1
|
Schaefer C, Allers M, Hitzemann M, Nitschke A, Kobelt T, Mörtel M, Schröder S, Ficks A, Zimmermann S. Reliable Detection of Chemical Warfare Agents Using High Kinetic Energy Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2008-2019. [PMID: 39013159 PMCID: PMC11311216 DOI: 10.1021/jasms.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) ionize and separate ions at reduced pressures of 10-40 mbar and over a wide range of reduced electric field strengths E/N of up to 120 Td. Their reduced operating pressure is distinct from that of conventional drift tube ion mobility spectrometers that operate at ambient pressure for trace compound detection. High E/N can lead to a field-induced fragmentation pattern that provides more specific structural information about the analytes. In addition, operation at high E/N values adds the field dependence of ion mobility as an additional separation dimension to low-field ion mobility, making interfering compounds less likely to cause a false positive alarm. In this work, we study the chemical warfare agents tabun (GA), sarin (GB), soman (GD), cyclosarin (GF) and sulfur mustard (HD) in a HiKE-IMS at variable E/N in both the reaction and the drift region. The results show that varying E/N can lead to specific fragmentation patterns at high E/N values combined with molecular signals at low E/N. Compared to the operation at a single E/N value in the drift region, the variation of E/N in the drift region also provides the analyte-specific field dependence of ion mobility as additional information. The accumulated data establish a unique fingerprint for each analyte that allows for reliable detection of chemical warfare agents even in the presence of interfering compounds with similar low-field ion mobilities, thus reducing false positives.
Collapse
Affiliation(s)
- Christoph Schaefer
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Maria Allers
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Moritz Hitzemann
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Alexander Nitschke
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Tim Kobelt
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Max Mörtel
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Stefanie Schröder
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Arne Ficks
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Stefan Zimmermann
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| |
Collapse
|
2
|
Schlottmann F, Schaefer C, Kirk AT, Bohnhorst A, Zimmermann S. A High Kinetic Energy Ion Mobility Spectrometer for Operation at Higher Pressures of up to 60 mbar. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:893-904. [PMID: 36999893 PMCID: PMC10161227 DOI: 10.1021/jasms.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at absolute pressures around 20 mbar in order to reach high reduced electric field strengths of up to 120 Td for influencing reaction kinetics in the reaction region. Such operating points significantly increase the linear range and limit chemical cross sensitivities. Furthermore, HiKE-IMS enables ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to additional reaction pathways and fewer clustering reactions. However, operation at higher pressures promises increased sensitivity and smaller instrument size. In this work, we therefore study the theoretical requirements to prevent dielectric breakdown while maintaining high reduced electric field strengths at higher pressures. Furthermore, we experimentally investigate influences of the pressure, discharge currents and applied voltages on the corona ionization source. Based on these results, we present a HiKE-IMS that operates at a pressure of 60 mbar and reduced electric field strengths of up to 105 Td. The corona experiments show shark fin shaped curves for the total charge at the detector with a distinct optimum operating point in the glow discharge region at a corona discharge current of 5 μA. Here, the available charge is maximized while the generation of less-reactive ion species like NOx+ is minimized. With these settings, the reactant ion population, H3O+ and O2+, for ionizing and detecting nonpolar substances like n-hexane is still available even at 60 mbar, achieving a limit of detection of just 5 ppbV for n-hexane.
Collapse
Affiliation(s)
- Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Christoph Schaefer
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| |
Collapse
|
3
|
Fowler PE, Bernat T, Pilgrim JZ, Eiceman GA. Neural network classification of mobility spectra for volatile organic compounds using tandem differential mobility spectrometry with field induced fragmentation. Anal Chim Acta 2023; 1252:341047. [PMID: 36935151 DOI: 10.1016/j.aca.2023.341047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023]
Abstract
A spectral library of field induced fragmentation (FIF) spectra for 45 oxygen-containing volatile organic compounds from 5 chemical classes was obtained using tandem differential mobility spectrometry (DMS). Protonated monomers were mobility isolated in a first DMS stage, fragmented with electric fields >10,000 V/cm in a middle (or reactive) stage, and mobility characterized in a second DMS stage. Other spectral libraries were obtained for protonated monomers and for complete mobility spectra from a single DMS stage. Neural networks from Python/Tensorflow software, prepared in-house, and from commercial NeuralWorks Professional II/PLUS were trained to assign spectra into a chemical class. The success at classification was determined for familiar and unfamiliar spectra from these three libraries. Classification test scores were best with FIF spectra with >0.99 for familiar compounds and 0.52 for unfamiliar compounds and were consistent with neural network learning of structural information from fragment ions when compared to other spectral libraries. Radar charts are introduced as measures of classification and as a tool to explore mis-classification. This work shows that ion fragmentation with multi-stage tandem DMS portends molecular identification with the portability and robustness of ambient pressure ion mobility analyzers.
