1
|
Amico D, Tassone A, Pirrone N, Sprovieri F, Naccarato A. Recent applications and novel strategies for mercury determination in environmental samples using microextraction-based approaches: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128823. [PMID: 35405590 DOI: 10.1016/j.jhazmat.2022.128823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The growing need to monitor Hg levels in the environment to control its emissions and evaluate the effectiveness of reduction policies is driving the scientific community to focus efforts on creating analytical methods that are simpler, lower cost, more performing, and environmentally sustainable. In this context, an important contribution is provided by microextraction techniques, which have long proven to be simple, reliable, and to ensure an environmentally responsible sample preparation. This manuscript reviews the recent progress in the determination of environmental Hg using microextraction techniques. The considered studies involve all environmental compartments (i.e., air, water, soil, and biota) and have been discussed by grouping them according to the employed technique while pointing out the main advances achieved and the most important limitations. The ultimate goal is to provide an up-to-date overview of the analytical potential of microextraction techniques that can be exploited in various investigation fields and to highlight the most important knowledge gaps that should be addressed in the coming years, such as in-situ sampling, the use of natural materials, and the value of metrological support to obtain data SI-traceable and comparable.
Collapse
Affiliation(s)
- Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy; Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende, Italy.
| |
Collapse
|
2
|
Bamdad F, Habibi Z. Surface-Active Ionic Liquid-Assisted Cloud Point Extraction for Pre-Concentration and Determination of Cobalt Ions in Pharmaceutical Preparations. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127043. [PMID: 35937559 PMCID: PMC9347226 DOI: 10.5812/ijpr-127043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
: Herein we describe an efficient, simple, and precise micelle-mediated microextraction strategy based on the aggregation behavior of surface-active ionic liquids (SAILs) for the preconcentration and determination of cobalt ions in pharmaceutical preparations. Unlike the commonly used hydrophobic ionic liquids in IL-based microextraction methods, a water-soluble surface-active ionic liquid [1-hexadecyl 3-methylimidazolium chloride (C16MeImCl)] was used. A modified cloud point extraction (CPE) procedure based on the C16MeImCl-Triton X-114 mixed micellar system was proposed as an efficient extracting phase. A comparison of the analytical features of the extraction process with and without SAILs revealed the benefits of the proposed method. Advantages such as a wider linear range, lower detection limit, higher reproducibility, and improved extraction efficiency highlighted the proposed method over the conventional CPE method. These attractive specifications are due to the higher extraction efficiencies achieved in the presence of the SAIL and its favorable effects at the phase separation stage. Various parameters affecting the extraction efficiency were optimized by univariate and multivariate (Box-Behnken design) approaches. The calibration curve was obtained in the optimal experimental conditions with a linear range from 0.01 to 5.5 mg L-1 of cobalt ion concentration (R = 0.9992) and a detection limit of about 0.005 mg L-1. The RSD% for 10 replicate determinations of 1.0 mg L-1 Co was 0.9%. The proposed method was successfully applied to determine cobalt ions in vitamin B12 ampoules and tablets.
Collapse
Affiliation(s)
- Farzad Bamdad
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Corresponding Author: Department of Chemistry, Faculty of Science, Arak University, P. O. Box: 38156-88349, Arak, Iran.
| | - Zahra Habibi
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
3
|
Panthi G, Park M. Synthesis of metal nanoclusters and their application in Hg 2+ ions detection: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127565. [PMID: 34736203 DOI: 10.1016/j.jhazmat.2021.127565] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Mercuric (Hg2+) ions released from human activities, natural phenomena, and industrial sources are regarded as the global pollutant of world's water. Hg2+ ions contaminated water has several adverse effects on human health and the environment even at low concentrations. Therefore, rapid and cost-effective method is urgently required for the detection of Hg2+ ions in water. Although, the current analytical methods applied for the detection of Hg2+ ions provide low detection limit, they are time consuming, require expensive equipment, and are not suitable for in-situ analysis. Metal nanoclusters (MNCs) consisting of several to ten metal atoms are important transition missing between single atoms and plasmonic metal nanoparticles. In addition, sub-nanometer sized MNCs possess unique electronic structures and the subsequent unusual optical, physical, and chemical properties. Because of these novel properties, MNCs as a promising material have attracted considerable attention for the construction of selective and sensitive sensors to monitor water quality. Hence this review is focused on recent advances on synthesis strategies, and optical and chemical properties of various MNCs including their applications to develop optical assay for Hg2+ ions in aqueous solutions.
