korea; (G.H.P.); (K.M.Y.); (H.W.K.); (J.S.L.)
| | | | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (S.-W.J.); (E.K.)
| |
Collapse
|
18
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
19
|
Jon CS, Yang L, Wang Z, Cui M, Sun H, Wang L, Liu L, Nardiello D, Quinto M, He M, Li D. On the use of a 2D-carbon microfiber fractionation system to improve flow-injection QTOF-HRMS analysis in complex matrices: the case of Abelmoschus manihot flower extracts. Analyst 2022; 147:819-827. [PMID: 35044386 DOI: 10.1039/d1an02130c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A two-dimensional microscale carbon fiber/active carbon fiber system combined with a quadrupole time of flight high-resolution mass spectrometry (2DμCFs-QTOF-HRMS) system is proposed for the rapid putative identification of polar, medium-polar and weakly polar constituents in complex matrices while strongly mitigating ionic suppression effects. The capabilities of 2DμCFs-QTOF-HRMS have been proven by analysing the composition of Abelmoschus manihot flower extracts, allowing, in a single run, the detection of 41 known substances and the presence of 6 compounds never revealed before in these samples. 2DμCFs-QTOF-HRMS has been compared with traditional HPLC-MS, showing higher versatility and a significant reduction of both analysis time (70 min to 5 min) and solvent consumption (35 mL to 1.5 mL). A comparison with the results obtained by direct flow-injection MS analyses demonstrated that 2DμCFs-QTOF-HRMS leads to a more comprehensive analysis and to improved detection sensitivity. The proposed method can be considered suitable for the rapid and comprehensive analysis of food, environmental and pharmaceutical complex samples. 2DμCFs-QTOF-HRMS can thus be considered a rapid, versatile, reliable, high-throughput and economical technique that allows for the collection of information on polar, semipolar, and weakly polar components in complex matrices.
Collapse
Affiliation(s)
- Chol-San Jon
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China.
| | - Lei Yang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China.
| | - Zhao Wang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Meiyu Cui
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Huaze Sun
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Liyuan Wang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Donatella Nardiello
- Department of Agriculture, Food, Natural resource, and Engineering (DAFNE), via Napoli 25, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China. .,Department of Agriculture, Food, Natural resource, and Engineering (DAFNE), via Napoli 25, I-71122 Foggia, Italy
| | - Miao He
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China.
| | - Donghao Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China. .,Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| |
Collapse
|
20
|
Grape Lipidomics: An Extensive Profiling thorough UHPLC-MS/MS Method. Metabolites 2021; 11:metabo11120827. [PMID: 34940585 PMCID: PMC8706896 DOI: 10.3390/metabo11120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Lipids play many essential roles in living organisms, which accounts for the great diversity of these amphiphilic molecules within the individual lipid classes, while their composition depends on intrinsic and extrinsic factors. Recent developments in mass spectrometric methods have significantly contributed to the widespread application of the liquid chromatography-mass spectrometry (LC-MS) approach to the analysis of plant lipids. However, only a few investigators have studied the extensive composition of grape lipids. The present work describes the development of an ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method that includes 8098 MRM; the method has been validated using a reference sample of grapes at maturity with a successful analysis and semi-quantification of 412 compounds. The aforementioned method was subsequently applied also to the analysis of the lipid profile variation during the Ribolla Gialla cv. grape maturation process. The partial least squares (PLS) regression model fitted to our experimental data showed that a higher proportion of certain glycerophospholipids (i.e., glycerophosphoethanolamines, PE and glycerophosphoglycerols, PG) and of some hydrolysates from those groups (i.e., lyso-glycerophosphocholines, LPC and lyso-glycerophosphoethanolamines, LPE) can be positively associated with the increasing °Brix rate, while a negative association was found for ceramides (CER) and galactolipids digalactosyldiacylglycerols (DGDG). The validated method has proven to be robust and informative for profiling grape lipids, with the possibility of application to other studies and matrices.
Collapse
|
21
|
Metabolomics and Molecular Networking to Characterize the Chemical Space of Four Momordica Plant Species. Metabolites 2021; 11:metabo11110763. [PMID: 34822421 PMCID: PMC8619687 DOI: 10.3390/metabo11110763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Momordica plant species (Cucurbitaceae), have been used for centuries in traditional medicine and for nutritional purposes. Plants from this family are thus claimed to be phytochemically rich, representing an inexhaustible source of natural products. However, the chemical space of these Momordica species has not yet been fully decoded, and due to the inherent complexity of plant metabolomes, the characterization of the Momordica phytochemistry remains challenging. Thus, in this study we propose the use of molecular networking to unravel the molecular families within the metabolomes of four Momordica species (M. cardiospermoides, M. balsamina, M. charantia and M. foetida) and highlight the relevance of molecular networking in exploring the chemotaxonomy of these plants. In silico annotation tools (Network Annotation Propagation and DEREPLICATOR) and an unsupervised substructure identification tool (MS2LDA) were also explored to complement the classical molecular networking output and integration using MolNetEnhancer within GNPS. This allowed for the visualisation of chemical classes and the variety of substructures within the molecular families. The use of computational tools in this study highlighted various classes of metabolites, such as a wide range of flavonoids, terpenoids and lipids. Herein, these species are revealed to be phytochemically rich plants consisting of many biologically active metabolites differentially distributed within the different species, with the metabolome of M. cardiospermoides dereplicated in this paper for the first time.
