1
|
Araújo Pereira MO, Júnior ÁF, Batista Rodrigues ES, Mulser H, Nascimento de Mello E Silva G, Pio Dos Santos WT, de Souza Gil E. An impedimetric immunosensor for diagnosis of Brazilian spotted fever in blood plasma. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:189-195. [PMID: 38098444 DOI: 10.1039/d3ay01308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Brazilian spotted fever (BSF) is a serious disease of medical importance due to its rapid evolution and high lethality. The effectiveness of the treatment mainly depends on the rapid diagnosis, which is currently performed by indirect immunofluorescence and PCR tests, which require high costs and laboratory structure. In order to propose an alternative methodology, we sought to develop an impedimetric immunosensor (IM) based on the immobilization of specific IgY antibodies for IgG anti Rickettsia rickettsii, using blood plasma from capybara (Hydrochoerus hydrochaeris), for characterization, validation and applications of the ready IM. IM selectivity was observed when comparing capybara reagent IgG (IgGcr) readings with non-reagent IgG (IgGnr). A reagent IgG calibration curve was obtained, from which the limits of detection (LOD) and quantification (LOQ) of 1.3 ng mL-1 and 4.4 ng mL-1 were calculated, respectively. The accuracy tests showed that different concentrations of IgGcr showed a maximum deviation of 20.0%, with CI between 90.00% and 95.00%. Intermediate precision tests showed a relative standard deviation of 2.09% for researcher 1 and 2.61% for researcher 2, and the F test showed no significant difference between the recovery values found between the two analysts, since Fcal 1.56 < 5.05 and P-value 0.48 > 0, 05. Therefore, an impedimetric immunosensor was developed to detect anti BSF IgG in capybara blood plasma, which greatly contributes to the improvement of diagnostic tests, cost reduction and ease of execution.
Collapse
Affiliation(s)
| | | | | | - Helena Mulser
- School of Pharmacy, Federal University of Goiás, Brazil.
| | | | - Wallans Torres Pio Dos Santos
- Chemistry Department, Federal University of Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Robinson C, Juska VB, O'Riordan A. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116877. [PMID: 37579966 DOI: 10.1016/j.envres.2023.116877] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Immunosensors are promising alternatives as detection platforms for the current gold standards methods. Electrochemical immunosensors have already proven their capability for the sensitive, selective, detection of target biomarkers specific to COVID-19, varying cancers or Alzheimer's disease, etc. Among the electrochemical techniques, electrochemical impedance spectroscopy (EIS) is a highly sensitive technique which examines the impedance of an electrochemical cell over a range of frequencies. There are several important critical requirements for the construction of successful impedimetric immunosensor. The applied surface chemistry and immobilisation protocol have impact on the electroanalytical performance of the developed immunosensors. In this Review, we summarise the building blocks of immunosensors based on EIS, including self-assembly monolayers, nanomaterials, polymers, immobilisation protocols and antibody orientation.
Collapse
Affiliation(s)
- Caoimhe Robinson
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland
| | - Vuslat B Juska
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| |
Collapse
|
3
|
Vyas T, Gogoi M, Joshi A. Fluorescent fiber-optic device sensor based on carbon quantum dot (CQD) thin films for dye detection in water resources. Analyst 2023; 148:5178-5189. [PMID: 37721153 DOI: 10.1039/d3an01343j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Industrialization, especially in textile industries, has led to increased use of dyes and pigments to impart colours to fabrics. Textile dyes are one of the chief emerging pollutants of water resources as industrial effluents. In the current research, we report the development and utilization of pH-sensitive carbon quantum dots (CQDs) immobilized in polymer thin films acting as sensors for textile dye detection. The CQDs and CQD-containing polymer films were characterized by various techniques like XRD, TEM, XPS, and CLSM. The synthesized CQD thin films possess a unique pH-sensitive property that can be used to detect various model acidic and basic dyes that are important components of industrial effluents from textile dyes. The detection capability of the sensor films was evaluated by spiking dyes in various water matrices, like household tap water and river water. The results indicate that pH-sensitive CQD thin film was able to detect three acidic dyes, namely methyl red, methyl orange, and bromocresol green, and one basic dye, methylene blue, in a linear range of 0-100 μM with a response time of 1 minute. The CQD thin-film sensors have a limit of detection of 26.4 ppb, 214.5 ppb, 46.2 ppb, and 29.7 ppb for methyl red, methyl orange, bromocresol green and methylene blue, respectively. The accuracy of detection performed by spiking studies in water resources indicated an ∼100% recovery value in all tested acidic and basic dyes. The sensor films were compared for analytical parameters using UV-visible-fluorescence spectroscopy and HPLC.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore-453552, Madhya Pradesh, India.