Collapse
Affiliation(s)
- P E Fowler
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - T Bernat
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - J Z Pilgrim
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - G A Eiceman
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
4
|
Detection and Identification of VOCs Using Differential Ion Mobility Spectrometry (DMS). MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010234. [PMID: 35011466 PMCID: PMC8746975 DOI: 10.3390/molecules27010234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022]
Abstract
The article presents a technique of differential ion mobility spectrometry (DMS) applicable to the detection and identification of volatile organic compounds (VOCs) from such categories as n-alkanes, alcohols, acetate esters, ketones, botulinum toxin, BTX, and fluoro- and chloro-organic compounds. A possibility of mixture identification using only the DMS spectrometer is analyzed, and several examples are published for the first time. An analysis of different compounds and their mechanisms of fragmentation, influence on effective ion temperature, and high electric field intensity is discussed.
Collapse
|
5
|
Ruskic D, Klont F, Hopfgartner G. Clustering and Nonclustering Modifier Mixtures in Differential Mobility Spectrometry for Multidimensional Liquid Chromatography Ion Mobility-Mass Spectrometry Analysis. Anal Chem 2021; 93:6638-6645. [PMID: 33891812 DOI: 10.1021/acs.analchem.0c04889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modifiers provide fast and reliable tuning of separation in differential mobility spectrometry (DMS). DMS selectivity for separating isomeric molecules depends on the clustering modifier concentration, which is typically 1.5-3 mol % ratio of isopropanol or ethanol in nitrogen. Low concentrations (0.1%) of isopropanol were found to improve resolution and sensitivity but at the cost of practicality and robustness. Replacing the single-channel DMS pump with a binary high-performance liquid chromatography (HPLC) pump enabled the generation of modifier mixtures at a constant flow rate using an isocratic or gradient mode, and the analytical benefits of the system were investigated considering cyclohexane, n-hexane, or n-octane as nonclustering modifiers and isopropanol or ethanol as clustering modifiers. It was found that clustering and nonclustering modifier mixtures enable optimization of selectivity, resolution, and sensitivity for different positional isomers and diastereoisomers. Data further suggested different ion separation mechanisms depending on the modifier ratios. For 85 analytes, the absolute difference in compensation voltages (CoVs) between pure nitrogen and cyclohexane at 1.5 mol % ratio was below 4 V, demonstrating its potential as a nonclustering modifier. Cyclohexane's nonclustering behavior was further supported by molecular modeling using density functional theory (DFT) and calculated cluster binding energies, showing positive ΔG values. The ability to control analyte CoVs by adjusting modifier concentrations in isocratic and gradient modes is beneficial for optimizing multidimensional LCxDMS-MS. It is fast and effective for manipulating the DMS scanning window size to realize shorter mass spectrometry (MS) acquisition cycle times while maintaining a sufficient number of CoV steps and without compromising DMS separation performance.
