1
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Ünaldı AŞ, Çubuk S, Çiğil AB, Kahraman MV. Fluorimetric Reusable Polymeric Sensor for Hydrogen Sulfide Detection. J Fluoresc 2023; 33:1651-1659. [PMID: 36806048 DOI: 10.1007/s10895-023-03181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
In this study, with the help of reactive monomers, crosslinkers, and photoinitiator that detect H2S in various matrices, an H2S sensitive fluorescence sensor polymerizes under ultraviolet (UV) light was developed. To this goal, a polymeric membrane was prepared, and the characterization of the membrane was carried out with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. Afterward, appropriate conditions were identified, the excitation wavelength was determined as 370 nm, and the emission wavelength was determined as 425 nm. It was established that the fluorescence intensity of the prepared polymeric membrane decreased in the presence of H2S. A detailed analysis was executed to determine the sensor's most suitable pH value and time. It was found that the optimum pH was 8.0, and the optimal duration was 15 s. It has been calculated that the linear range of the developed method is 2.19 × 10-8- 6.25 × 10-7 M, and the detection limit (LOD) is 7.37 × 10-9 M. The effect of some possible interfering ions was investigated, and it determined that the sensor had excellent selectivity. In addition, the sensor used to determine H2S can be used at least 100 times. The recovery percentages were 102.1%-103.2%, and 104.6%, using tap water samples. In terms of providing reliable, fast results, high sensitivity, reusable, low cost, and ease of use, the developed fluorimetric sensor, compared to standard methods, has become more advantageous.
Collapse
Affiliation(s)
- Ayça Şeyma Ünaldı
- Chemistry Department, Faculty of Science, Marmara University, 34722, Istanbul, Türkiye
| | - Soner Çubuk
- Chemistry Department, Faculty of Science, Marmara University, 34722, Istanbul, Türkiye.
| | - Aslı Beyler Çiğil
- Dep. of Chemistry and Chemical Process Technology School, Amasya University Technical Sci. Vocational, Amasya, Türkiye
| | - M Vezir Kahraman
- Chemistry Department, Faculty of Science, Marmara University, 34722, Istanbul, Türkiye
| |
Collapse
|
3
|
A New Ratiometric Fluorescent Probe Based on BODIPY for Highly Selective Detection of Hydrogen Sulfide. Molecules 2022; 27:molecules27217499. [PMID: 36364325 PMCID: PMC9653583 DOI: 10.3390/molecules27217499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) as small molecular signal messenger plays key functions in numerous biological processes. The imaging detection of intracellular hydrogen sulfide is of great significance. In this work, a ratiometric fluorescent probe BH based on an asymmetric BODIPY dye for detection of H2S was designed and synthesized. After the interaction with hydrogen sulfide, probe display colorimetric and ratiometric fluorescence response, with its maximum emission fluorescence wavelength red-shifted from 542 nm to 594 nm, which is attributed to the sequential nucleophilic reaction of H2S leading to enhanced molecular conjugation after ring formation of the BODIPY skeleton. A special response mechanism has been fully investigated by NMR titration and MS, so that the probe has excellent detection selectivity. Furthermore, probe BH has low cytotoxicity and fluorescence imaging experiments indicate that it can be used to monitor hydrogen sulfide in living cells.
