1
|
Wang Q, Gao G, Fang F, Wang Q, Lundquist PK, Sun L. A simple and efficient approach for preparing cationic coating with tunable electroosmotic flow for capillary zone electrophoresis-mass spectrometry-based top-down proteomics. Anal Chim Acta 2024; 1328:343162. [PMID: 39266194 PMCID: PMC11404064 DOI: 10.1016/j.aca.2024.343162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has become a valuable analytical technique in top-down proteomics (TDP). CZE-MS/MS-based TDP typically employs separation capillaries with neutral coatings (i.e., linear polyacrylamide, LPA). However, issues related to separation resolution and reproducibility remain with the LPA-coated capillaries due to the unavoidable non-specific protein adsorption onto the capillary wall. Cationic coatings can be critical alternatives to LPA coating for CZE-MS/MS-based TDP due to the electrostatic repulsion between the positively charged capillary inner wall and proteoform molecules in the acidic separation buffer. Unfortunately, there are only very few studies using cationic coating-based CZE-MS/MS for TDP studies. RESULTS In this work, we aimed to develop a simple and efficient approach for preparing separation capillaries with a cationic coating, i.e., poly (acrylamide-co-(3-acrylamidopropyl) trimethylammonium chloride [PAMAPTAC]) for CZE-MS/MS-based TDP. The PAMAPTAC coating-based CZE-MS produced significantly better separation resolution of proteoforms compared to the traditionally used LPA-coated approach. It achieved reproducible separation and measurement of a simple proteoform mixture and a complex proteome sample (i.e., a yeast cell lysate) regarding migration time, proteoform intensity, and the number of proteoform identifications. The PAMAPTAC coating-based CZE-MS enabled the detection of large proteoforms (≥30 kDa) from the yeast cell lysate reproducibly without any size-based prefractionation. Interestingly, the mobility of proteoforms using the PAMAPTAC coating can be predicted accurately using a simple semi-empirical model. SIGNIFICANCE The results render the PAMAPTAC coating as a valuable alternative to the LPA coating to advance CZE-MS-based TDP towards high-resolution separation and highly reproducible measurement of proteoforms in complex samples.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangyao Gao
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Roca S, Leclercq L, Cottet H. Size-based characterization of dendrigraft poly(L-lysine) by free solution capillary electrophoresis using polyelectrolyte multilayer coatings. J Chromatogr A 2024; 1718:464719. [PMID: 38340458 DOI: 10.1016/j.chroma.2024.464719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Dendrigraft poly(L-lysine) (DGL) constitutes a promising dendritic-like drug vehicle with high biocompatibility and straightforward access via ring-opening polymerization of N-carboxyanhydride in water. The characterization of the different generations of DGL is however challenging due to their heterogeneity in molar mass and branching ratio. In this work, free solution capillary electrophoresis was used to perform selective separation of the three first generations of DGL, and optimized conditions were developed to maximize inter-generation resolution. To reduce solute adsorption on the capillary wall, successive multiple ionic polymer layer coatings terminated with a polycation were deposited onto the inner wall surface. PEGylated polycation was also used as the last layer for the control of the electroosmotic flow (EOF), depending on the PEGylation degree and the methyl-polyethylene glycol (mPEG) chain length. 1 kDa mPEG chains and low grafting densities were found to be the best experimental conditions for a fine tuning of the EOF leading to high peak resolution. Molar mass polydispersity and polydispersity in effective electrophoretic mobility were successfully determined for the three first generations of DGL.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
3
|
Schairer J, Römer J, Lang D, Neusüß C. CE-MS/MS and CE-timsTOF to separate and characterize intramolecular disulfide bridges of monoclonal antibody subunits and their application for the assessment of subunit reduction protocols. Anal Bioanal Chem 2024; 416:1599-1612. [PMID: 38296860 PMCID: PMC10899284 DOI: 10.1007/s00216-024-05161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Characterization at the subunit level enables detailed mass spectrometric characterization of posttranslational modifications (PTMs) of monoclonal antibodies (mAbs). The implemented reduction often leaves the intramolecular disulfide bridges intact. Here, we present a capillary electrophoretic (CE) method based on a neutral-coated capillary for the separation of immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) digested and reduced mAb subunits followed by mass spectrometry (MS), MS/MS identification, and trapped ion mobility mass spectrometry (timsTOF). Our CE approach enables the separation of (i) different subunit moieties, (ii) various reduction states, and (iii) positional isomers of these partly reduced subunit moieties. The location of the remaining disulfide bridges can be determined by middle-down electron transfer higher energy collisional dissociation (EThcD) experiments. All these CE-separated variants show differences in ion mobility in the timsTOF measurements. Applying the presented CE-MS/MS method, reduction parameters such as the use of chaotropic salts were studied. For the investigated antibodies, urea improved the subunit reduction significantly, whereas guanidine hydrochloride (GuHCl) leads to multiple signals of the same subunit in the CE separation. The presented CE-MS method is a powerful tool for the disulfide-variant characterization of mAbs on the subunit level. It enables understanding disulfide bridge reduction processes in antibodies and potentially other proteins.