Collapse
|
22
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT. Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 2021; 17:96. [PMID: 34669052 DOI: 10.1007/s11306-021-01847-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Non-target lipid profiling by using ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) has been used extensively in the past decades in plant studies. However, the lipidomes of bryophytes have only been scarcely studied, although they are the second largest group in plant kingdom. OBJECTIVES We evaluated the effects of different cell disruption methods (no disruption, shake, ultrasound, and bead beating), and storage conditions (air-dried, freeze-dried, and fresh frozen) of five moss species (including Racomitrium lanuginosum B and D, Philonotis fontana, Sphagnum teres, and Hylocomium splendens). METHODS The lipid profiling results of each extraction parameter were analyzed by using multivariate data analysis including unsupervised principal component analysis and supervised orthogonal projections to latent structures discriminant analysis. RESULTS The results showed that extraction with bead beating resulted in the highest lipid content and the most detected features, but these were caused by the contamination from plastic tubes. Minor lipid metabolite changes were found in shaking and ultrasonication methods when compared with no disruption method. Significant amounts of phosphatidylcholine, diacylglyceryltrimethylhomoserine and their lyso lipids were observed in air-dried moss tissues, whereas diacylglycerol, triacylglycerol and ceramide were mostly exclusively detected when fresh frozen tissues were used for extraction. CONCLUSION We concluded that lipid extraction using fresh frozen samples with ultrasound assistance provide the most original lipid composition and gave a relatively high lipid content.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
| | - Finnur Freyr Eiriksson
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
23
|
Li J, Zhao X, Bailey LS, Kamat MN, Basso KB. Identification and characterization of proteins, lipids, and metabolites in two organic fertilizer products derived from different nutrient sources. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:72. [PMID: 34722955 PMCID: PMC8550213 DOI: 10.1186/s13765-021-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The biochemical composition of organic fertilizers largely determines their nutrient supply characteristics following soil application as well as their potential impact on soil microbial communities. Yet, limited information is available regarding the biochemical composition of organic fertilizers derived from different nutrient sources. Here, we qualitatively analyzed the presence and abundance of proteins, lipids, and metabolites in a liquid fish fertilizer (LFF) product and a type of granular organic fertilizer (GOF) commonly used in organic vegetable production, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our results suggest that the presence and abundance of proteins, lipids, and metabolites differ greatly between GOF and LFF. The qualitative analysis shows LFF as a rich source of metabolites, while complex proteins and long-chain saturated fatty acids are dominant in GOF. The degree of biochemical composition complexity may help explain the varying impacts of different types of organic fertilizers on nutrient availability, soil health, and environmental quality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-021-00625-2.
Collapse
Affiliation(s)
- Jianyu Li
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690 USA
| | - Xin Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690 USA
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 USA
| | - Manasi N. Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 USA
| |
Collapse
|
24
|
Abutaha N, AL-Zharani M, Alotaibi A, Cordero MAW, Bepari A, Alarifi S. In vitro and in vivo investigation of polypharmacology of propolis extract as anticancer, antibacterial, anti-inflammatory, and chemical properties. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Numerous compounds derived from natural sources such as microbes, plants, and insects have proven to be safe, efficacious, and cost-effective therapeutics for human diseases. This study examined the bioactivities of propolis, a structural sealant and antibacterial/antifungal agent produced by honey bees. Chinese propolis was extracted in methanol or hexane. Propolis significantly reduced the numbers of viable cancer cells when applied as a methanol extract (IC50 values in μg/mL for the indicated cell line: MDA-MB-231, 74.12; LoVo, 74.12; HepG2, 77.74; MCF7, 95.10; A549, 114.84) or a hexane extract (MDA-MB-231, 52.11; LoVo, 45.9; HepG2, 52.11; MCF7, 78.01; A549, 67.90). Hexane extract also induced apoptosis of HepG2 cells according to activated caspase-3/7 expression assays (17.6 ± 2.9% at 150 μg/mL and 89.2 ± 1.9% at 300 μg/mL vs 3.4 ± 0.4% in vehicle control), suppressed the growth of Candida albicans and multiple multidrug-resistant and nonresistant Gram-positive bacteria, and inhibited croton oil-induced skin inflammation when applied as topical treatment. GC-MS identified hexadecanoic acid methyl ester as a major constituent (33.6%). Propolis hexane extract has potential anticancer, antimicrobial, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nael Abutaha
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Mohammed AL-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Health Science, College of Medicine, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Mary Anne W. Cordero
- Department of Basic Health Science, College of Medicine, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Health Science, College of Medicine, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
25
|
Perra M, Lozano-Sánchez J, Leyva-Jiménez FJ, Segura-Carretero A, Pedraz JL, Bacchetta G, Muntoni A, De Gioannis G, Manca ML, Manconi M. Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection. Biomed Pharmacother 2021; 142:111959. [PMID: 34333288 DOI: 10.1016/j.biopha.2021.111959] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
The present study is aimed at valorizing grape pomace, one of the most abundant winery-making by-products of the Mediterranean area, through the extraction of the main bioactive compounds from the skin of grape pomace and using them to manufacture innovative nanoformulations capable of both avoiding skin damages and promoting skincare. The phytochemicals were recovered through maceration in hydroethanolic solution. Catechin, quercetin, fisetin and gallic acid, which are known for their antioxidant power, were detected as the main compounds of the extract. Liposomes and phospholipid vesicles modified with glycerol or Montanov 82® or a combination of both, were used as carriers for the extract. The vesicles were small (~183 nm), slightly polydispersed (PI ≥ 0.28), and highly negatively charged (~-50 mV). The extract was loaded in high amounts in all vesicles (~100%) irrespective of their composition. The antioxidant activity of the extract, measured by using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) test, was 84 ± 1%, and slightly increased when loaded into the vesicles (~89%, P < 0.05). The grape pomace extract loaded vesicles were highly biocompatible and able to protect fibroblasts (3T3) from the oxidative stress induced by hydrogen peroxide.
