1
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
3
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
4
|
Calderón-Santoyo M, Calderón-Chiu C, Ragazzo-Calderón FZ, Barros-Castillo JC, Ragazzo-Sánchez JA. Mexican Coccoloba uvifera L. Leaf and Fruit Extracts: Identification of Pentacyclic Triterpenes and Volatile Profile by GC-MS. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:571-577. [PMID: 38795268 DOI: 10.1007/s11130-024-01186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/27/2024]
Abstract
Mexican Coccoloba uvifera fruit contains polyphenols, flavonoids, and anthocyanins, while in the leaves, lupeol, α- and β-amyrin have been previously identified by HPLC. However, the low resolution by HPLC of pentacyclic triterpenes (PTs) is a limitation. Moreover, the volatile profile of C. uvifera fruit is still unknown. Therefore, this study aimed to identify PTs in C. uvifera leaf and fruit extracts by CG-MS analysis and to determine the volatile profile of C. uvifera pulp by headspace solid-phase microextraction. The results showed trimethylsilylated compounds of standards lupeol, α- and β-amyrin, indicating that the silylation reaction was suitable. These trimethylsilylated compounds were identified in leaf and fruit extracts. The fruit volatile profile revealed the presence of 278 esters, 20 terpenes, 9 aldehydes, 5 alcohols, and 4 ketones. The fruit showed a high content of esters and terpenes. Due to their flavour properties, esters are essential for the food, cosmetics, and pharmaceutics industries. Moreover, terpenes in the fruit, such as menthone, β-elemene, junipene, and β-caryophyllene have the potential as anticancer and phytopathogen agents. The results indicated that GC-MS is an alternative to HPLC approaches for identifying PTs. Besides, identifying volatile compounds in the fruit will increase the value of this plant and expand its application. Identifying PTs and volatile compounds in Mexican C. uvifera leads to a better understanding of the potential benefits of this plant. This would increase the consumption of Mexican C. uvifera fresh or as functional ingredients in nutraceutical or pharmaceutical products.
Collapse
Affiliation(s)
- Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Carolina Calderón-Chiu
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Frida Zoé Ragazzo-Calderón
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic, Nayarit, México.
| |
Collapse
|
5
|
Szymczak K, Zakłos-Szyda M, Mietlińska K, Eliašová A, Jodłowska I, Gruľová D, Hodun G, Bonikowski R. Old Apple Cultivars as a Natural Source of Phenolics and Triterpenoids with Cytoprotective Activity on Caco-2 and HepG2 Cells. Foods 2024; 13:1014. [PMID: 38611320 PMCID: PMC11011742 DOI: 10.3390/foods13071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Apples are among the most consumed fruits worldwide. They serve as an excellent source of compounds that have a positive impact on human health. While new varieties of apples are being developed, numerous varieties have been forgotten. In this article, we present the results of research on 30 old apple cultivars, focusing on both qualitative and quantitative determination of antioxidant properties, and content of total phenolics, phenolic acids, triterpenoids and polyphenols. Our analyses show significant differences in the total content of each group of compounds between apple cultivars, as well as the phytochemical profile. The richest source of antioxidants was revealed to be 'Reneta Blenheimska' and 'Książę Albrecht Pruski' varieties, but the highest amount of phenolics had 'James Grieve' and 'Kantówka Gdańska' (KG). Among studied apples KG, 'Krótkonóżka Królewska' and 'Grochówka' (G) were the richest source of phenolic acids and polyphenols, whereas G, 'James Grieve' and 'Krótkonóżka Królewska' had the highest level of triterpenoids. Based on these findings, we selected two cultivars, G and KG, for further in vitro cell line-based studies. Based on biological activity analyses, we demonstrated not only antioxidant potential but also proapoptotic and cytoprotective properties within human-originated Caco-2 and HepG2 cell lines. In the era of a dynamically growing number of lifestyle diseases, it is particularly important to draw the attention of producers and consumers to the need to choose fruit varieties with the highest possible content of health-promoting compounds and, therefore, with the strongest health-promoting properties.