Collapse
|
4
|
Pandit NR, Bej S, Banerjee P, Biswas B. Unveiling Role of Metals in Mononuclear Metal‐Complexes for Chemodosimetric Detection of S
2−
from aqueous medium: Experimental and DFT Corroboration with Real‐Field Application. ChemistrySelect 2022. [DOI: 10.1002/slct.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nithun Ranjan Pandit
- Department of Chemistry Presidency University, 86/1 College Street Kolkata 700073 India
| | - Sourav Bej
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713209 India
- Academy of Scientific & Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713209 India
- Academy of Scientific & Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Biplab Biswas
- Department of Chemistry Presidency University, 86/1 College Street Kolkata 700073 India
| |
Collapse
|
5
|
Guo WT, Dou L, Yan YJ, Li RY, Dong WK. A naphthol-functionalized bis(salamo)-like chromogenic and fluorogenic probe for monitoring hydrogen sulfide and application in water samples. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wen-Ting Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| |
Collapse
|
6
|
A novel fluorescent probe for detecting hydrogen sulfide in osteoblasts during lipopolysaccharide-mediated inflammation under periodontitis. Sci Rep 2021; 11:20156. [PMID: 34635770 PMCID: PMC8505607 DOI: 10.1038/s41598-021-99761-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Periodontitis, one of the most common chronic inflammatory diseases, affects the quality of life. Osteogenesis plays an important role in the disease. There is a connection between hydrogen sulfide (H2S) and periodontitis, but according to the study has been published, the precise role of H2S in inflammation remains in doubt. The main reason for the lack of research is that H2S is an endogenous gasotransmitter, difficult to discern through testing. So, we synthesized a novel fluorescence probe which can detect H2S in vitro. By using the novel H2S fluorescence probe, we found that H2S changes in osteoblasts mainly by cystathionine-γ-lyase, and H2S increases under LPS stimulation. H2S could be a potential marker for diagnosis of inflammatory diseases of bone, and might help deepen studies of the changes of H2S level and promote the progression on the researches about pathogenesis of periodontitis.
Collapse
|
7
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
8
|
Two-photon ratiometric fluorescent probe based on NBD-amine functionalized semiconducting polymer nanoparticles for real-time imaging of hydrogen sulfide in living cells and zebrafish. Talanta 2021; 228:122269. [PMID: 33773717 DOI: 10.1016/j.talanta.2021.122269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/22/2022]
Abstract
The thiolysis of 7-nitro-1,2,3-benzoxadiazole amine (NBD-A) paves the way for specific sensing of H2S over biothiols and real-time imaging in living organisms. Rational fabrication of NBD-A-based probe with ratiometric mode and two-photon excitation is highly appealing to achieve high quality bioimaging. In this work, the NBD-A molecules are assembled with poly(9,9-dioctylfluorenyl-2,7-diyl) polymer nanoparticles, defined as NBD@PFO, to construct two-photon ratiometric probes for H2S detection through the fluorescence resonance energy transfer (FRET). For the construction of NBD@PFO nanohybrids, polymer nanoparticles are employed as the NBD-A molecular vehicle, energy donor and two-photon absorber, while NBD-A is served as the response unit and energy acceptor. Taking advantages of NBD-A and polymer nanoparticles, the obtained NBD@PFO probes exhibit high selectivity, fast response (<5 s), ratiometric detection and two-photon excitation. Our results indicate that NBD@PFO nanohybrids are successfully applied for monitoring of H2S concentration in living cells and zebrafish, exhibiting great potential of polymer nanoparticles to improve the imaging capability of an organic small molecular probe.
Collapse
|
9
|
Yue J, Tao Y, Zhang J, Wang H, Wang N, Zhao W. BODIPY‐based Fluorescent Probe for Fast Detection of Hydrogen Sulfide and Lysosome‐targeting Applications in Living Cells. Chem Asian J 2021; 16:850-855. [DOI: 10.1002/asia.202100041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Jinlei Yue
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Han Wang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
- School of Pharmacy Institutes of Integrative Medicine Fudan University Shanghai 201203 P. R. China
| |
Collapse
|
10
|
A novel fluorescent strategy based on double modifications of metal organic framework material CAU-10-NH 2 for low background and high sensitivity determination of H 2S. Talanta 2021; 229:122271. [PMID: 33838773 DOI: 10.1016/j.talanta.2021.122271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide is typical metabolic marker and environmental pollutant which is worthwhile to determine. Herein, a low background and high sensitivity fluorescent strategy based on double modifications of metal organic framework material CAU-10-NH2 is proposed for the determination of hydrogen sulfide. Firstly, a functional monomer 3,5-diaminobenzoic acid is employed to modify on the CAU-10-NH2, the product CAU-10-NH-dAba has strong fluorescent performance at 412 nm under an excitation wavelength of 320 nm. Subsequently, it is further modified by the azide group to form CAU-10-NH-dAba-N3. This azidation inhibits the fluorescent signal. However, in the presence of hydrogen sulfide, the azide group is specifically reduced to amidogen, and results in the recovery of the fluorescence. The CAU-10-NH-DABA-N3 was characterized by solid state NMR, XPS, fluorescence, IR, XRD, SEM and specific surface area. After the optimization of pH value, temperature and interaction time, the detection results of hydrogen sulfide demonstrate the linear range of this strategy is from 20 to 140 nM with a detection limit of 1.51 nM, which is significantly better than that of the CAU-10-NH2 merely modified by 3,5-dinitrobenzoic acid. Meanwhile, the satisfactory assay results of hydrogen sulfide in serum sample and Pearl river water suggest a potential application prospect of this strategy in clinical diagnosis and environment monitoring.