Collapse
Affiliation(s)
- Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
| | - Francisco-Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Josè Luis Pedraz
- NanoBioCel Group, University of Basque Country, Paseo de la Universidad 7, 01006 Vitoria, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre for the Conservation of Biodiversity (CCB), University of Cagliari, V.le Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
26
|
Lim SH, Kim EJ, Lee CH, Park GH, Yoo KM, Nam SJ, Shin KO, Park K, Choi EH. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Skin Pharmacol Physiol 2021; 35:112-123. [PMID: 34348350 DOI: 10.1159/000518517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chung Hyuk Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | - Kyong-Oh Shin
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Kyungho Park
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
27
|
Ciubotaru RM, Franceschi P, Zulini L, Stefanini M, Škrab D, Rossarolla MD, Robatscher P, Oberhuber M, Vrhovsek U, Chitarrini G. Mono-Locus and Pyramided Resistant Grapevine Cultivars Reveal Early Putative Biomarkers Upon Artificial Inoculation With Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2021; 12:693887. [PMID: 34276743 PMCID: PMC8281963 DOI: 10.3389/fpls.2021.693887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 06/02/2023]
Abstract
One of the most economically important grapevine diseases is Downy mildew (DM) caused by the oomycete Plasmopara viticola. A strategy to reduce the use of fungicides to compensate for the high susceptibility of V. vinifera is the selection of grapevine varieties showing pathogen-specific resistance. We applied a metabolomics approach to evaluate the metabolic modulation in mono-locus resistant genotypes carrying one locus associated with P. viticola resistance (Rpv) (BC4- Rpv1, Bianca- Rpv3-1, F12P160- Rpv12, Solaris- Rpv10), as well as in pyramided resistant genotypes carrying more than one Rpv (F12P60- Rpv3-1; Rpv12 and F12P127- Rpv3-1, Rpv3-3; Rpv10) taking as a reference the susceptible genotype Pinot Noir. In order to understand if different sources of resistance are associated with different degrees of resistance and, implicitly, with different responses to the pathogen, we considered the most important classes of plant metabolite primary compounds, lipids, phenols and volatile organic compounds at 0, 12, 48, and 96 h post-artificial inoculation (hpi). We identified 264 modulated compounds; among these, 22 metabolites were found accumulated in significant quantities in the resistant cultivars compared to Pinot Noir. In mono-locus genotypes, the highest modulation of the metabolites was noticed at 48 and 96 hpi, except for Solaris, that showed a behavior similar to the pyramided genotypes in which the changes started to occur as early as 12 hpi. Bianca, Solaris and F12P60 showed the highest number of interesting compounds accumulated after the artificial infection and with a putative effect against the pathogen. In contrast, Pinot Noir showed a less effective defense response in containing DM growth.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Domen Škrab
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | | | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Laimburg Research Centre, Auer, Italy
| |
Collapse
|
28
|
Kim BJ, Lee NR, Lee CH, Lee YB, Choe SJ, Lee S, Hwang HJ, Kim E, Lavery GG, Shin KO, Park K, Choi EH. Increased Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 Contributes to Epidermal Permeability Barrier Dysfunction in Aged Skin. Int J Mol Sci 2021; 22:ijms22115750. [PMID: 34072239 PMCID: PMC8198579 DOI: 10.3390/ijms22115750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inactive cortisone is converted into active cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Excessive levels of active glucocorticoids could deteriorate skin barrier function; barrier impairment is also observed in aged skin. In this study, we aimed to determine whether permeability barrier impairment in the aged skin could be related to increased 11β-HSD1 expression. Aged humans (n = 10) showed increased cortisol in the stratum corneum (SC) and oral epithelium, compared to young subjects (n = 10). 11β-HSD1 expression (as assessed via immunohistochemical staining) was higher in the aged murine skin. Aged hairless mice (56-week-old, n = 5) manifested greater transepidermal water loss, lower SC hydration, and higher levels of serum inflammatory cytokines than the young mice (8-week-old, n = 5). Aged 11β-HSD1 knockout mice (n = 11), 11β-HSD1 inhibitor (INHI)-treated aged wild type (WT) mice (n = 5) and young WT mice (n = 10) exhibited reduced SC corticosterone level. Corneodesmosome density was low in WT aged mice (n = 5), but high in aged 11β-HSD1 knockout and aged INHI-treated WT mice. Aged mice exhibited lower SC lipid levels; this effect was reversed by INHI treatment. Therefore, upregulation of 11β-HSD1 in the aged skin increases the active-glucocorticoid levels; this suppresses SC lipid biosynthesis, leading to impaired epidermal permeability barrier.