Collapse
Affiliation(s)
- Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.Z.-S.); (I.J.)
| | - Katarzyna Mietlińska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| | - Adriana Eliašová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17, Novembra 1, SK-081 16 Prešov, Slovakia; (A.E.); (D.G.)
| | - Iga Jodłowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.Z.-S.); (I.J.)
| | - Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17, Novembra 1, SK-081 16 Prešov, Slovakia; (A.E.); (D.G.)
| | - Grzegorz Hodun
- Department of Variety Studies, Nursery and Gene Resources, Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland;
| | - Radosław Bonikowski
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| |
Collapse
|
6
|
Falev DI, Ovchinnikov DV, Voronov IS, Faleva AV, Ul’yanovskii NV, Kosyakov DS. Supercritical Fluid Chromatography-Tandem Mass Spectrometry for Rapid Quantification of Pentacyclic Triterpenoids in Plant Extracts. Pharmaceuticals (Basel) 2022; 15:629. [PMID: 35631456 PMCID: PMC9143669 DOI: 10.3390/ph15050629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Pentacyclic triterpenoids (PCTs) are a widely distributed class of plant secondary metabolites. These compounds have high bioactive properties, primarily antitumor and antioxidant activity. In this study, a method was developed for the quantitative analysis of pentacyclic triterpenoids in plants using supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Separation of ten major PCTs (friedelin, lupeol, β-amyrin, α-amyrin, betulin, erythrodiol, uvaol, betulinic, oleanolic and ursolic acids) was studied on six silica-based reversed stationary phases. The best results (7 min analysis time in isocratic elution mode) were achieved on an HSS C18 SB stationary phase using carbon dioxide-isopropanol (8%) mobile phase providing decisive contribution of polar interactions to the retention of analytes. It was shown that the use of atmospheric pressure chemical ionization (APCI) is preferred over atmospheric pressure photoionization (APPI). The combination of SFC with APCI-MS/MS mass spectrometry made it possible to achieve the limits of quantification in plant extracts in the range of 2.3-20 μg·L-1. The developed method was validated and tested in the analyses of birch outer layer (Betula pendula) bark, and licorice (Glycyrrhiza glabra) root, as well as lingonberry (Vaccinium vitis-idaea), cranberry (Vaccinium oxycoccos), apple (Malus domestica "Golden Delicious" and Malus domestica "Red Delicious") peels.
Collapse
Affiliation(s)
- Danil I. Falev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (D.V.O.); (I.S.V.); (A.V.F.); (N.V.U.)
| | | | | | | | | | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (D.V.O.); (I.S.V.); (A.V.F.); (N.V.U.)
| |
Collapse
|
7
|
Effect of Anti-Obesity and Antioxidant Activity through the Additional Consumption of Peel from ‘Fuji’ Pre-Washed Apple. Foods 2022; 11:foods11040497. [PMID: 35205973 PMCID: PMC8871014 DOI: 10.3390/foods11040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
There is limited information on the health effects of apple peel taken from ‘Fuji’ (Malus pumila Mill) apples washed with ozonated water. To clarify the health-promoting effects of peel, the triterpenoids (ursolic acid and oleanolic acid) were quantified with gas chromatograph–mass spectrometry. Anti-obesity effects of apple peel extract on the 3T3-L1 pre-adipocyte cell were compared with apple flesh, whole apple, and ursolic acid. The peel extract treatment with 3.30 ± 1.05 μM of ursolic acid significantly suppressed (p < 0.05) the lipid accumulation compared with the content in flesh, and a similar level was reached in the 5 μM ursolic acid positive control group. In the peel extract and ursolic acid treatment groups, the C16:0 concentration was significantly inhibited (p < 0.05), implying the anti-obesity effect of ursolic acid on the 3T3-L1 cell. Moreover, apple peel contributed 41% of the total flavonoids content and 31% of the phenolic contents of the whole apple, but only accounted for less than 10% of the whole apple (weight basis). This study’s results offer basic data on pre-washed apple as a health functional food, offering information about the health benefits of apple peel, calculated based on the partial ratio in the whole apple.
Collapse
|
8
|
Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022; 14:nu14030623. [PMID: 35276982 PMCID: PMC8838233 DOI: 10.3390/nu14030623] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Oleanolic acid, a pentacyclic triterpenoid ubiquitously present in the plant kingdom, is receiving outstanding attention from the scientific community due to its biological activity against multiple diseases. Oleanolic acid is endowed with a wide range of biological activities with therapeutic potential by means of complex and multifactorial mechanisms. There is evidence suggesting that oleanolic acid might be effective against dyslipidemia, diabetes and metabolic syndrome, through enhancing insulin response, preserving the functionality and survival of β-cells and protecting against diabetes complications. In addition, several other functions have been proposed, including antiviral, anti-HIV, antibacterial, antifungal, anticarcinogenic, anti-inflammatory, hepatoprotective, gastroprotective, hypolipidemic and anti-atherosclerotic activities, as well as interfering in several stages of the development of different types of cancer; however, due to its hydrophobic nature, oleanolic acid is almost insoluble in water, which has led to a number of approaches to enhance its biopharmaceutical properties. In this scenario, the present review aimed to summarize the current knowledge and the research progress made in the last years on the extraction and characterization of oleanolic acid and its biological activities and the underlying mechanisms of action.