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Umshing Mawkynroh, Shillong 793022, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore-453552, Madhya Pradesh, India.
| |
Collapse
|
4
|
Bhattacharjee J, Mishra S, Das AP. Recent Advances in Sensor-Based Detection of Toxic Dyes for Bioremediation Application: a Review. Appl Biochem Biotechnol 2021; 194:4745-4764. [PMID: 34799825 DOI: 10.1007/s12010-021-03767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Extensive use of these harmful dyes has resulted in the surplus presence of these emerging pollutants in the environment, thus demanding an instant and sensitive detection method. Various synthetic dyes are illegitimately mixed into food and other consuming items for displaying bright colours that attracts consumers. The synthetic dyes cause a number of environmental health hazards and promote toxicity, mutagenicity and carcinogenicity in humans. Despite these serious health glitches, synthetic dyes are widely used due to their much lower cost. As a result, a faster, more selective and extremely sensitive technology for detecting and quantifying hazardous dyes in trace amount is urgently needed. This topic is currently in its initial phases of development and needs continuous refinements, such as explaining various sensing methods and potential future uses linked with dye detection technologies. The present review encompasses a comprehensive literature survey on detection of dyes and latest progress in developing sensors for dye detection and summarizes different detection mechanisms, including biosensor-, optical- and electrochemical-based sensors. Detection methodologies are examined with a focus on biosensor-based recent advancements in dye detection and the growing demand for more appropriate systems in terms of accuracy and efficiency.
Collapse
Affiliation(s)
| | - Sunanda Mishra
- Department of Botany, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Science, Rama Devi Women's University, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
de Almeida SV, Cancino-Bernardi J, de Andrade JK, Felsner ML, Zucolotto V, Galli A. Cancer immunosensor based on apo and holo transferrin binding. Mikrochim Acta 2020; 187:438. [PMID: 32651709 DOI: 10.1007/s00604-020-04420-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023]
Abstract
An electrochemical immunosensor was developed for the determination of apo-Tf (non-iron-bound) and holo-Tf (iron-bound) using polyclonal antibody transferrin (anti-Tf) immobilized at an electrode surface as a biorecognition platform. The monitoring was based on the anti-Tf binding with both Tf forms which allows the detection of cancer cells due to the constant iron cycle and the overexpression of anti-Tf on the cancer cell surface. The immunosensor characterization was performed using electrochemical impedance spectroscopy (EIS), which evaluated the impedimetric biorecognition of the antigens-antibody by the use of K4Fe(CN)6 redox group. The immunosensor was able to detect both forms of Tf in terms of charge transfer resistance (Rct). Analytical curves showed a limit of detection of 0.049 and 0.053 ng mL-1 for apo-Tf and holo-Tf, respectively. The immunosensor was applied to the detection of the two cancer cells A549 (lung carcinoma) and MCF-7 (breast carcinoma) and compared with BHK570, a healthy cell line. The impedimetric response of healthy cells differs significantly from that of the cancerous cells, as revealed by a Dunnett's test in 95% confidence level-ca. 102 cells mL-1-indicating the feasibility of the immunosensor to discriminate both types of cells. The indirect detection of anti-Tf based on apo-Tf and holo-Tf binding can be considered an advanced approach for cancer recognition. Graphical abstract.
Collapse
Affiliation(s)
- Sthéfane Valle de Almeida
- Chemistry Department, Campus CEDETEG, State University of Midwest Paraná, Guarapuava, Brazil.,Department of Chemistry, Federal University of São Carlos, Washington Luis Road, km 235 Monjolinho, São Carlos, SP, 13565905, Brazil
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil. .,Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva Street, 700 Centro, Alfenas, MG, 37130000, Brazil.