Collapse
Affiliation(s)
- Jasmin Schairer
- Faculty of Chemistry, Aalen University, Aalen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
4
|
Ryan KA, Bruening ML. Online protein digestion in membranes between capillary electrophoresis and mass spectrometry. Analyst 2023; 148:1611-1619. [PMID: 36912593 DOI: 10.1039/d3an00106g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
This research employs pepsin-containing membranes to digest proteins online after a capillary electrophoresis (CE) separation and prior to tandem mass spectrometry. Proteolysis after the separation allows the peptides from a given protein to enter the mass spectrometer in a single plug. Thus, migration time can serve as an additional criterion for confirming the identification of a peptide. The membrane resides in a sheath-flow electrospray ionization (ESI) source to enable digestion immediately before spray into the mass spectrometer, thus limiting separation of the digested peptides. Using the same membrane, digestion occurred reproducibly during 20 consecutive CE analyses performed over a 10 h period. Additionally, after separating a mixture of six unreduced proteins with CE, online digestion facilitated protein identification with at least 2 identifiable peptides for all the proteins. Sequence coverages were >75% for myoglobin and carbonic anhydrase II but much lower for proteins containing disulfide bonds. Development of methods for efficient separation of reduced proteins or identification of cross-linked peptides should enhance sequence coverages for proteins with disulfide bonds. Migration times for the peptides identified from a specific protein differed by <∼30 s, which allows for rejection of some spurious peptide identifications.
Collapse
Affiliation(s)
- Kendall A Ryan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Merlin L Bruening
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Shah A, Desai R, Cui W, Harrahy JJ, Ivanov AR. Characterization of bispecific antigen-binding biotherapeutic fragmentation sites using microfluidic capillary electrophoresis coupled to mass spectrometry (mCZE-MS). Analyst 2023; 148:665-674. [PMID: 36625279 PMCID: PMC9979615 DOI: 10.1039/d2an01724e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fragmentation of therapeutic proteins is a potential critical quality attribute (CQA) that can occur in vivo or during manufacturing or storage due to enzymatic and non-enzymatic degradation pathways, such as hydrolysis, peroxide mediation, and acid/metal catalysis. Characterization of the fragmentation pattern of a therapeutic protein is traditionally accomplished using capillary gel electrophoresis with UV detection under both non-reducing and reducing conditions (nrCGE and rCGE). However, such methods are incompatible with direct coupling to mass spectrometry (MS) due to the use of anionic surfactants, e.g., sodium dodecyl sulfate (SDS). Here, we present a novel method to characterize size-based fragmentation variants of a new biotherapeutic kind using microfluidic ZipChip® capillary zone electrophoresis (mCZE) system interfaced with mass spectrometry (MS) to determine the molecular masses of fragments. A new modality of immuno-oncology therapy, bispecific antigen-binding biotherapeutic, was chosen to investigate its fragmentation pattern using mCZE-MS for the first time, according to our knowledge. Bispecific antigen-binding biotherapeutic samples from different stages of downstream column purification and forced degradation conditions were analyzed. The results were cross-validated with denaturing size-exclusion chromatography-mass spectrometry and conventional rSDS-CGE. In this study, we demonstrated that mCZE-MS could separate and characterize 12-40 kDa bispecific antigen-binding biotherapeutic fragments rapidly (within ≤12 minutes), with higher resolution and better sensitivity than traditional LC-MS methods.