Collapse
|
9
|
Variation of Triterpenes in Apples Stored in a Controlled Atmosphere. Molecules 2021; 26:molecules26123639. [PMID: 34198648 PMCID: PMC8232341 DOI: 10.3390/molecules26123639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Apples are seasonal fruits, and thus after harvesting apples of optimal picking maturity, it is important to prepare them properly for storage and to ensure proper storage conditions in order to minimize changes in the chemical composition and commercial quality of the apples. We studied the quantitative composition of triterpenic compounds in the whole apple, apple peel and apple flesh samples before placing them in the controlled atmosphere (CA) chambers, and at the end of the experiment, 8 months later. HPLC analysis showed that highest total amount of triterpenic compounds (1.99 ± 0.01 mg g-1) was found in the whole apple samples of the 'Spartan' cultivar stored under variant VIII (O2-20%, CO2-3%, N2-77%) conditions. Meanwhile, the highest amount of triterpenic compounds (11.66 ± 0.72 mg g-1) was determined in the apple peel samples of the 'Auksis' cultivar stored under variant II (O2-5%, CO2-1%, N2-94%) conditions. In the apple peel samples of the 'Auksis' cultivar stored under variant I (O2-21%, CO2-0.03%, N2-78.97%) conditions, the amount of individual triterpenic compounds (ursolic, oleanolic, corosolic, and betulinic acids) significantly decreased compared with amount determined before the storage. Therefore, in the apple flesh samples determined triterpenic compounds are less stable during the storage under controlled atmosphere conditions compared with triterpenic compounds determined in the whole apple and apple peel samples.
Collapse
|
10
|
Vilkickyte G, Raudone L. Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L. Molecules 2021; 26:1645. [PMID: 33809511 PMCID: PMC8001753 DOI: 10.3390/molecules26061645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/01/2022] Open
Abstract
Triterpenoids have regained much attention as promising multi-targeting bioactive agents of natural origin in the treatment of numerous disorders. Due to the high potential for phytopharmaceutical development, accurate qualitative and quantitative analysis of triterpenoids for screening and quality control is required. Vaccinium vitis-idaea L. (lingonberry) raw materials have aroused interest as a rich source of triterpenoids. However, currently, no validated, rapid, and easy-to-perform quantification method is available for the routine control of these compounds in lingonberries. This research aimed at developing and validating HPLC-PDA methods for the determination and screening of triterpenoids in extracts of lingonberry leaves, fruits, and flowers. The developed methods were deemed satisfactory by validation, which revealed acceptable analytical specificity, linearity (r2 > 0.9999), precision (RSD < 2%), trueness (94.70-105.81%), and sensitivity (LOD: 0.08-0.65 µg/mL). The real sample analysis demonstrated established methods applicability for quantification of 13 triterpenoids in lingonberries and emphasized differences between raw materials. Lingonberry fruits were distinguished by the richness of ursolic acid; lingonberry flowers by similar profile to fruits, but low content of neutral triterpenoids; whereas lingonberry leaves by the particularly high level of α-amyrin. Thus, the proposed methods proved to be reliable and applicable for quantification and routine analysis of triterpenoids in lingonberry samples.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
11
|
De la Peña Armada R, Bronze MR, Matias A, Mateos-Aparicio I. Triterpene-Rich Supercritical CO2 Extracts from Apple By-product Protect Human Keratinocytes Against ROS. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Hassan H, Othman MF, Zakaria ZA, Ahmad Saad FF, Abdul Razak HR. Assessing the influence of neglected GC-FID variables on the multiple responses using multivariate optimization for the determination of ethanol and acetonitrile in radiopharmaceuticals. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractAnalytical gas chromatography in line with a flame ionization detector (GC-FID) method was developed and validated for direct determination of organic solvents in [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO) and [18F]fluorothymidine ([18F]FLT). Variables of the splitless time (min) and injection temperature (°C) on the response of analysis time and resolution were optimized with the assistance of a two-level full factorial design and desirability function of Derringer. The proposed procedure was validated following the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 (R1) guideline. Excellent linearity, R2 > 0.990, indicated that approximately 99% of the response variance could be predicted from ethanol and acetonitrile concentrations ranging from 0.5 to 6.0 mg mL−1 and 0.1 to 0.8 mg mL−1, respectively. The proposed procedure has proved to be selective, sensitive, and accurate (90–110%), with excellent repeatability and precision (RSD < 2%). In the robustness analysis, the findings from the calculated Standardized Effects Values (SE) were insignificant (p > 0.05) and demonstrated that the proposed method was robust for a splitless time of 1.0 ± 0.5 min and an injection temperature of 210 ± 10 °C. The proposed method was also successfully used for the quantitative determination of ethanol and acetonitrile in [18F]FET, [18F]FMISO, and [18F]FLT. Both solvents were well separated (R, 4.1–4.3) within 4.5 min. Therefore, the proposed method is relevant for routine quality control analysis of all 18F-radiopharmaceutical derivatives for the direct determination of ethanol and acetonitrile.