Collapse
Affiliation(s)
- Gopal Panthi
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| |
Collapse
|
4
|
Jiang L, Li Y, Yang XA, Jin CZ, Zhang WB. Ultrasound-assisted dispersive solid phase extraction for promoting enrichment of ng L -1 level Hg 2+ on ionic liquid coated magnetic materials. Anal Chim Acta 2021; 1181:338906. [PMID: 34556225 DOI: 10.1016/j.aca.2021.338906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Herein, we investigated the enrichment behavior of inorganic mercury (Hg2+) on magnetic adsorbent with different ultrasound (US) energy field input. The enrichment rate of 0.10 μg L-1 mercury is increased by 4.5 times after US instead of stirring as dispersion mode. The input of higher frequency and power ultrasound can accelerate the enrichment of magnetic ionic liquid adsorbent and reduce the Hg2+ residue, importantly, which has not been reported. The positive correlation between cavitation effect and acoustic frequency and power in imaging experiments documents that US parameters are the key factors affecting the magnetic solid phase extraction. In addition, in-situ desorption and detection of adsorbate and recovery of adsorbent can be realized by slurry vapor generation (SVG) technology. The recovery of Hg2+ in four cycles is more than 90%, which indicates that the structure and properties of the material are not affected by the application of US. Hence, the degradation of adsorption properties caused by agglomeration of magnetic materials can be improved by introducing dispersion methods such as US. At the same time, 95% enrichment efficiency and 0.01-1.0 μg L-1 linear calibration range corresponding to 150 mL sample documents that magnetic ionic liquid adsorbent combined with US and sensitive spectral detector can meet the needs of ng L-1 level Hg2+ analysis in natural water samples.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Ying Li
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Xin-An Yang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Cheng-Zhao Jin
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Wang-Bing Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
5
|
Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques. Talanta 2021; 226:122119. [PMID: 33676674 DOI: 10.1016/j.talanta.2021.122119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Chemical speciation is a relevant topic in environmental chemistry since the (eco)toxicity, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). Maintaining the chemical stability of the species and avoiding equilibrium disruptions during the sample treatment is one of the biggest challenges in chemical speciation, especially in environmental matrices where the level of concomitants/interferents is normally high. To achieve this task, strategies based on chemical properties of the species can be carried out and pre-concentration techniques are often needed due to the low concentration ranges of many species (μg L-1 - ng L-1). Due to the significance of the topic and the lack of reviews dealing with sample preparation of metal (loid)s (usually, sample preparation reviews focus on the total metal content), this work is presented. This review gives an up-to-date overview of the most common sample preparation techniques for environmental samples (water, soil, and sediments), with a focus on speciation of metal/metalloids and determination by spectrometric techniques. Description of the methods is given, and the most recent applications (last 10 years) are presented.
Collapse
|
6
|
Amde M, Temsgen A, Dechassa N. Ionic liquid functionalized zinc oxide nanorods for solid-phase microextraction of aflatoxins in food products. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Sotolongo AC, Messina MM, Ibañez FJ, Wuilloud RG. Hybrid ionic liquid-3D graphene-Ni foam for on-line preconcentration and separation of Hg species in water with atomic fluorescence spectrometry detection. Talanta 2020; 210:120614. [DOI: 10.1016/j.talanta.2019.120614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
8
|
Basheer C, Kamran M, Ashraf M, Lee HK. Enhancing liquid-phase microextraction efficiency through chemical reactions. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Özyurt C, Üstükarcı H, Evran S, Telefoncu A. MerR‐fluorescent protein chimera biosensor for fast and sensitive detection of Hg
2+
in drinking water. Biotechnol Appl Biochem 2019; 66:731-737. [DOI: 10.1002/bab.1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Canan Özyurt
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Department of Chemistry and Chemical Processing Technologies Lapseki Vocational School Canakkale Onsekiz Mart University Canakkale Lapseki Turkey
| | - Handan Üstükarcı
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Serap Evran
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Azmi Telefoncu
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Bio‐sensing and Bioinformatics Nanotechnologies R & D Trade & Ind. Ltd Co TECHNOPARK EGE, Ege University 35100 Izmir Turkey
| |
Collapse
|
10
|
Application of surface-active ionic liquids in micelle-mediated extraction methods: pre-concentration of cadmium ions by surface-active ionic liquid-assisted cloud point extraction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01770-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Amde M, Tan ZQ, Liu J. Separation and size characterization of zinc oxide nanoparticles in environmental waters using asymmetrical flow field-flow fractionation. Talanta 2019; 200:357-365. [PMID: 31036196 DOI: 10.1016/j.talanta.2019.03.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/03/2023]
Abstract