Collapse
Affiliation(s)
- Beom Jun Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Noo Ri Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Chung Hyeok Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Sung Jay Choe
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Materials Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Materials Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
- Correspondence: ; Tel.: +82-33-748-2650
| |
Collapse
|
29
|
Škrab D, Sivilotti P, Comuzzo P, Voce S, Degano F, Carlin S, Arapitsas P, Masuero D, Vrhovšek U. Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines. Metabolites 2021; 11:metabo11050331. [PMID: 34065397 PMCID: PMC8160841 DOI: 10.3390/metabo11050331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Depending on the vineyard location, cluster thinning (CT) may represent an effective tool to obtain the desired grape composition and wine quality. The effect of 20% cluster thinning on Ribolla Gialla (Vitis vinifera L.) sparkling wine aroma, lipid compounds, and aromatic amino acid (AAA) metabolites composition was studied for three consecutive seasons in two vineyards located in the Friuli Venezia Giulia region, Italy. In the examined sparkling wines, the vintage meteorological conditions exhibited significant influences on the metabolic profile of the samples. Data were normalized by season, and the impact of the CT treatment was evaluated for each vineyard site separately. Crop removal showed a limited positive impact on aroma compounds in sparkling wines from vineyards located in the valley. Concerning the AAA compounds, their concentration was higher in the vineyard at the foot of the hills. Cluster thinning resulted in a drop in concentration, reducing the risk of atypical aging. Despite minor differences according to targeted metabolome profiling, the sensory analysis confirmed the effects of the CT treatment in the valley floor vineyard. Reducing crop in this site, where the yield was higher, promoted a moderate improvement of Ribolla Gialla sparkling wine. In contrast, for wine produced in the vineyard at the foot of the hills, the sensory analysis indicated a preference for wines from the unthinned control samples. Overall, the study indicates that cluster thinning is a viticultural technique that could potentially improve the quality of Ribolla Gialla sparkling wines, but only in situations of excessive grape production.
Collapse
Affiliation(s)
- Domen Škrab
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Paolo Sivilotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
- Correspondence: ; Tel.: +39-0432-558628
| | - Piergiorgio Comuzzo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Sabrina Voce
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Francesco Degano
- Consorzio “Friuli Colli Orientali e Ramandolo”, Piazza 27 Maggio 11, 33040 Corno di Rosazzo, UD, Italy;
| | - Silvia Carlin
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Urška Vrhovšek
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| |
Collapse
|
30
|
Liu XM, Zhang Y, Zhou Y, Li GH, Zeng BQ, Zhang JW, Feng XS. Progress in Pretreatment and Analysis of Fatty Acids in Foods: An Update since 2012. SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2019.1673776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Min Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Qing Zeng
- Department of Pharmacy, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Ferchichi N, Toukabri W, Vrhovsek U, Nouairi I, Angeli A, Masuero D, Mhamdi R, Trabelsi D. Proximate composition, lipid and phenolic profiles, and antioxidant activity of different ecotypes of Lupinus albus, Lupinus luteus and lupinus angustifolius. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Phan Q, Tomasino E. Untargeted lipidomic approach in studying pinot noir wine lipids and predicting wine origin. Food Chem 2021; 355:129409. [PMID: 33799257 DOI: 10.1016/j.foodchem.2021.129409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
An untargeted lipidomic profiling approach based on ultra - performance liquid chromatography - time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS) was successfully used to study the origin of commercial Pinot noir wines. The total wine lipids were extracted using a modified Bligh-Dyer method. In all wine samples, the total lipids were less than 0.1% (w/w) of wine. The wines analyzed consisted of 222 lipids from 11 different classes. 48 commercial Pinot noir wine samples were collected from producers in Burgundy, California, Oregon, and New Zealand. Lipidomic data was studied using advanced multivariate analysis methods, random forest, k-nearest neighbor (k-NN), and linear discriminant analysis. The overall classification accuracy was 97.5% for random forest and 90% for k-NN. Wine lipids showed a strong potential for classifying wines by origin, with the top 58 lipids contributing to the discrimination. This information could potentially be used for further study of the impacts of lipids on wine characteristics and authenticity.
Collapse
Affiliation(s)
- Quynh Phan
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, United States
| | - Elizabeth Tomasino
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, United States.
| |
Collapse
|
33
|
Lan Q, Li Y, Wang F, Li Z, Gao Y, Lu H, Wang Y, Zhao Z, Deng Z, He F, Wu J, Xu P. Deubiquitinase Ubp3 enhances the proteasomal degradation of key enzymes in sterol homeostasis. J Biol Chem 2021; 296:100348. [PMID: 33524398 PMCID: PMC8027567 DOI: 10.1016/j.jbc.2021.100348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Sterol homeostasis is tightly controlled by molecules that are highly conserved from yeast to humans, the dysregulation of which plays critical roles in the development of antifungal resistance and various cardiovascular diseases. Previous studies have shown that sterol homeostasis is regulated by the ubiquitin–proteasome system. Two E3 ubiquitin ligases, Hrd1 and Doa10, are known to mediate the proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase Hmg2 and squalene epoxidase Erg1 with accumulation of the toxic sterols in cells, but the deubiquitinases (DUBs) involved are unclear. Here, we screened for DUBs responsible for sterol homeostasis using yeast strains from a DUB-deletion library. The defective growth observed in ubp3-deleted (ubp3Δ) yeast upon fluconazole treatment suggests that lack of Ubp3 disrupts sterol homeostasis. Deep-coverage quantitative proteomics reveals that ergosterol biosynthesis is rerouted into a sterol pathway that generates toxic products in the absence of Ubp3. Further genetic and biochemical analysis indicated that Ubp3 enhances the proteasome's ability to degrade the ergosterol biosynthetic enzymes Erg1 and Erg3. The retardation of ergosterol enzyme degradation in the ubp3Δ strain resulted in the severe accumulation of the intermediate lanosterol and a branched toxic sterol, and ultimately disrupted sterol homeostasis and led to the fluconazole susceptibility. Our findings uncover a role for Ubp3 in sterol homeostasis and highlight its potential as a new antifungal target.