Collapse
|
13
|
A simple method to obtain ursolic acid. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
14
|
Anikeenko EA, Rakhmatullina EN, Falev DI, Khoroshev OY, Ul’yanovskii NV, Kosyakov DS. Application of Carbon Matrices to Screening Pentacylic Triterpenoids in Plant Feedstock by MALDI Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820140026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ahn AV, dos Santos JHZ. Quantitative GC-FID and UHPLC-DAD Evaluation of Bioactive Compounds Extracted from Ginkgo biloba. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191010124224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The official compendium of the quantification of ginkgo flavonoids from
Ginkgo biloba extract has been proposed using HPLC. The drawbacks of this technique appear to be
due to the restricted efficiency in terms of the recovery results and suitability of the system for the
quantification of these compounds. This study investigated the potential advantages and limitations
of the development of efficient extraction methods for the recovery of flavonol glycosides (quercetin,
kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A, ginkgolide B and
ginkgolide C) using extraction, quantification and detection techniques, namely, GC-FID and
UHPLC-DAD, which are alternatives to those techniques available in the literature.
Methods:
Two different extraction methodologies have been developed for the determination of flavonoids
(quercetin, kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A,
ginkgolide B and ginkgolide C) using ultra-high-pressure liquid chromatography coupled to a diode
array detector and gas chromatography coupled to a flame ionization detector.
Results:
In this study, the Ginkgo biloba extract mass, hydrolysis preparation method (with or without
reflux), and volume of the extraction solution seemed to affect the ginkgo flavonoid recovery.
The UHPLC-based method exhibited higher extraction efficiency for ginkgo flavonoid quantification
compared to the pharmacopoeial method. The developed method exhibited higher extraction efficiency
for terpene quantification compared to the previous method that used extractive solution without
pH adjustment, with less time of extraction and less amount of the sample and organic solvent
aliquots.
Conclusion:
The UHPLC and GC analysis methods established in this study are both effective and
efficient. These methods may improve the quality control procedures for ginkgo extract and commercial
products available in today´s natural health product market. The results indicate that redeveloped
extraction methods can be a viable alternative to traditional extraction methods.
Collapse
Affiliation(s)
- Alessandra von Ahn
- Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, CEP 91500-000, Brazil
| | - João Henrique Z. dos Santos
- Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, CEP 91500-000, Brazil
| |
Collapse
|
16
|
The Ursolic Acid-Rich Extract of Dracocephalum heterophyllum Benth. with Potent Antidiabetic and Cytotoxic Activities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pentacyclic triterpenoids are one of the main functional components in Dracocephalum heterophyllum. In this study the optimal process, the fairly simple and accessible extraction and purification of triterpenoids of D. heterophyllum, was developed by a remaceration method. Remaceration is characterized by minimal loss of biologically active compounds on diffusion, which contributes to the largest depletion of raw materials. The triterpenoid yield was 2.4% under optimal conditions which was enhanced to 98.03% after purification. The triterpenoid profiles and their anticancer and antidiabetic activities were further analyzed. GC-MS analysis of triterpenoidal extract of D. heterophyllum resulted ursolic acid (71.9%) and oleanolic acid (18.1%) as the major components. Additionally, total purified triterpenoid contents of D. heterophyllum and its main components were shown to possess significant cytotoxic activity against three human breast cancer cell lines (SK-Br-3, T47D, and MCF-7). The purification of triterpenoids influenced their biological activity. The antidiabetic effect, as measured by inhibition of protein-tyrosine phosphatase (PTP-1B), of the purified fraction of triterpenoids of D. heterophyllum increased by five-fold against the enzyme. The results provide important guidance for the industrial application of D. heterophyllum confirming the prospect of developing plant extracts into effective drugs and health foods for human applications.