Collapse
Affiliation(s)
- Arnik Shah
- Amgen Inc, Attribute Science, 360 Binney Street, Cambridge, Massachusetts 02141, USA
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, USA.
| | - Ruhi Desai
- Amgen Inc, Attribute Science, 360 Binney Street, Cambridge, Massachusetts 02141, USA
| | - Weidong Cui
- Amgen Inc, Attribute Science, 360 Binney Street, Cambridge, Massachusetts 02141, USA
| | - John J Harrahy
- Amgen Inc, Attribute Science, 360 Binney Street, Cambridge, Massachusetts 02141, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, USA.
| |
Collapse
|
6
|
Suntornsuk L, Anurukvorakun O. Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis 2021; 43:939-954. [PMID: 34902168 DOI: 10.1002/elps.202100236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
This review aims to illustrate sensitivity enhancement methods in capillary electrophoresis (CE) and their applications for pharmaceutical and related biochemical substance analyses. The first two parts of the article describe the introduction and principle of CE. The main part focuses on strategies for sensitivity improvement in CE including detector and capillary technologies and pre-concentration techniques. Applications of these techniques for pharmaceutical and biomedical substance analyses are surveyed during the years 2018-2021. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Oraphan Anurukvorakun
- Department of Cosmetic Science, Phranakorn Rajabhat University, Bangkok, 10220, Thailand
| |
Collapse
|
7
|
Kaya SI, Cetinkaya A, Caglayan MG, Ozkan SA. Recent biopharmaceutical applications of capillary electrophoresis methods on recombinant DNA technology-based products. Electrophoresis 2021; 43:1035-1049. [PMID: 34529858 DOI: 10.1002/elps.202100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Biopharmaceuticals (recombinant technology-based products, vaccines, whole blood and blood components, gene therapy, cells, tissues, etc.,) are described as biological medical products produced from various living sources such as human, microbial, animal, and so on by manufacturing, extraction, or semi-synthesis. They are complex molecules having high molecular weights. For their safety and efficacy, their structural, clinical, physicochemical, and chemical features must be carefully controlled, and they must be well characterized by analytical techniques before the approval of the final product. Capillary electrophoresis (CE) having versatile modes can provide valuable safety and efficacy information, such as amino acid sequence, size variants (low and high molecular weight variants), charged variants (acidic and basic impurities), aggregates, N-linked glycosylation, and O-linked glycosylation. There are numerous applications of CE in the literature. In this review, the most significant and recent studies on the analysis of recombinant DNA technology-based products using different CE modes in the last ten years have been overviewed. It was seen that the researches mostly focus on the analysis of mAbs and IgG. In addition, in recent years, researchers have started to prefer CE combined mass spectrometry (MS) techniques to provide a more detailed characterization for protein and peptide fragments.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet G Caglayan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Javadi N, Rezaeian M, Fakhraian H. The conglomerate crystal formation of methoxetamine salts in the presence of some organic achiral anions: a theoretical approach. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1961259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nabi Javadi
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Mojtaba Rezaeian
- Research Center for Modeling and Computational Science, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Fakhraian
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
9
|
Dykstra AB, Flick TG, Lee B, Blue LE, Angell N. Chip-Based Capillary Zone Electrophoresis Mass Spectrometry for Rapid Resolution and Quantitation of Critical Quality Attributes in Protein Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1952-1963. [PMID: 33730487 DOI: 10.1021/jasms.0c00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aspiration of the multi-attribute method (MAM) is to utilize a single mass spectrometry-based method that can measure multiple attributes simultaneously, thus enabling data-driven decisions more quickly and efficiently. However, challenges associated with identifying and quantitating critical quality attributes such as asparagine deamidation and isoaspartic acid using conventional ultrahigh-pressure liquid chromatography (UHPLC) coupled to mass spectrometry have necessitated long gradients to ensure sufficient separation for quantitation. Microfluidic chip-based capillary zone electrophoresis mass spectrometry (CZE-MS) shows potential to enable rapid charge-based separation of peptide mixtures, and this approach was evaluated using multipeptide mixtures of synthetic