Collapse
Affiliation(s)
- Qiuyan Lan
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China.
| | - Fuqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Zhaodi Li
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Hui Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Deng
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Junzhu Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Ping Xu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China; Medical School of Guizhou University, Guiyang, China.
| |
Collapse
|
34
|
Wu T, Guo H, Lu Z, Zhang T, Zhao R, Tao N, Wang X, Zhong J. Reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles. Food Res Int 2020; 138:109791. [PMID: 33288177 DOI: 10.1016/j.foodres.2020.109791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
Dry salting has important effects on food lipids. In this work, the reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles were studied by ultra-high-performance liquid chromatography-Q-Extractive Orbitrap mass spectrometry and LipidSearch software. Compared with the standard reference identification method, the LipidSearch software identification method was suggested to be a reliable identification method for long-chain free fatty acid identification. During the dry salting process, tilapia muscles with low muscle-to-salt mass ratios of 3-8 might have stable and similar free fatty acid profile changes, and the free fatty acid amounts decreased and then increased with time. This work could provide useful information to evaluate the development and application of LipidSearch software as well as a way to analyze the effect of dry salting on the free fatty acids change of aquatic products.
Collapse
Affiliation(s)
- Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing 400021, China
| | - Zhiwen Lu
- Shanghai Gaojing Detection Technology Co., Ltd., Shanghai 200438, China
| | - Ting Zhang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruofei Zhao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
35
|
Park J, Choi K, Lee J, Jung JM, Lee Y. The Effect of Korean Red Ginseng on Bisphenol A-Induced Fatty Acid Composition and Lipid Metabolism-Related Gene Expression Changes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1841-1858. [PMID: 33300480 DOI: 10.1142/s0192415x20500925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bisphenol A (BPA), which is known to be an endocrine-disrupting chemical (EDC), is associated not only with estrogen activity and reproductive toxicity but also with a variety of metabolic disorders. BPA affects glucose tolerance, cholesterol biosynthesis, and fatty acid synthesis. Ginseng is a traditional medicinal plant that has been widely used in East Asia for more than 2000 years, and a number of health effects have been reported. Korean Red Ginseng (KRG) has also been shown to have effects on lipid metabolism and body weight reduction in vivo in obese mice. In this study, we administered BPA and KRG to ovariectomized (OVX) ICR mice. BPA (800 mg/kg/day) and KRG (1.2 g/kg/day) were orally administered to OVX mice for 3 days. KRG inhibited the increase in total fatty acid level by BPA as determined by lipid profiling in the liver of OVX mice. In addition, transcriptome analysis showed that KRG inhibited BPA-induced changes in lipid metabolic process-related genes. Our findings suggest that KRG can regulate BPA-induced changes in lipid metabolism.
Collapse
Affiliation(s)
- Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - KeunOh Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jong-Min Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
36
|
Phytochemical and Biological Characterization of Tephrosia nubica Boiss. Growing in Saudi Arabia. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
37
|
Shi X, Chen Y, Xiao J, Li D, Wang B. Effects of harvest dates on microbial communities of ice grape skins from Xinjiang of China. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Araujo M, Beekman JK, Mapa MS, MacMahon S, Zhao Y, Flynn TJ, Flannery B, Mossoba ME, Sprando RL. Assessment of intestinal absorption/metabolism of 3-chloro-1,2-propanediol (3-MCPD) and three 3-MCPD monoesters by Caco-2 cells. Toxicol In Vitro 2020; 67:104887. [DOI: 10.1016/j.tiv.2020.104887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
|
39
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
40
|
Chitarrini G, Riccadonna S, Zulini L, Vecchione A, Stefanini M, Larger S, Pindo M, Cestaro A, Franceschi P, Magris G, Foria S, Morgante M, Di Gaspero G, Vrhovsek U. Two-omics data revealed commonalities and differences between Rpv12- and Rpv3-mediated resistance in grapevine. Sci Rep 2020; 10:12193. [PMID: 32699241 PMCID: PMC7376207 DOI: 10.1038/s41598-020-69051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Plasmopara viticola is the causal agent of grapevine downy mildew (DM). DM resistant varieties deploy effector-triggered immunity (ETI) to inhibit pathogen growth, which is activated by major resistance loci, the most common of which are Rpv3 and Rpv12. We previously showed that a quick metabolome response lies behind the ETI conferred by Rpv3 TIR-NB-LRR genes. Here we used a grape variety operating Rpv12-mediated ETI, which is conferred by an independent locus containing CC-NB-LRR genes, to investigate the defence response using GC/MS, UPLC, UHPLC and RNA-Seq analyses. Eighty-eight metabolites showed significantly different concentration and 432 genes showed differential expression between inoculated resistant leaves and controls. Most metabolite changes in sugars, fatty acids and phenols were similar in timing and direction to those observed in Rpv3-mediated ETI but some of them were stronger or more persistent. Activators, elicitors and signal transducers for the formation of reactive oxygen species were early observed in samples undergoing Rpv12-mediated ETI and were paralleled and followed by the upregulation of genes belonging to ontology categories associated with salicylic acid signalling, signal transduction, WRKY transcription factors and synthesis of PR-1, PR-2, PR-5 pathogenesis-related proteins.