Collapse
|
17
|
Kreidl M, Harder M, Rainer M, Bonn GK. Novel ionic liquid based dispersive liquid-liquid microextraction for the extraction of bergapten and bergamottin in hydroalcoholic cosmetic formulations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4377-4386. [PMID: 32852487 DOI: 10.1039/d0ay01322f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports the synthesis of the room temperature ionic liquid 1-propyloxy-3-ethoxyimidazolium bis(trifluoromethane)sulfonamide for the extraction of bergapten and bergamottin from hydroalcoholic cosmetic samples by means of dispersive liquid-liquid microextraction. Molecular structures of the final ionic liquid as well as intermediate products were confirmed by nuclear magnetic resonance spectroscopy. Analyses were performed with high performance liquid chromatography with subsequent diode array and fluorescence detection. The extraction procedure was optimized with the design of the experiment using a three level Box-Behnken approach. Applying the synthesized room temperature ionic liquid as extraction medium, the optimized workflow demonstrated high recoveries illustrating powerful isolation properties for furanocoumarins, which are comparable or even better than using typical extraction solvents. Moreover, the workflow was validated regarding instrumental limits, linearity, accuracy, repeatability and stability of analytes according to international guidelines. To test its applicability on a more complex matrix, hydroalcoholic cosmetic samples were analyzed. Despite highly complex matrices, accurate and precise quantification in the range of 0.04-1.25 μg mL-1 was achieved in spiked and unspiked samples, with bias <10% and RSD < 12%.
Collapse
Affiliation(s)
- Marco Kreidl
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
18
|
Kreidl M, Rainer M, Jakschitz T, Bonn GK. Determination of phototoxic furanocoumarins in natural cosmetics using SPE with LC-MS. Anal Chim Acta 2020; 1101:211-221. [DOI: 10.1016/j.aca.2019.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022]
|
19
|
Sun Y, Feng F, Nie B, Cao J, Zhang F. High throughput identification of pentacyclic triterpenes in Hippophae rhamnoides using multiple neutral loss markers scanning combined with substructure recognition (MNLSR). Talanta 2019; 205:120011. [DOI: 10.1016/j.talanta.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
|
20
|
Arismendi D, Becerra-Herrera M, Cerrato I, Richter P. Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction–derivatization-gas chromatography/mass spectrometry. Talanta 2019; 201:480-489. [DOI: 10.1016/j.talanta.2019.03.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
21
|
Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab Eng 2019; 51:70-78. [DOI: 10.1016/j.ymben.2018.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
|
22
|
Sut S, Poloniato G, Malagoli M, Dall'Acqua S. Fragmentation of the main triterpene acids of apple by LC-APCI-MS n. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:882-892. [PMID: 29992756 DOI: 10.1002/jms.4264] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
In this paper, we investigated the fragmentation of the main triterpene acids of apple using an liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MSn ) approach and high-resolution mass spectrometry (HR-MS) (Q-TOF). Triterpenes were isolated using semipreparative high-performance liquid chromatography, and chemical structures were elucidated by HR-MS and nuclear magnetic resonance spectroscopy. Finally, compounds were used to study MSn behavior in ion trap. Isolated triterpenes present similar structures, bearing carboxyl group linked to C-17 and different substitutions. We observed significant changes in MS2 spectra, which were useful for further compound identification. The observed fragments allowed the discrimination of different derivatives, namely, pomaceic, annurcoic, euscaphic, pomolic, corosolic, maslinic, betulinic, oleanolic, and ursolic acids. The proposed method allows a rapid identification of triterpene acids, and it could be useful for the analysis of these compounds in apple fruits and in other natural sources.