peptides as well as digested protein therapeutics. In these experiments, repeatability, linearity, and peak-to-peak resolution of several peptide families containing asparagine deamidation and/or isoaspartic acid were demonstrated. In addition, a comparison of peptide map results acquired with both UHPLC-MS and CZE-MS for two enzymatically digested biological therapeutics showed comparable sequence coverage and quantitation results between the two approaches. As MAM becomes increasingly utilized for analysis of biological therapeutics, MS instrument demand will rapidly increase, resulting in a bottleneck. A CZE-based separation shows potential to alleviate this bottleneck by drastically increasing MAM throughput while providing results comparable to those acquired using conventional UHPLC separations.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya G Flick
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Burton Lee
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Laura E Blue
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Nic Angell
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
10
|
Hamidli N, Andrasi M, Nagy C, Gaspar A. Analysis of intact proteins with capillary zone electrophoresis coupled to mass spectromery using uncoated and coated capillaries. J Chromatogr A 2021; 1654:462448. [PMID: 34392123 DOI: 10.1016/j.chroma.2021.462448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Although, in general, the application of coated capillaries is recommended for the separation of intact proteins, bare silica capillary is still the most often used capillary due to its simplicity and cheapness. In this work, the performance of bare fused silica capillary for intact protein analysis was compared to that of different (dynamically coated polybrene (PB) and permanently coated linear polyacrylamide (LPA)) coated capillaries using capillary zone electrophoresis - mass spectrometry (CZE-MS). In cases where low pH (pH=1.8) was used in bare silica capillaries, good precision (0.56-0.78 RSD% and 1.7-6.5 RSD% for migration times and peak areas, respectively), minimal adsorption and separation efficiency (N= 27 000/m - 322 000/m) similar to or even better than those obtained with the coated capillaries (created by an intricate multi-step process) was achieved. The PB and the LPA capillaries demonstrated their slightly better resolving power in terms of separating the different forms/variants of the same protein (e.g., hemoglobin subunits). Among the studied capillaries the one with LPA coating showed the most stable separations in the long term (n=25: 0.18-0.49 RSD% and 3.1-4.9 RSD% for migration times and peak areas, respectively). For the separation of a few proteins or even a larger number of proteins in biological samples (e.g., snake venom) the application of the simple and cheap bare fused silica capillary can be considered as an efficient choice.
Collapse
Affiliation(s)
- N Hamidli
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - M Andrasi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - C Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - A Gaspar
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| |
Collapse
|
11
|
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Bechara C, Perrin C. In-capillary (electrophoretic) digestion-reduction-separation: A smart tool for middle-up analysis of mAb. J Chromatogr A 2021; 1648:462213. [PMID: 33991752 DOI: 10.1016/j.chroma.2021.462213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
Comprehensive characterization of physicochemical properties of monoclonal antibodies (mAbs) is a critical process to ensure their quality, efficacy, and safety. For this purpose, mAb analysis at different levels (bottom-up, middle-up) is a common approach that includes rather complex multistep sample preparation (reduction, digestion). To ensure high analysis performance, the development of fully integrated methodologies is highly valuable. Capillary zone electrophoresis is a particularly well-adapted technique for the multistep implementation of analytical strategies from sample preparation to detection. This feature was employed to develop novel integrated methodologies for the analysis of mAb at the middle-up level. Multiple in-line reactions (simultaneous reduction and digestion) were performed for the first time in the separation capillary. Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) was used as an effective reducing agent under a broad pH range and IdeS (Immunoglobulin degrading enzyme from Streptococcus) as a highly specific enzyme for mAb digestion. Transverse diffusion of laminar flow profile (TDLFP) was applied for reactants mixing. Both in-line sample preparation and separation parameters were optimized under non-denaturing and denaturing conditions. The developed in-line methodologies provided good reproducibility and higher peak efficiencies comparing with off-line assays. They were successfully applied to different mAbs.