Collapse
Affiliation(s)
- David Ruskic
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Frank Klont
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Ieritano C, Rickert D, Featherstone J, Honek JF, Campbell JL, Blanc JCYL, Schneider BB, Hopkins WS. The Charge-State and Structural Stability of Peptides Conferred by Microsolvating Environments in Differential Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:956-968. [PMID: 33733774 DOI: 10.1021/jasms.0c00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of solvent vapor in a differential mobility spectrometry (DMS) cell creates a microsolvating environment that can mitigate complications associated with field-induced heating. In the case of peptides, the microsolvation of protonation sites results in a stabilization of charge density through localized solvent clustering, sheltering the ion from collisional activation. Seeding the DMS carrier gas (N2) with a solvent vapor prevented nearly all field-induced fragmentation of the protonated peptides GGG, AAA, and the Lys-rich Polybia-MP1 (IDWKKLLDAAKQIL-NH2). Modeling the microsolvation propensity of protonated n-propylamine [PrNH3]+, a mimic of the Lys side chain and N-terminus, with common gas-phase modifiers (H2O, MeOH, EtOH, iPrOH, acetone, and MeCN) confirms that all solvent molecules form stable clusters at the site of protonation. Moreover, modeling populations of microsolvated clusters indicates that species containing protonated amine moieties exist as microsolvated species with one to six solvent ligands at all effective ion temperatures (Teff) accessible during a DMS experiment (ca. 375-600 K). Calculated Teff of protonated GGG, AAA, and Polybia-MPI using a modified two-temperature theory approach were up to 86 K cooler in DMS environments seeded with solvent vapor compared to pure N2 environments. Stabilizing effects were largely driven by an increase in the ion's apparent collision cross section and by evaporative cooling processes induced by the dynamic evaporation/condensation cycles incurred in the presence of an oscillating electric separation field. When the microsolvating partner was a protic solvent, abstraction of a proton from [MP1 + 3H]3+ to yield [MP1 + 2H]2+ was observed. This result was attributed to the proclivity of protic solvents to form hydrogen-bond networks with enhanced gas-phase basicity. Collectively, microsolvation provides analytes with a solvent "air bag," whereby charge reduction and microsolvation-induced stabilization were shown to shelter peptides from the fragmentation induced by field heating and may play a role in preserving native-like ion configurations.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Joshua Featherstone
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Bedrock Scientific, Milton L6T 6J9, Ontario, Canada
| | | | | | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
7
|
Valadbeigi Y, Ilbeigi V, Mirsharifi MS. Mechanism of atmospheric pressure chemical ionization of morphine, codeine, and thebaine in corona discharge-ion mobility spectrometry: Protonation, ammonium attachment, and carbocation formation. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4586. [PMID: 32720743 DOI: 10.1002/jms.4586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric pressure chemical ionizations (APCIs) of morphine, codeine, and thebaine were studied in a corona discharge ion source using ion mobility spectrometry (IMS) at temperature range of 100°C-200°C. Density functional theory (DFT) at the B3LYP/6-311++G(d,p) and M062X/6-311++G(d,p) levels of theory were used to interpret the experimental data. It was found that in the presence of H3 O+ as reactant ion (RI), ionization of morphine and codeine proceeds via both the protonation and carbocation formation, whereas thebaine participates only in protonation. Carbocation formation (fragmentation) was diminished with decrease in the temperature. At lower temperatures, proton-bound dimers of the compounds were also formed. Ammonia was used as a dopant to produce NH4 + as an alternative RI. In the presence of NH4 + , proton transfer from ammonium ion to morphine, codeine, and thebaine was the dominant mechanism of ionization. However, small amount of ammonium attachment was also observed. The theoretical calculations showed that nitrogen atom of the molecules is the most favorable proton acceptor site while the oxygen atoms participate in ammonium attachment. Furthermore, formation of the carbocations is because of the water elimination from the protonated forms of morphine and codeine.
Collapse
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vahideh Ilbeigi
- TOF Tech. Pars Company, Isfahan Science & Technology Town, Isfahan, Iran
| | - Maryam S Mirsharifi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
8
|
Shokri H, Nazarov EG, Gardner BD, Niu HC, Lee G, Stone JA, Jurado-Campos N, Eiceman GA. Field Induced Fragmentation (Fif) Spectra of Oxygen Containing Volatile Organic Compounds with Reactive Stage Tandem Ion Mobility Spectrometry and Functional Group Classification by Neural Network Analysis. Anal Chem 2020; 92:5862-5870. [PMID: 32212635 DOI: 10.1021/acs.analchem.9b05651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mobility isolated spectra were obtained for protonated monomers of 42 volatile oxygen containing organic compounds at ambient pressure using a tandem ion mobility spectrometer with a reactive stage between drift regions. Fragment ions of protonated monomers of alcohols, acetates, aldehydes, ketones, and ethers were produced in the reactive stage using a 3.3 MHz symmetrical sinusoidal waveform with an amplitude of 1.4 kV and mobility analyzed in a 19 mm long drift region. The resultant field induced fragmentation (FIF) spectra included residual intensities for protonated monomers and fragment ions with characteristic drift times and peak intensities, associated with ion mass and chemical class. High efficiency of fragmentation was observed with single bond cleavage of alcohols and in six-member ring rearrangements of acetates. Fragmentation was not observed, or seen weakly, with aldehydes, ethers, and ketones due to their strained four-member ring transition states. Neural networks were trained to categorize spectra by chemical class and tested with FIF spectra of both familiar and unfamiliar compounds. Rates of categorization were class dependent with best performance for alcohols and acetates, moderate performance for ketones, and worst performance for ethers and aldehydes. Trends in the rates of categorization within a chemical family can be understood as steric influences on the energy of activation for ion fragmentation. Electric fields greater than 129 Td or new designs of reactive stages with improved efficiency of fragmentation will be needed to extend the practice of reactive stage tandem IMS to an expanded selection of volatile organic compounds.