Collapse
Affiliation(s)
- Giulia Chitarrini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Samantha Riccadonna
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Luca Zulini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Antonella Vecchione
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Marco Stefanini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Gabriele Magris
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy.,Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Serena Foria
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy
| | - Michele Morgante
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy.,Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Gabriele Di Gaspero
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy.
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| |
Collapse
|
41
|
Dei Cas M, Zulueta A, Mingione A, Caretti A, Ghidoni R, Signorelli P, Paroni R. An Innovative Lipidomic Workflow to Investigate the Lipid Profile in a Cystic Fibrosis Cell Line. Cells 2020; 9:E1197. [PMID: 32408521 PMCID: PMC7291020 DOI: 10.3390/cells9051197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Altered lipid metabolism has been associated to cystic fibrosis disease, which is characterized by chronic lung inflammation and various organs dysfunction. Here, we present the validation of an untargeted lipidomics approach based on high-resolution mass spectrometry aimed at identifying those lipid species that unequivocally sign CF pathophysiology. Of n.13375 mass spectra recorded on cystic fibrosis bronchial epithelial airways epithelial cells IB3, n.7787 presented the MS/MS data, and, after software and manual validation, the final number of annotated lipids was restricted to n.1159. On these lipids, univariate and multivariate statistical approaches were employed in order to select relevant lipids for cellular phenotype discrimination between cystic fibrosis and HBE healthy cells. In cystic fibrosis IB3 cells, a pervasive alteration in the lipid metabolism revealed changes in the classes of ether-linked phospholipids, cholesterol esters, and glycosylated sphingolipids. Through functions association, it was evidenced that lipids variation involves the moiety implicated in membrane composition, endoplasmic reticulum, mitochondria compartments, and chemical and biophysical lipids properties. This study provides a new perspective in understanding the pathogenesis of cystic fibrosis and strengthens the need to use a validated mass spectrometry-based lipidomics approach for the discovery of potential biomarkers and perturbed metabolism.
Collapse
Affiliation(s)
- Michele Dei Cas
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.Z.); (A.M.); (A.C.); (R.G.); (P.S.)
| | - Aida Zulueta
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.Z.); (A.M.); (A.C.); (R.G.); (P.S.)
| | - Alessandra Mingione
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.Z.); (A.M.); (A.C.); (R.G.); (P.S.)
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Anna Caretti
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.Z.); (A.M.); (A.C.); (R.G.); (P.S.)
| | - Riccardo Ghidoni
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.Z.); (A.M.); (A.C.); (R.G.); (P.S.)
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Paola Signorelli
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.Z.); (A.M.); (A.C.); (R.G.); (P.S.)
| | - Rita Paroni
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
42
|
Giné-Bordonaba J, Busatto N, Larrigaudière C, Lindo-García V, Echeverria G, Vrhovsek U, Farneti B, Biasioli F, De Quattro C, Rossato M, Delledonne M, Costa F. Investigation of the transcriptomic and metabolic changes associated with superficial scald physiology impaired by lovastatin and 1-methylcyclopropene in pear fruit (cv. "Blanquilla"). HORTICULTURE RESEARCH 2020; 7:49. [PMID: 32257235 PMCID: PMC7109095 DOI: 10.1038/s41438-020-0272-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 05/07/2023]
Abstract
To elucidate the physiology underlying the development of superficial scald in pears, susceptible "Blanquilla" fruit was treated with different compounds that either promoted (ethylene) or repressed (1-methylcyclopropene and lovastatin) the incidence of this disorder after 4 months of cold storage. Our data show that scald was negligible for the fruit treated with 1-methylcyclopropene or lovastatin, but highly manifested in untreated (78% incidence) or ethylene-treated fruit (97% incidence). The comparison between the fruit metabolomic profile and transcriptome evidenced a distinct reprogramming associated with each treatment. In all treated samples, cold storage led to an activation of a cold-acclimation-resistance mechanism, including the biosynthesis of very-long-chain fatty acids, which was especially evident in 1-methylcyclopropane-treated fruit. Among the treatments applied, only 1-methylcyclopropene inhibited ethylene production, hence supporting the involvement of this hormone in the development of scald. However, a common repression effect on the PPO gene combined with higher sorbitol content was found for both lovastatin and 1-methylcyclopropene-treated samples, suggesting also a non-ethylene-mediated process preventing the development of this disorder. The results presented in this work represent a step forward to better understand the physiological mechanisms governing the etiology of superficial scald in pears.