Collapse
Affiliation(s)
- Meriem Dadouch
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Yoann Ladner
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Claudia Bich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Jérôme Montels
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Jacques Morel
- Département de Rhumatologie, Université de Montpellier, Hôpital Lapeyronie, 34295 Cedex 5, Montpellier, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France; Institut Universitaire de France (IUF), France
| | - Catherine Perrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
12
|
Shen X, Liang Z, Xu T, Yang Z, Wang Q, Chen D, Pham L, Du W, Sun L. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 462:116541. [PMID: 33642939 PMCID: PMC7906288 DOI: 10.1016/j.ijms.2021.116541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native capillary zone electrophoresis-mass spectrometry (CZE-MS) has attracted attentions for the characterization of monoclonal antibodies (mAbs) due to the potential of CZE for highly efficient separations of mAbs under native conditions as well as its compatibility with native electrospray ionization (ESI)-MS. However, the low sample loading capacity and limited separation resolution of native CZE for large proteins and protein complexes (e.g. mAbs) impede the widespread adoption of native CZE-MS. Here, we present a novel native capillary isoelectric focusing (cIEF)-assisted CZE-MS method for the characterization of mAbs with much larger sample loading capacity and significantly better separation resolution than native CZE-MS alone. The native cIEF-assisted CZE-MS employed separation capillaries with a new carbohydrate-based neutral coating, a commercilized electrokinetically pumped sheathflow CE-MS interface, and a high-end quadrupole-time-of-flight (Q-TOF) mass spectrometer. Using the method, we documented the separations of different proteoforms of the SigmaMAb and the detection of its various glyco-proteoforms and homodimer. The native cIEF-assisted CZE-MS separated the NIST mAb into three peaks with a submicroliter sample loading volume, corresponding to its different proteoforms. We observed that both the NIST mAb and its homodimer had eight glyco-proteoforms, four of which had low abundance. The results demonstrate the potential of our native cIEF-assisted CZE-MS method for advancing the characterization of large proteins and protein complexes under native conditions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Zhijie Liang
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA 48859
- Current address: Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People’s Hospital of Nanning, Nanning, China 530000
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Lucynda Pham
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA 48859
| | - Wenjun Du
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA 48859
- Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, USA 48859
- Corresponding authors. Wenjun Du: ; Phone: 1-989-774-7568, Liangliang Sun: ; Phone: 1-517-353-0498
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
- Corresponding authors. Wenjun Du: ; Phone: 1-989-774-7568, Liangliang Sun: ; Phone: 1-517-353-0498
| |
Collapse
|
13
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
14
|
Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis – Mass spectrometry. J Pharm Biomed Anal 2020; 182:113107. [DOI: 10.1016/j.jpba.2020.113107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
|
15
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Yu D, Wang Z, Cupp-Sutton KA, Liu X, Wu S. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2502-2513. [PMID: 31755044 PMCID: PMC7539543 DOI: 10.1007/s13361-019-02315-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 05/26/2023]
Abstract
Post-translational modifications (PTMs) play critical roles in biological processes and have significant effects on the structures and dynamics of proteins. Top-down proteomics methods were developed for and applied to the study of intact proteins and their PTMs in human samples. However, the large dynamic range and complexity of human samples makes the study of human proteins challenging. To address these challenges, we developed a 2D pH RP/RPLC-MS/MS technique that fuses high-resolution separation and intact protein characterization to study the human proteins in HeLa cell lysate. Our results provide a deep coverage of soluble proteins in human cancer cells. Compared to 225 proteoforms from 124 proteins identified when 1D separation was used, 2778 proteoforms from 628 proteins were detected and characterized using our 2D separation method. Many proteoforms with critically functional PTMs including phosphorylation were characterized. Additionally, we present the first detection of intact human GcvH proteoforms with rare modifications such as octanoylation and lipoylation. Overall, the increase in the number of proteoforms identified using 2DLC separation is largely due to the reduction in sample complexity through improved separation resolution, which enables the detection of low-abundance PTM-modified proteoforms. We demonstrate here that 2D pH RP/RPLC is an effective technique to analyze complex protein samples using top-down proteomics.