Collapse
Affiliation(s)
- Hossein Shokri
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Erkinjon G Nazarov
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Ben D Gardner
- Collins Aerospace, San Dimas, California 91773, United States
| | - Hsein-Chi Niu
- Collins Aerospace, San Dimas, California 91773, United States
| | | | - John A Stone
- Department of Chemistry, Queens University, Kingston, Ontario Canada K7L 3N6
| | | | - Gary A Eiceman
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
9
|
Fowler PE, Pilgrim JZ, Lee G, Eiceman GA. Field induced fragmentation spectra from reactive stage-tandem differential mobility spectrometry. Analyst 2020; 145:5314-5324. [DOI: 10.1039/d0an00665c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A planar tandem differential mobility spectrometer was integrated with a middle reactive stage to fragment ions which were mobility selected in a first analyzer stage using characteristic compensation and separation fields.
Collapse
Affiliation(s)
- P. E. Fowler
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | - J. Z. Pilgrim
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | - G. Lee
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | - G. A. Eiceman
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| |
Collapse
|
10
|
Bohnhorst A, Kirk AT, Yin Y, Zimmermann S. Ion Fragmentation and Filtering by Alpha Function in Ion Mobility Spectrometry for Improved Compound Differentiation. Anal Chem 2019; 91:8941-8947. [DOI: 10.1021/acs.analchem.9b00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexander Bohnhorst
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Ansgar T. Kirk
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Yu Yin
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| |
Collapse
|
11
|
Chiluwal U, Lee G, Rajapakse MY, Willy T, Lukow S, Schmidt H, Eiceman GA. Tandem ion mobility spectrometry at ambient pressure and field decomposition of mobility selected ions of explosives and interferences. Analyst 2019; 144:2052-2061. [DOI: 10.1039/c8an02041h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A tandem ion mobility spectrometer at ambient pressure included a thermal desorption inlet, two drift regions, dual ion shutters, and a wire grid assembly in the second drift region.
Collapse
Affiliation(s)
- Umesh Chiluwal
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | - Gyoungil Lee
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | | | - Timothy Willy
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | | | | | - Gary A. Eiceman
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| |
Collapse
|
12
|
Differential mobility spectrometers with tuneable separation voltage – Theoretical models and experimental findings. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Ion mobility spectrometry: Current status and application for chemical warfare agents detection. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Determination of benzene, toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression. Talanta 2016; 152:137-46. [PMID: 26992504 DOI: 10.1016/j.talanta.2016.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Accepted: 01/30/2016] [Indexed: 11/23/2022]
Abstract
Benzene, toluene and xylene (BTX compounds) are chemicals of greatest concern due to their impact on humans and the environment. In many cases, quantitative information about each of these compounds is required. Continuous, fast-response analysis, performed on site would be desired for this purpose. Several methods have been developed to detect and quantify these compounds in this way. Methods vary considerably in sensitivity, accuracy, ease of use and cost-effectiveness. The aim of this work is to show that differential ion mobility spectrometry (DMS) may be applied for determining concentration of BTX compounds in humid air. We demonstrate, this goal is achievable by applying multivariate analysis of the measurement data using partial least squares (PLS) regression. The approach was tested at low concentrations of these compounds in the range of 5-20 ppm and for air humidity in a range 0-12 g/kg. These conditions correspond to the foreseeable application of the developed approach in occupational health and safety measurements. The average concentration assessment error was about 1 ppm for each: benzene, toluene and xylene. We also successfully determined water vapor content in air. The error achieved was 0.2 g/kg. The obtained results are very promising regarding further development of DMS technique as well as its application.
Collapse
|