Collapse
Affiliation(s)
- Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Nicola Busatto
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Violeta Lindo-García
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Gemma Echeverria
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Brian Farneti
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
- Center Agriculture Food Environment, University of Trento, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| |
Collapse
|
43
|
Fournelle F, Yang E, Dufresne M, Chaurand P. Minimizing Visceral Fat Delocalization on Tissue Sections with Porous Aluminum Oxide Slides for Imaging Mass Spectrometry. Anal Chem 2020; 92:5158-5167. [DOI: 10.1021/acs.analchem.9b05665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frédéric Fournelle
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada H2V 0B3
| | - Ethan Yang
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada H2V 0B3
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada H2V 0B3
| |
Collapse
|
44
|
Chemometrics-Assisted Identification of Anti-Inflammatory Compounds from the Green Alga Klebsormidium flaccidum var. zivo. Molecules 2020; 25:molecules25051048. [PMID: 32110943 PMCID: PMC7179104 DOI: 10.3390/molecules25051048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
The green alga Klebsormidium flaccidum var. zivo is a rich source of proteins, polyphenols, and bioactive small-molecule compounds. An approach involving chromatographic fractionation, anti-inflammatory activity testing, ultrahigh performance liquid chromatography-mass spectrometry profiling, chemometric analysis, and subsequent MS-oriented isolation was employed to rapidly identify its small-molecule anti-inflammatory compounds including hydroxylated fatty acids, chlorophyll-derived pheophorbides, carotenoids, and glycoglycerolipids. Pheophorbide a, which decreased intracellular nitric oxide production by inhibiting inducible nitric oxide synthase, was the most potent compound identified with an IC50 value of 0.24 µM in lipopolysaccharides-induced macrophages. It also inhibited nuclear factor kappaB activation with an IC50 value of 32.1 µM in phorbol 12-myristate 13-acetate-induced chondrocytes. Compared to conventional bioassay-guided fractionation, this approach is more efficient for rapid identification of multiple chemical classes of bioactive compounds from a complex natural product mixture.
Collapse
|
45
|
Chen GY, Zhang Q. Simultaneous quantification of free fatty acids and acylcarnitines in plasma samples using dansylhydrazine labeling and liquid chromatography-triple quadrupole mass spectrometry. Anal Bioanal Chem 2020; 412:2841-2849. [PMID: 32078005 DOI: 10.1007/s00216-020-02514-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Free fatty acid (FFA) and acylcarnitine (AcCar) are key elements of energy metabolism. Dysregulated levels of FFA and AcCar are associated with genetic defects and other metabolic disorders. Due to differences in the physicochemical properties of these two classes of compounds, it is challenging to quantify FFA and AcCar in human plasma using a single method. In this work, we developed a chemical isotope labeling (CIL)-based liquid chromatography-multiple reaction monitoring (LC-MRM) method to simultaneously quantify FFA and AcCar. Dansylhydrazine (DnsHz) was used to label the carboxylic acid moiety on FFA and AcCar. This resulted in the formation of a permanently charged ammonium ion for facile ionization in positive ionization mode and higher hydrophobicity for enhanced retention of short-chain analogs on reversed-phase LC columns and enabled absolute quantification by using heavy labeled DnsHz analogs as internal standards. Labeling conditions including the concentration and freshness of cross-linker, reaction time, and temperature were optimized. This method can successfully quantify all short-, medium- and long-chain FFAs and AcCars with greatly enhanced sensitivity. Using this method, 25 FFAs and 13 AcCars can be absolutely quantified and validated in human plasma samples within 12 min. Simultaneous quantification of FFA and AcCar enabled by this CIL-based LC-MRM method facilitates the investigation of fatty acid metabolism and has potential in clinical applications.
Collapse
Affiliation(s)
- Guan-Yuan Chen
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA.,Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA. .,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
46
|
Lipid Profiling and Stable Isotopic Data Analysis for Differentiation of Extra Virgin Olive Oils Based on Their Origin. Molecules 2019; 25:molecules25010004. [PMID: 31861325 PMCID: PMC6982832 DOI: 10.3390/molecules25010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023] Open
Abstract
To differentiate extra virgin olive oils (EVOO) according to the origin of purchase, such as monocultivar Italian EVOO with protected denomination of origin (PDO) and commercially-blended EVOO purchased in supermarkets, a number of samples was subjected to the analysis of various lipid species by liquid chromatography/mass spectrometry (LC-ESI-MS/MS, LC-ESI-IT-MS) and proton nuclear magnetic resonance analysis (1H-NMR). Many putative chemical markers were extracted as differentiators by uni- and multivariate statistical analysis. Commercially-blended EVOO contained higher concentrations of the majority of minor lipids, including free fatty acids, their alkyl (methyl and ethyl) esters, monoglycerides, and diglycerides, which may be indicative of a higher degree of triglyceride lipolysis in these than in monocultivar PDO EVOO. Triterpenoids and particular TAG species were also found in higher proportions in the samples from the commercially-blended EVOO class, suggesting a possible influence of factors such as the cultivar and geographical origin. The largest differences between the classes were determined for the concentrations of uvaol and oleanolic acid. The results of the analysis by isotopic ratio mass spectrometry (IRMS) were reasonably consistent with the information about the geographical origin declared on the labels of the investigated EVOOs, showing considerable variability, which possibly also contributed to the differences in lipid composition observed between the two investigated classes of EVOO.