Collapse
Affiliation(s)
- Stefania Sut
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, Padova, Italy
| | - Gabriele Poloniato
- DSF, Dipartimento di Scienze del Farmaco, University of Padova, Padova, Italy
| | - Mario Malagoli
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- DSF, Dipartimento di Scienze del Farmaco, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Martín-García B, Verardo V, León L, De la Rosa R, Arráez-Román D, Segura-Carretero A, Gómez-Caravaca AM. GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Res Int 2018; 115:219-226. [PMID: 30599934 DOI: 10.1016/j.foodres.2018.08.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Pentacyclic triterpenes play an important role in plant defense and have demonstrated beneficial effects in human health acting in disease prevention. In the present study, the determination of triterpenes compounds in olive leaves of six different cultivars grown at four dates was assessed in order to corroborate the influence of olive growth cycle on triterpenes content and to evaluate if the highest amounts are detected in correspondence to the olive oil production period when the leaves are one of the most important by-product. A GC-QTOF-MS methodology was optimized and validated, and five triterpenes were identified and quantified in all olive leaves samples analysed. ANOVA analyses revealed quantitative differences among sampling times and cultivars. Principal Component Analyses showed a good separation among triterpenes content for the different collecting seasons and cultivars. Picual, the most commonly grown olive today for olive oil production, was the cultivar that presented the highest concentrations of triterpenes and oleanolic acid the major triterpene in all cultivars at all sampling times (54-76.5% of total triterpenes). The triterpenes concentration is higher in June than in the other sampling times. Unfortunately, the leaves sampled at the stage that corresponded to the olive oil production were not the best one in terms of triterpenes content; however the decrease was never >15.5%. Thus, the present results confirm olive leaves a suitable source of bioactive compounds that can be used to obtain high added-value products enriched in triterpenes.
Collapse
Affiliation(s)
- Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus Universitario de Cartuja, E-18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| | - Lorenzo León
- IFAPA Centro Alameda del Obispo, Avda Menéndez Pidal, s/n, E-14004 Córdoba, Spain
| | - Raúl De la Rosa
- IFAPA Centro Alameda del Obispo, Avda Menéndez Pidal, s/n, E-14004 Córdoba, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain; Functional Food Research and Development Center, Health Science Technological Park, Avd. del Conocimiento, Bioregion building, 18100, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain; Functional Food Research and Development Center, Health Science Technological Park, Avd. del Conocimiento, Bioregion building, 18100, Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
24
|
Butkevičiūtė A, Liaudanskas M, Kviklys D, Zymonė K, Raudonis R, Viškelis J, Uselis N, Janulis V. Detection and analysis of triterpenic compounds in apple extracts. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1506478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aurita Butkevičiūtė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies of the Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Darius Kviklys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Kristina Zymonė
- Institute of Pharmaceutical Technologies of the Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Raimondas Raudonis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Norbertas Uselis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
25
|
Kalaycıoğlu Z, Uzaşçı S, Dirmenci T, Erim FB. α-Glucosidase enzyme inhibitory effects and ursolic and oleanolic acid contents of fourteen Anatolian Salvia species. J Pharm Biomed Anal 2018; 155:284-287. [PMID: 29677678 DOI: 10.1016/j.jpba.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
During the last decade, ursolic and oleanolic acids have been of considerable interest because of their α-glucosidase inhibitory activities and potential effects for treatment of type 2 diabetes. A simple and sensitive reversed-phase HPLC method was developed for the simultaneous determination of ursolic acid and oleanolic acid. The optimal mobile phase was selected as 85% acetonitrile solution. The limit of detection of the method for ursolic acid and oleanolic acid were 14 ng mL-1 and 13 ng mL-1, respectively. The method showed good precision and accuracy with intra-day and inter-day variations of 0.54% and 7.33% for ursolic acid, intra-day and inter-day variations of 0.51% and 5.26% for oleanolic acid, and overall recoveries of 97.8% and 98.5% for ursolic acid and oleanolic acid, respectively. Application of the method to determine the ursolic acid and oleanolic acid contents in the Salvia species revealed both compounds, with varying amounts between 0.21-9.76 mg g-1 ursolic acid and 0.20-12.7 mg g-1 oleanolic acid, respectively, among 14 Salvia species analyzed. Additionally, the plant extracts were analyzed for their inhibitory activities on α-glucosidase. According to the results of this assay, the extracts showed considerable activity on α-glucosidase with IC50 values from 17.6 to 173 μg mL-1. A strong negative correlation was detected between the amounts of both acids and IC50 values of extracts. Anatolian Salvia species have great potential as functional plants in the management of diabetes.