Collapse
Affiliation(s)
- Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| |
Collapse
|
17
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
18
|
Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt Chem 2019; 120:115644. [PMID: 31537953 PMCID: PMC6752746 DOI: 10.1016/j.trac.2019.115644] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics. CZE has achieved a peak capacity of 300 for separation of complex proteoform mixtures. CZE-MS has shown drastically better sensitivity than commonly used reversed-phase liquid chromatography (RPLC)-MS for proteoform detection. The advanced CZE-MS identified 6,000 proteoforms of nearly 1,000 proteoform families from a complex proteome sample, which represents one of the largest top-down proteomic datasets so far. In this review, we focus on the recent progress in CZE-MS-based top-down proteomics and provide our perspectives about its future directions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1122-1123:1-17. [DOI: 10.1016/j.jchromb.2019.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
|
20
|
Haselberg R, De Vijlder T, Heukers R, Smit MJ, Romijn EP, Somsen GW, Domínguez-Vega E. Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal Chim Acta 2018; 1044:181-190. [DOI: 10.1016/j.aca.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023]
|
21
|
Liu W, Pang Y, Tan HY, Patel N, Jokhadze G, Guthals A, Bruening ML. Enzyme-containing spin membranes for rapid digestion and characterization of single proteins. Analyst 2018; 143:3907-3917. [PMID: 30039812 DOI: 10.1039/c8an00969d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteolytic digestion is an important step in characterizing protein sequences and post-translational modifications (PTMs) using mass spectrometry (MS). This study uses pepsin- or trypsin-containing spin membranes for rapid digestion of single proteins or simple protein mixtures prior to ultrahigh-resolution Orbitrap MS analysis. Centrifugation of 100 μL of pretreated protein solutions through the functionalized membranes requires less than 1 min and conveniently digests proteins into large peptides that aid in confirming specific protein sequence variations and PTMs. Peptic and tryptic peptides from spin digestion of apomyoglobin and four commercial monoclonal antibodies (mAbs) typically cover 100% of the protein sequences in direct infusion MS analysis. Increasing the spin rate leads to a higher fraction of large peptic peptides for apomyoglobin, and MS analysis of peptic and tryptic peptides reveals mAb PTMs such as N-terminal pyroglutamate formation, C-terminal lysine clipping and glycosylation. Relative to overnight in-solution digestion of mAbs, spin digestion yields higher sequence coverages. Spin-membrane digestion followed by infusion MS readily differentiates a mAb to the Ebola virus from a related antibody that differs by addition of a single amino acid.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen CH, Feng H, Guo R, Li P, Laserna AKC, Ji Y, Ng BH, Li SFY, Khan SH, Paulus A, Chen SM, Karger AE, Wenz M, Ferrer DL, Huhmer AF, Krupke A. Intact NIST monoclonal antibody characterization—Proteoforms, glycoforms—Using CE-MS and CE-LIF. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/23312009.2018.1480455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chien-Hsun Chen
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Huatao Feng
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Rui Guo
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Pingjing Li
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Anna Karen C. Laserna
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Ya Ji
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Bao Hui Ng
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Shaheer H. Khan
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Aran Paulus
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Shiaw-Min Chen
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Achim E. Karger
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Michael Wenz
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Daniel Lopez Ferrer
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Andreas F. Huhmer
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Andreas Krupke
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics 2018; 15:431-449. [DOI: 10.1080/14789450.2018.1469982] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Deepali Rathore
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anneliese Faustino
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Eric Pang
- Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Boyne
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- COUR Pharmaceuticals Development Company, Northbrook, IL, USA