Collapse
|
11
|
Liu Y, Yu Y, Zhao Q, Tang C, Zhang H, Qin Y, Feng X, Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies. Coord Chem Rev 2021; 427:213601. [PMID: 33024340 PMCID: PMC7529596 DOI: 10.1016/j.ccr.2020.213601] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Reactive sulfur species (RSS) and reactive selenium species (RSeS) are important substances for the maintenance of physiological balance. Imbalance of RSS and RSeS is closely related to a series of human diseases, so it is considered to be an important biomarker in early diagnosis, treatment, and stage monitoring. Fast and accurate quantitative analysis of different RSS and RSeS in complex biological systems may promote the development of personalized diagnosis and treatment in the future. One way to explore the physiological function of various types of RSS and RSeS in vivo is to detect them at the molecular level, and one of the most effective methods for this is to use fluorescent probes. Nucleophilic aromatic substitution (SNAr) reactions are commonly exploited as a detection mechanism for RSS and RSeS in fluorescent probes. In this review, we cover recent progress in fluorescent probes for RSS and RSeS based on SNAr reactions, and discuss their response mechanisms, properties, and applications. Benzenesulfonate, phenyl-O ether, phenyl-S ether, phenyl-Se ether, 7-nitro-2,1,3-benzoxadiazole (NBD), benzoate, and selenium-nitrogen bonds are all good detection groups. Moreover, based on an integration of different reports, we propose the design and synthesis of RSS- and RSeS-selective probes based on SNAr reactions, current challenges, and future research directions, considering the selection of active sites, the effect of substituents on the benzene ring, and the introduction of other functional groups.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Liu X, Li W, Bai S, Cui Y, Sun G. Off-label use of old drug: A 3-hydroxythalidomide-based fluorescent probe for the detection of hydrogen sulfide (H2S) and bioimaging in HeLa cells. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Pandit NR, Bej S, Mondal A, Ghosh M, Kostakis GE, Powell AK, Banerjee P, Biswas B. Exploratory studies on azido-bridged complexes (Ni 2+ and Mn 2+) as dual colourimetric chemosensors for S 2- and Ag +: combined experimental and theoretical outcomes with real field applications. Dalton Trans 2020; 49:13090-13099. [PMID: 32929443 DOI: 10.1039/d0dt02846k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report two isostructural dinuclear transition metal complexes [M2(HL)2(N3)4], where M = Ni2+ (BS-1), Mn2+ (BS-2), and HL is (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol) and investigate them as molecular sensors towards hazardous entities. BS-1 shows high selectivity towards the S2- and Ag+ ions, easily observed by the naked eye colour change and its detection limit in aqueous solutions for the S2- ion was calculated as 0.55 μM with a binding constant of 3.28 × 105 M-1, while the limit for the Ag+ ion is 21.8 μM. Notably, BS-2 shows good selectivity towards the Ag+ ion with a detection limit of 10.84 μM. Spectroscopic and DFT studies shed light on the mechanistic course of interaction between the host and guest entities, suggesting a sulphide-mediated reduction of the azide mechanism. In a nutshell, these simple transition metal complexes were exploited for discriminately detecting hazardous analytes with real field applications in analytical science (via. "Dip-Stick" approach) as well as engineering science, which provides a significant contribution in the recent advancement of supramolecular chemistry.