| | | | - Maria Lurdes Felsner
- Chemistry Department, Campus CEDETEG, State University of Midwest Paraná, Guarapuava, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Andressa Galli
- Chemistry Department, Campus CEDETEG, State University of Midwest Paraná, Guarapuava, Brazil
| |
Collapse
|
6
|
Lamarca RS, Faria RADD, Zanoni MVB, Nalin M, Lima Gomes PCFD, Messaddeq Y. Simple, fast and environmentally friendly method to determine ciprofloxacin in wastewater samples based on an impedimetric immunosensor. RSC Adv 2020; 10:1838-1847. [PMID: 35494561 PMCID: PMC9047983 DOI: 10.1039/c9ra09083e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
In this study an impedimetric immunosensor was developed in order to determine ciprofloxacin (CIP) in wastewater samples, an emergent contaminant widely found in wastewater. To achieve this, an anti-ciprofloxacin antibody was immobilized on the surface of a printed carbon electrode. Then, the developed immunosensor was applied in wastewater samples from Université Laval residences (Québec, Canada) through the load transfer resistance (Rct) using [Fe(CN)6]3−/4− as a redox probe, and the average CIP concentration was found to be 2.90 × 10−4 μg mL−1. The observed Rct changes presented a linear relationship from CIP concentrations of 10−5 to 1.0 μg mL−1, with detection and quantification limits of 2.50 × 10−6 and 7.90 × 10−6 μg mL−1, respectively. The immunosensor presented high selectivity and repeatability, as well as a good recovery rate in wastewater samples (97%). Significant interference with other compounds was not observed. The proposed method requires only 30 μL of sample without the use of organic solvents or preceding sample preparation and/or extraction techniques. Moreover, the method is fast: only 20 min of incubation followed by 2 min of analysis time was sufficient to obtain the CIP concentration. The method's estimated cost is U$ 2.00 per sample. In this study an impedimetric immunosensor was developed in order to determine ciprofloxacin (CIP) in wastewater samples, an emergent contaminant widely found in wastewater samples.![]()
Collapse
Affiliation(s)
| | | | - Maria Valnice Boldrin Zanoni
- UNESP
- National Institute for Alternative Technologies of Detection
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)
- Institute of Chemistry
- São Paulo State University – UNESP
| | - Marcelo Nalin
- Institute of Chemistry
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- UNESP
- National Institute for Alternative Technologies of Detection
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)
- Institute of Chemistry
- São Paulo State University – UNESP
| | - Younès Messaddeq
- Center for Optics, Photonics and Laser (COPL)
- Université Laval
- Quebec
- Canada
- Institute of Chemistry
| |
Collapse
|
7
|
Venturini Uliana C, Yamanaka H. Immunosensor for Detection of the Textile Dye Disperse Orange 1 Based on Non‐conventional Competitive Assay. ELECTROANAL 2019. [DOI: 10.1002/elan.201900059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina Venturini Uliana
- São Paulo State University-UnespInstitute of Chemistry P.O. Box 355 14800-900 Araraquara-SP Brazil
- São Paulo State University-UnespNational Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry P.O. Box 355 14800-900 Araraquara-SP Brazil
| | - Hideko Yamanaka
- São Paulo State University-UnespInstitute of Chemistry P.O. Box 355 14800-900 Araraquara-SP Brazil
- São Paulo State University-UnespNational Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry P.O. Box 355 14800-900 Araraquara-SP Brazil
| |
Collapse
|
8
|
Abstract
Immunosensors are compact tools on which antibody and antigen interactions are formed. The specific interaction between antibody and antigen is detected by using a transducer and an electrical signal is measured. This specific interaction between these molecules makes immunosensor very attractive for several applications in different fields. Electrochemical immunosensors are successful devices in selective and sensitive detection of several analytes. Electrochemical transducing methods such as voltammetric, potentiometric, conductometric or impedimetric have been utilized in different applications due to their excellent properties such as being low-cost, sensitivity and simplicity. In this chapter, the fundamentals of electrochemical immunosensors are summarized and different applications in food, environmental and clinical analyses are investigated and discussed.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydin
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
9
|
Treated Gold Screen-Printed Electrode as Disposable Platform for Label-Free Immunosensing of Salmonella Typhimurium. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0491-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Hashemi P, Afkhami A, Bagheri H, Amidi S, Madrakian T. Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra. Anal Chim Acta 2017; 984:185-192. [DOI: 10.1016/j.aca.2017.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
|
12
|
Foguel MV, Pedro NTB, Wong A, Khan S, Zanoni MVB, Sotomayor MDPT. Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples. Talanta 2017; 170:244-251. [DOI: 10.1016/j.talanta.2017.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
13
|
Fei J, Dou W, Zhao G. Amperometric immunoassay for the detection of Salmonella pullorum using a screen - printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1721-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|