| | - Sarah Rogstad
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
24
|
Ding W, Qiu D, Bolgar MS, Miller SA. Improving Mass Spectral Quality of Monoclonal Antibody Middle-Up LC-MS Analysis by Shifting the Protein Charge State Distribution. Anal Chem 2018; 90:1560-1565. [DOI: 10.1021/acs.analchem.7b04423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Ding
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Difei Qiu
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Mark S. Bolgar
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Scott A. Miller
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
25
|
Dai J, Lamp J, Xia Q, Zhang Y. Capillary Isoelectric Focusing-Mass Spectrometry Method for the Separation and Online Characterization of Intact Monoclonal Antibody Charge Variants. Anal Chem 2018; 90:2246-2254. [DOI: 10.1021/acs.analchem.7b04608] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Dai
- Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| | - Jared Lamp
- CMP Scientific, Corporation, 760 Parkside Avenue, Suite 211, Brooklyn, New York 11226, United States
| | - Qiangwei Xia
- CMP Scientific, Corporation, 760 Parkside Avenue, Suite 211, Brooklyn, New York 11226, United States
| | - Yingru Zhang
- Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
26
|
Dada OO, Zhao Y, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Improved Separation with Mixed Aqueous–Aprotic Dipolar Solvents (N,N-Dimethylacetamide and N,N-Dimethylformamide) as the Background Electrolyte. Anal Chem 2017; 89:11227-11235. [DOI: 10.1021/acs.analchem.7b03405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Oluwatosin O. Dada
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Yimeng Zhao
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nomalie Jaya
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Oscar Salas-Solano
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
27
|
Dada OO, Rao R, Jones N, Jaya N, Salas-Solano O. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies. J Pharm Biomed Anal 2017; 145:91-97. [DOI: 10.1016/j.jpba.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
|
28
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
30
|
Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system. Anal Bioanal Chem 2016; 409:1789-1795. [PMID: 27981343 DOI: 10.1007/s00216-016-0122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.
Collapse
|
31
|
Týčová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis 2016; 38:115-134. [DOI: 10.1002/elps.201600366] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Týčová
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Vojtěch Ledvina
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
32
|
Zhao Y, Sun L, Zhu G, Dovichi NJ. Coupling Capillary Zone Electrophoresis to a Q Exactive HF Mass Spectrometer for Top-down Proteomics: 580 Proteoform Identifications from Yeast. J Proteome Res 2016; 15:3679-3685. [PMID: 27490796 DOI: 10.1021/acs.jproteome.6b00493] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
33
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
34
|
Zhu G, Sun L, Dovichi NJ. Dynamic pH junction preconcentration in capillary electrophoresis- electrospray ionization-mass spectrometry for proteomics analysis. Analyst 2016; 141:5216-20. [PMID: 27460877 DOI: 10.1039/c6an01140c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary zone electrophoresis (CZE)-electrospray ionization (ESI)-mass spectrometry (MS) is an interesting complimentary technique to reversed phase liquid chromatography (RPLC)-ESI-MS for proteomics research. However, the low sample loading capacity of CZE (typically a few nL) can limit its application for large-scale proteomics. A number of on-line sample preconcentration methods have been developed to increase sample loading volumes. This review considers the dynamic pH junction as a simple on-line sample preconcentration method; this method is well suited for amphiprotic analytes. In the pH junction, these analytes are suspended in a basic buffer, injected by pressure into the capillary, and separated in an acidic background electrolyte, with no changes in either CZE-MS operations or instrumentation. We have demonstrated that the dynamic pH junction method can improve the sample loading volume to sub-μL volumes without significant loss of separation capacity for bottom-up proteomic analysis. The dynamic pH junction based CZE-ESI-MS system has been applied for a number of complex biological samples, including the E. coli proteome, impurities in recombinant antibody therapeutics, and the characterization of the phosphoproteome from a human cell line.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
35
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|