Collapse
Affiliation(s)
- Zeynep Kalaycıoğlu
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Sesil Uzaşçı
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Tuncay Dirmenci
- Balıkesir University, Department of Biology Education, Merkez, Balikesir, Turkey
| | - F Bedia Erim
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey.
| |
Collapse
|
26
|
Zheng Z, Zhao XE, Zhu S, Dang J, Qiao X, Qiu Z, Tao Y. Simultaneous Determination of Oleanolic Acid and Ursolic Acid by in Vivo Microdialysis via UHPLC-MS/MS Using Magnetic Dispersive Solid Phase Extraction Coupling with Microwave-Assisted Derivatization and Its Application to a Pharmacokinetic Study of Arctiumlappa L. Root Extract in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3975-3982. [PMID: 29560718 DOI: 10.1021/acs.jafc.7b06015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe3O4/graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe3O4/graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.
Collapse
Affiliation(s)
- Zhenjia Zheng
- College of Food Science and Engineering , Shandong Agricultural University , 61 Daizong Street , Taian , Shandong 271018 , P.R. China
| | - Xian-En Zhao
- College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu , Shandong 273165 , P.R. China
| | - Shuyun Zhu
- College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu , Shandong 273165 , P.R. China
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research & Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Science , Xining , Qinghai 810001 , P.R. China
| | - Xuguang Qiao
- College of Food Science and Engineering , Shandong Agricultural University , 61 Daizong Street , Taian , Shandong 271018 , P.R. China
| | - Zhichang Qiu
- College of Food Science and Engineering , Shandong Agricultural University , 61 Daizong Street , Taian , Shandong 271018 , P.R. China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research & Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Science , Xining , Qinghai 810001 , P.R. China
| |
Collapse
|
27
|
Rivas-Mora C, Rivas-Gali V, Rodriguez- J, Galindo-Ro S, Leos-Rivas C, Garcia-Her D. Bactericidal Activity, Isolation and Identification of Most Active Compound from 20 Plants used in Traditional Mexican Medicine Against Multidrug-Resistant Bacteria. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.203.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Zeng Z, Ji Z, Hu N, Bai B, Wang H, Suo Y. A sensitive pre-column derivatization method for the analysis of free fatty acids by RP-HPLC with fluorescence detector and its application to Caragana species. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:151-159. [DOI: 10.1016/j.jchromb.2017.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
|
29
|
Ferreira SL, Caires AO, Borges TDS, Lima AM, Silva LO, dos Santos WN. Robustness evaluation in analytical methods optimized using experimental designs. Microchem J 2017. [DOI: 10.1016/j.microc.2016.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Jemmali Z, Chartier A, Elfakir C. Development of a gas chromatography-mass spectrometry method to monitor in a single run, mono- to triterpenoid compounds distribution in resinous plant materials. J Chromatogr A 2016; 1443:241-53. [PMID: 27018190 DOI: 10.1016/j.chroma.2016.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
A new procedure based on gas chromatography coupled to mass spectrometry (GC-MS) was developed for the simultaneous determination of mono- to triterpenoid compounds in resinous materials. Given the difference of volatility and polarity of the studied compounds some critical steps in this methodology had to be identified and investigated. The recovery of volatile compounds after sample extraction was studied. A recovery range from 30% to 100% from the more volatile monoterpene to the least one was observed. Then the mandatory derivatization step for the analysis of pentacyclic triterpenes bearing hydroxyl and carboxyl groups was optimized. Results showed that derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) in pyridine (22:13:65 v/v/v) for 2h at 30 °C was the most efficient method of derivatizing all the hydroxyl and carboxylic acid groups contained in the triterpene structures. After choosing the best injection parameters for these compounds, the selectivity of the GC column towards the separation of these terpenoids was investigated using statistical tools (principal component analysis and desirability functions). A separation with a good resolution was achieved on an HP-5ms column using a programmed temperature vaporizing injector (PTV). The method was pre-validated in terms of detection limits (LOD from 100 μg L(-1) to 200 μg L(-1) depending on the compound), linearity and repeatability using seven compounds representative of mono- and triterpenoid classes. An exhaustive characterization of various types of resins (di-, triterpenic and oleo-gum resins) was achieved.
Collapse
Affiliation(s)
- Zaineb Jemmali
- Univ-Orleans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France
| | - Agnes Chartier
- Univ-Orleans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | - Claire Elfakir
- Univ-Orleans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France
| |
Collapse
|