Collapse
Affiliation(s)
- Nithun Ranjan Pandit
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| | - Sourav Bej
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India. and Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Ananya Mondal
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India. and Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Meenakshi Ghosh
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | | | - Annie K Powell
- InstitutfürAnorganischeChemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, D-76131 Karlsruhe, Germany
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India. and Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Biplab Biswas
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
14
|
Samak NA, Selim MS, Hao Z, Xing J. Controlled-synthesis of alumina-graphene oxide nanocomposite coupled with DNA/ sulfide fluorophore for eco-friendly “Turn off/on” H2S nanobiosensor. Talanta 2020; 211:120655. [DOI: 10.1016/j.talanta.2019.120655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
|
15
|
Zhang W, Jia Q, Meng Y, Chen S, Zhang Y, Wang KP, Gan LH, Hu ZQ. Dimethylamino naphthalene-based fluorescent probes for hydrogen sulfide detection and living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117835. [PMID: 31780309 DOI: 10.1016/j.saa.2019.117835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide shows great importance in various physiological and biochemical processes. The development of fluorescence probes for facile and efficient detection of H2S has attracted increasing attention of researchers. Herein, we synthesized two fluorescence probes based on simple naphthalene structure for detection of H2S. Upon reaction with H2S, the probe DN-DM exhibited a red fluorescence emission with large Stokes shift. The probe showed high sensitivity, pH insensitivity and good selectivity for H2S over other analytes including common biothiols. The detection mechanism was based on the thiolysis of the dinitrophenyl ether moiety, which was confirmed by 1H NMR spectral analysis. The DFT calculation was also performed for a deeper understanding of the photophysical properties. In addition, these probes showed good cell-membrane permeability and could be utilized for detection of H2S in living cells.
Collapse
Affiliation(s)
- Wenxuan Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qiang Jia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuanyuan Meng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaojin Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yubing Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun-Peng Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Li-Hua Gan
- School of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, PR China
| | - Zhi-Qiang Hu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
16
|
Yang L, Wang F, Luo X, Kong X, Sun Z, You J. A FRET-based ratiometric fluorescent probe for sulfide detection in actual samples and imaging in Daphnia magna. Talanta 2020; 209:120517. [DOI: 10.1016/j.talanta.2019.120517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022]
|
17
|
Zhang J, Wang N, Ji X, Tao Y, Wang J, Zhao W. BODIPY-Based Fluorescent Probes for Biothiols. Chemistry 2020; 26:4172-4192. [PMID: 31769552 DOI: 10.1002/chem.201904470] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/23/2019] [Indexed: 12/22/2022]
Abstract
Fluorescent probes for biothiols have aroused increasing interest owing to their potential to enable better understanding of the diverse physiological and pathological processes related to the biothiol species. BODIPY fluorophores exhibit excellent optical properties, which can be readily tailored by introducing diverse functional units at various positions of the BODIPY core. In the present review, the development of fluorescent probes based on BODIPYs for the detection of biothiols are systematically summarized, with emphasis on the preferable detection of individual biothiols, as well as simultaneous discrimination among cysteine (Cys), homocysteine (Hcy), reduced glutathione (GSH). In addition, organelle-targeting probes for biothiols are also highlighted. The general design principles, various recognition mechanisms, and biological applications are elaboratively discussed, which could provide a useful reference to researchers worldwide interested in this area.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Ji
- School of Pharmacy, Institute of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.,School of Pharmacy, Institute of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
18
|
Sensing mechanism of a ratiometric near-infrared fluorescent chemosensor for cysteine hydropersulfide: Intramolecular charge transfer. Sci Rep 2020; 10:711. [PMID: 31959854 PMCID: PMC6971067 DOI: 10.1038/s41598-020-57631-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that the cysteine hydropersulfide (Cys-SSH) as the sulfur donor is crucial to sulfur-containing cofactors synthesis. Recently, a selective and sensitive near-infrared ratiometric fluorescent chemosensor Cy-DiSe has been designed and synthesized to detect Cys-SSH spontaneously. Herein, by means of the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approaches, the sensing mechanism has been thoroughly explored. According to our calculations, the experimental data have been reproduced. The results indicate the intramolecular charge transfer (ICT) is the reason for changes in fluorescence wavelengths. Compared with the chemosensor Cy-DiSe, the larger energy gap of Cy induced by ICT mechanism leads to the blue-shift of the absorption and emission spectra, which guarantees that Cy-DiSe can become a ratiometric fluorescent chemosensor to detect Cys-SSH.