Collapse
|
47
|
Zhao H, Zhu M, Wang K, Yang E, Su J, Wang Q, Cheng N, Xue X, Wu L, Cao W. Identification and quantitation of bioactive components from honeycomb (Nidus Vespae). Food Chem 2019; 314:126052. [PMID: 31982855 DOI: 10.1016/j.foodchem.2019.126052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Honeycomb (Nidus Vespae) as an agri-food waste in bee product industry is in soaring demand for high-value utilization. This study is dedicated to investigate the physicochemical properties, chemical composition, and nutritional value of honeycomb by determination of physicochemical parameters, total phenolic and total flavonoid contents, antioxidant capacity in vitro, and bioactive components. By using ultra high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method, a total of 76 bioactive components from hydro-ethanolic extracts of honeycomb (EHB) were tentatively identified, where the principal ones are polyphenols and fatty acids, which were further quantified by LC-MS and GC-MS, respectively. Moreover, antimicrobial activities test has been conducted, verifying that EHB can inhibit both Gram-negative (G-) bacteria and Gram-positive (G+) bacteria, which is beneficial for the high-value utilization of honeycomb.
Collapse
Affiliation(s)
- Haoan Zhao
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Min Zhu
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China; College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Keru Wang
- Collage of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Erlin Yang
- Collage of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Jinlong Su
- Collage of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Qian Wang
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- Collage of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wei Cao
- Collage of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China.
| |
Collapse
|
48
|
Ferchichi N, Toukabri W, Vrhovsek U, Angeli A, Masuero D, Mhamdi R, Trabelsi D. Inoculation of Lupinus albus with the nodule-endophyte Paenibacillus glycanilyticus LJ121 improves grain nutritional quality. Arch Microbiol 2019; 202:283-291. [PMID: 31650197 DOI: 10.1007/s00203-019-01745-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022]
Abstract
Metabolic changes occurring in white lupine grain were investigated in response to Plant Growth Promoting Rhizobacteria (PGPR) root inoculation under field condition. We precisely targeted lipids and phenolics changes occurring in white lupine grain in response to Pseudomonas brenneri LJ215 and/or Paenibacillus glycanilyticus LJ121 inoculation. Lipids and phenolic composition were analyzed using an Ultra High-Performance Liquid Chromatography/Tandem Mass Spectrometry Methods. As compared to grain of un-inoculated control plant, Paenibacillus glycaniliticus inoculation highly increased the total lipids content (from 232.55 in seeds of un-inoculated control plant to 944.95 mg/kg) and the relative percentage of several fatty acid such as oleic acid (+20.95%) and linoleic acid (+14.28%) and decreased the relative percentage of glycerophospholipids (- 13.11%), sterol (- 0.2% and - 0.34% for stigmasterol and campesterol, respectively) and prenol (- 17.45%) class. Paenibacillus glycaniliticus inoculation did not affect total phenolic content, while it modulated content of individual phenolic compounds and induced the accumulation of "new" phenolics compounds such as kaempferol. Paenibacillus glycanilyticus LJ121 can be a useful bio-fertilizer to enhance nutritional quality of white lupine grain.
Collapse
Affiliation(s)
- Nouha Ferchichi
- Faculté Des Sciences de Tunis, Université de Tunis El Manar, 2092, El Manar Tunis, Tunisia.,Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Wael Toukabri
- Faculté Des Sciences de Tunis, Université de Tunis El Manar, 2092, El Manar Tunis, Tunisia.,Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Andrea Angeli
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Domenico Masuero
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Ridha Mhamdi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Darine Trabelsi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia.
| |
Collapse
|
49
|
Compositional characterization of commercial sparkling wines from cv. Ribolla Gialla produced in Friuli Venezia Giulia. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03334-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Zhang X, Li P, Guo S, Wang S, Liu D. Quantitation of β-carboline and quercetin in alligator weed (Alternanthera philoxeroides (Mart.) Griseb.) by LC-MS/MS and evaluation of cardioprotective effects of the methanol extracts. Drug Discov Ther 2019; 12:341-346. [PMID: 30674768 DOI: 10.5582/ddt.2018.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plant invasion is one of the major threats to natural ecosystems. The alligator weed grows rapidly within a small span of time and is easily available all over the world. β-Carboline and quercetin are considered as excellent bioactive components of the alligator weed. In our study LC-MS/MS methods were performed for the detection and determination of the bioactive constituents, ꞵ-carboline and quercetin in leaves, in multiple reaction monitoring (MRM) mode. The effects of methanol extract on cardiomyocyte apoptosis induced by doxorubicin using H9c2 cells were evaluated by MTT assay and Annexin V-FITC/PI staining assay. A sensitive and selective liquid chromatography tandem mass spectrometry was developed and validated for the determination of ꞵ-carboline and quercetin in this plant. According to in vitro cell evaluation experiments, methanol extracts significantly prevented cardiomyocyte apoptosis induced by doxorubicin.
Collapse
Affiliation(s)
- Xinke Zhang
- School of Pharmaceutical Science, Shandong University
| | - Peng Li
- Ecological Society of Shandong
| | | | - Shuqi Wang
- School of Pharmaceutical Science, Shandong University
| | - Dasheng Liu
- Ecological Society of Shandong.,Shandong Institute of Environmental Science
| |
Collapse
|