Collapse
|
19
|
Detection of hydrogen sulfide using BODIPY based colorimetric and fluorescent on-off chemosensor. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1724-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Fluorescent hydrogen sulfide probes based on azonia-cyanine dyes and their imaging applications in organelles. Anal Chim Acta 2019; 1068:60-69. [DOI: 10.1016/j.aca.2019.03.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/11/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
|
21
|
El-Maghrabey MH, Watanabe R, Kishikawa N, Kuroda N. Detection of hydrogen sulfide in water samples with 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole-copper(II) complex using environmentally green microplate fluorescence assay method. Anal Chim Acta 2019; 1057:123-131. [PMID: 30832911 DOI: 10.1016/j.aca.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a colorless toxic gas which can be found as HS- in rivers and waste waters especially in the occupational susceptible environment. Herein we synthesized a lophine analogue, 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole (HPI), which fluoresces at 410 nm after excitation at 280 nm. HPI has an imidazole ring and a pyridine ring which are capable of forming coordinate bonds with copper (Cu(II)) that cause quenching of HPI fluorescence. We found that HS- can selectively liberate HPI from the complex via formation of CuS, thus, HPI regains its fluorescence properties. Interestingly, the probe was proved to be regenerable. This reaction was used for the development of a fluorescence microplate assay for the determination of HS- in environmental samples. The method was applied to river water samples and was able to detect HS- in concentrations down to 5 ppb with acceptable accuracy (90.3-103.0%) and good precision (%RSD ≤ 4.1). The method showed many advantages over the previously reported ones including instantaneous reaction, simple probe synthesis, high-throughput, high selectivity toward hydrogen sulfide over other ions and sulfur or thiol containing compounds and at last, it complies with the green chemistry rules through using a regenerable probe, aqueous solvents, and miniaturized measurement system.
Collapse
Affiliation(s)
- Mahmoud H El-Maghrabey
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Riho Watanabe
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
22
|
Jin Y, Liu R, Zhan Z, Lv Y. Fast response near-infrared fluorescent probe for hydrogen sulfide in natural waters. Talanta 2019; 202:159-164. [PMID: 31171164 DOI: 10.1016/j.talanta.2019.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
Rapid and sensitive detection of hydrogen sulfide (H2S) is of great importance for the environmental monitoring. Near-infrared fluorescent probes are recently developed for the sensitive H2S detection thanks to their low background interference, while often hampered by relatively long response time (around 30 min). In this work, we reported a fast response (within 5 min), highly sensitive near-infrared (NIR) fluorescent probe (DCM-OCN) for H2S. The rapid nucleophilic reaction between cyanate moiety and H2S endowed fast response of the NIR probe. The influence of experimental parameters (including CTAB concentration, reaction time, pH value etc.), interference study, and possible mechanism were investigated in detail. The fluorescence increment was linear with H2S concentration in 1-10 μM with a detection limit of 0.28 μM (3σ). The probe was successfully applied to environmental water samples including river water, tap water, lake water, mineral water and artificial wastewater.
Collapse
Affiliation(s)
- Yonglei Jin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
23
|
Wang L, Qian Y. A novel quinoline-BODIPY fluorescent probe for fast sensing biothiols via hydrogen bonds assisted-deprotonation mechanism and its application in cells and zebrafish imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Jana GC, Khatun M, Nayim S, Das S, Maji A, Beg M, Patra A, Bhattacharjee P, Bhadra K, Hossain M. Superb-selective chemodosimetric signaling of sulfide in the absence and in the presence of CT-DNA and imaging in living cells by a plant alkaloid berberine analogue. NEW J CHEM 2019. [DOI: 10.1039/c8nj06120c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
New berberine analogue (BER-S), as a colorimetric probe in the absence of DNA and turn-on fluorometric probe in the presence of DNA towards S2− detection is reported.
Collapse
Affiliation(s)
- Gopal Chandra Jana
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Munira Khatun
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Sk Nayim
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Somnath Das
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Anukul Maji
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Maidul Beg
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Anirudha Patra
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | | | - Kakali Bhadra
- Department of Zoology
- University of Kalyani
- Kalyani-741235
- India
| | - Maidul Hossain
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| |
Collapse
|
25
|
The synthesis, crystal, hydrogen sulfide detection and cell assement of novel chemsensors based on coumarin derivatives. Sci Rep 2018; 8:16159. [PMID: 30385799 PMCID: PMC6212500 DOI: 10.1038/s41598-018-34331-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 01/29/2023] Open
Abstract
A series of chemsensors (1–4) containing fluorobenzene group based on coumarin derivatives have been developed for the selective and sensitive detection of H2S. The advantages of the synthesized fluorescent probe (compound 1) were the low detection limit (4 × 10−6 mol·L−1), good selectivity and high sensitivity which had been demonstrated through UV-vis, fluorescent titration experiments. Besides cytotoxicity test of compounds (1 and 2) was studied and the results indicated that compounds (1 and 2) showed almost no cytotoxicityat at a concentration of 150 μg·mL−1. The interacted mechanism was the thiolysis reaction of dinitrophenyl ether which had been confirmed by fluorescence and HRMS titration experiment. In addition, probe 1 can also detect HS− selectively by naked eye in pure DMSO solvent.
Collapse
|
26
|
Wang J, Niu L, Huang J, Yan Z, Wang J. A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:52-58. [PMID: 29126008 DOI: 10.1016/j.saa.2017.10.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), are involved in a number of biological processes and play crucial roles in biological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a new turn-on fluorescent probe 1 based on 7-nitro-2,1,3-benzoxadiazole (NBD) with high selectivity and sensitivity for Cys/Hcy on account of nucleophilic substitution and Smiles rearrangement reaction. The probe could sense Cys/Hcy rapidly, the intensity of fluorescence increased immediately within 1min. Furthermore, the probe is low toxic and has been successfully applied to detect intracellular Cys/Hcy by cell fluorescence imaging in living normal and cancer cells.
Collapse
Affiliation(s)
- Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jing Huang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Zhijie Yan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
27
|
Guria UN, Maiti K, Ali SS, Samanta SK, Mandal D, Sarkar R, Datta P, Ghosh AK, Mahapatra AK. Reaction-based bi-signaling chemodosimeter probe for selective detection of hydrogen sulfide and cellular studies. NEW J CHEM 2018. [DOI: 10.1039/c7nj04632d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new quinoline-indolium-based chemical probe (DPQI) was synthesized and characterized for selective detection of hydrogen sulphide (H2S).
Collapse
Affiliation(s)
- Uday Narayan Guria
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Kalipada Maiti
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Syed Samim Ali
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Sandip Kumar Samanta
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Debasish Mandal
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Ripon Sarkar
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Shibpur
- India
| | - Pallab Datta
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Shibpur
- India
| | | | - Ajit Kumar Mahapatra
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| |
Collapse
|
28
|
Zhou Z, Duan G, Wang Y, Yang S, Liu X, Zhang L, Sun R, Xu Y, Gu Y, Zha X. A highly sensitive fluorescent probe for selective detection of cysteine/homocysteine from glutathione and its application in living cells and tissues. NEW J CHEM 2018. [DOI: 10.1039/c8nj04183k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A fluorescent probe NIPY-NBD was designed for detecting Cys/Hcy against GSH and applied in cell/tumor tissue imaging.
Collapse
Affiliation(s)
- Ziyan Zhou
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Guofeng Duan
- Department of Traditional Chinese Medicine, Senior Vocational School, China Pharmaceutical University
- Nanjing 211198
- China
| | - Yingying Wang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Shikui Yang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Xuyan Liu
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Liying Zhang
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University
- Chengde 067000
- China
| | - Runing Sun
- Department of Traditional Chinese Medicine, Senior Vocational School, China Pharmaceutical University
- Nanjing 211198
- China
| | - Yungen Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University
- Nanjing 210009
- China
| | - Yueqing Gu
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
29
|
Yan Y, Zhang K, Yu H, Zhu H, Sun M, Hayat T, Alsaedi A, Wang S. Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. Talanta 2017; 174:387-393. [DOI: 10.1016/j.talanta.2017.06.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/04/2017] [Accepted: 06/10/2017] [Indexed: 12/25/2022]
|
30
|
Wang P, Wu J, Di C, Zhou R, Zhang H, Su P, Xu C, Zhou P, Ge Y, Liu D, Liu W, Tang Y. A novel peptide-based fluorescence chemosensor for selective imaging of hydrogen sulfide both in living cells and zebrafish. Biosens Bioelectron 2017; 92:602-609. [DOI: 10.1016/j.bios.2016.10.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022]
|
31
|
Wang J, Shao X, Wang J, Shao S. An NBD-based Fluorescent Turn-on Probe for the Detection of Homocysteine over Cysteine and Its Imaging Applications. CHEM LETT 2017. [DOI: 10.1246/cl.161123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Huo F, Zhang Y, Ning P, Meng X, Yin C. A novel isophorone-based red-emitting fluorescent probe for selective detection of sulfide anions in water for in vivo imaging. J Mater Chem B 2017; 5:2798-2803. [DOI: 10.1039/c7tb00299h] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new red-emitting fluorescent probe for detection of sulfide anions in living cells (MCF-7 cells) and zebrafish was developed.
Collapse
Affiliation(s)
- Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan
- China
- School of Chemistry and Chemical Engineering
| | - Yaqiong Zhang
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan
- China
- School of Chemistry and Chemical Engineering
| | - Peng Ning
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials
- Anhui University
- China
| | - Xiangming Meng
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials
- Anhui University
- China
| | - Caixia Yin
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University
- Taiyuan
| |
Collapse
|
33
|
Yi L, Xi Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H2S and biothiols: design and biological applications. Org Biomol Chem 2017; 15:3828-3839. [DOI: 10.1039/c7ob00332c] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H2S-specific fluorescent/colorimetric probes based on the thiolysis of NBD dyes are summarized.
Collapse
Affiliation(s)
- Long Yi
- State Key Laboratory of Organic–Inorganic Composites and Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
34
|
Yang Y, Lei Y, Zhang X, Zhang S. A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe. Talanta 2016; 154:190-6. [DOI: 10.1016/j.talanta.2016.03.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/05/2023]
|
35
|
Hou P, Li H, Chen S. A highly selective and sensitive 3-hydroxyflavone-based colorimetric and fluorescent probe for hydrogen sulfide with a large Stokes shift. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells. Anal Chim Acta 2016; 920:86-93. [DOI: 10.1016/j.aca.2016.03.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
|
37
|
Lee JJ, Kim YS, Nam E, Lee SY, Lim MH, Kim C. A PET-based fluorometric chemosensor for the determination of mercury(II) and pH, and hydrolysis reaction-based colorimetric detection of hydrogen sulfide. Dalton Trans 2016; 45:5700-12. [PMID: 26928649 DOI: 10.1039/c6dt00147e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A simple fluorescent chemosensor 1 for the detection of Hg(2+) and pH was developed by a combination of 2-aminoethyl piperazine and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole. The sensor 1 showed OFF-ON behavior for different colors of fluorescence in the presence of Hg(2+) and under acidic conditions, respectively, in a near-perfect aqueous solution. The turn-on fluorescence caused by inhibition of photoinduced electron transfer was explained by theoretical calculations. 1 could be used to quantify Hg(2+) in water samples, and its in vitro studies with HeLa cells showed fluorescence in the presence of Hg(2+). In addition, 1 could selectively detect S(2-) by changing its color from orange to pink in a near-perfect aqueous solution. Moreover, 1 could be used as a practical, visible test kit for S(2-).
Collapse
Affiliation(s)
- Jae Jun Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
38
|
Sun XF, Zhang ZX, Li W, Bai FQ, Wang J, Jia R, Kong CP, Zhang HX. DFT/TD-DFT calculations on the sensing mechanism of a dual response near-infrared fluorescent chemosensor for superoxide anion and hydrogen polysulfides: photoinduced electron transfer. RSC Adv 2016. [DOI: 10.1039/c6ra23724j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fluorescence quenching by the PET process in HCy-FN.
Collapse
Affiliation(s)
- Xiao-Fei Sun
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Zhi-Xiang Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Wei Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Fu-Quan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Jian Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Ran Jia
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Chui-Peng Kong
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People's Republic of China
| |
Collapse
|