There are few studies on separation and size characterization of zinc oxide nanoparticles (ZnO-NPs), which have wide applications in several science and technology areas, in the environment. In this work, we report a method for the separation and size characterization of ZnO-NPs by asymmetrical flow field-flow fractionation (AF4) coupled to UV-vis detector. Experimental conditions such as composition of the carrier solution, focus time, crossflow, detector flow rate and injection volume were systematically studied in terms of NPs separation, recovery, and repeatability. Size characterization was achieved using polystyrene nanoparticles as a size standard and a mixture of < 35 nm (NP-A) and < 100 nm (NP-B) ZnO-NPs were separated and size characterized posterior preconcentration using ultracentrifugation. The method was also employed to characterize the size of homemade ZnO-NPs, and the results were in concordance with dynamic light scattering (DLS) analysis and thus, the method can be used as an alternate method. Upon application on environmental water samples, the two ZnO-NPs, NP-A and NP-B, have been separated and size characterized. The estimated hydrodynamic sizes of the NP-A and NP-B were found to be in the range of 83-97 nm and 188-202 nm, respectively, with good precision (RSD, <11%), suggesting that the current method can satisfactorily separate and generate information about sizes of the NPs in samples with a complex matrix. Therefore, the developed technique can be used as a baseline to investigate size related environmental processes of the NPs in environmental water samples.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| |
Collapse
|
12
|
Modification of a steel fiber with a graphene based bucky gel for headspace solid-phase microextraction of volatile aromatic hydrocarbons prior to their quantification by GC. Mikrochim Acta 2018; 185:509. [DOI: 10.1007/s00604-018-3017-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
|
13
|
Koscheeva OS, Kuznetsova NI, Kuznetsova LI. Quantification of small amounts of ionic liquids in solutions using CHN analysis. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Chen JL, Yang PC, Wu T, Lin YW. Determination of mercury (II) ions based on silver-nanoparticles-assisted growth of gold nanostructures: UV-Vis and surface enhanced Raman scattering approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:301-307. [PMID: 29627614 DOI: 10.1016/j.saa.2018.03.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Innovative dual detection methods for mercury(II) ions (Hg(II)) have been developed based on the formation of gold nanostructures (AuNSs) following the addition of mercury-containing solution to a mixture containing an optimized amount of Au(III), H2O2, HCl, and silver nanoparticles (AgNPs). In the absence of Hg(II), the addition of Au(III), H2O2, and HCl to the AgNP solution changes the solution's color from yellow to red, and the absorption peak shifts from 400 to 526nm, indicating the dissolution of AgNPs and the formation of gold nanoparticles (AuNPs). Because of the spontaneous redox reaction of Hg(II) toward AgNPs, the change in the amount of remaining AgNP seed facilitates the generation of irregular AuNSs, resulting in changes in absorption intensity and shifting the peak within the range from 526 to 562nm depending on the concentration of Hg(II). Under optimal conditions, the limit of detection (LOD) for Hg(II) at a signal-to-noise ratio (S/N) of 3 was 0.3μM. We further observed that AgNP-assisted catalytic formation of Au nanomaterials deposited on a surface enhanced Raman scattering active substrate significantly reduced the Raman signal of 4-mercaptobenzoic acid, dependent on the Hg(II) concentration. A linear relationship was observed in the range 0.1nM-100μM with a LOD of 0.05nM (S/N 3.0). As a simple, accurate and precise method, this SERS-based assay has demonstrated its success in determining levels of Hg(II) in real water samples.
Collapse
Affiliation(s)
- Jun-Liang Chen
- Department of Chemistry, National Changhua University of Education, 1 Jin-De road, Changhua City, Changhua County 500, Taiwan
| | - Pei-Chia Yang
- Department of Chemistry, National Changhua University of Education, 1 Jin-De road, Changhua City, Changhua County 500, Taiwan
| | - Tsunghsueh Wu
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099, USA.
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, 1 Jin-De road, Changhua City, Changhua County 500, Taiwan.
| |
Collapse
|
15
|
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:250-267. [PMID: 28662490 DOI: 10.1016/j.envpol.2017.06.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wang Y, Li H, Yang Z, Zhang W, Hua J. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography. J Sep Sci 2017; 40:4805-4812. [PMID: 29068516 DOI: 10.1002/jssc.201700744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 11/12/2022]
Abstract
To explore why the use of furfural as a transformer oil-paper insulation aging characteristic is problematic in real world application, we developed a method for the simultaneous determination of furfural, furoic acid, and maleic acid in transformer oil by reversed-phase vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography. The conditions for the proposed method were optimized, and the obtained extract can be directly analyzed by high-performance liquid chromatography. The detection limits (signal-to-noise ratio = 3) of the method ranged from 1.0 to 4.6 μg/L, the enrichment factors for furfural, furoic acid, maleic acid, and fumaric acid were 4.6, 25.1, 15.6, and 17.5, respectively, and the recovery rates for three analytes (fumaric acid was undetected) range from 82.1 to 106.2%. The contents of furfural, furoic acid, and maleic acid resulted from accelerated aging of transformer insulation oil-paper were measured using the present method for the first time, and the aging samples were analyzed by liquid chromatography with mass spectrometry for the identification of furoic acid and maleic acid in the aging transformer oil samples. Using the optimal method, the target products of samples at different aging time were tracked and measured.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Haiyan Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China.,College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Zhen Yang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Weijie Zhang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Jia Hua
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| |
Collapse
|
17
|
|
18
|
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 2017; 1500:1-23. [DOI: 10.1016/j.chroma.2017.04.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
|
19
|
An ionic liquid-based nanofluid of titanium dioxide nanoparticles for effervescence-assisted dispersive liquid–liquid extraction for acaricide detection. J Chromatogr A 2017; 1497:1-8. [DOI: 10.1016/j.chroma.2017.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/20/2023]
|
20
|
Amde M, Yin Y, Zhang D, Liu J. Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review. CHEMICAL SPECIATION & BIOAVAILABILITY 2016. [DOI: 10.1080/09542299.2016.1164019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Hu X, Wang W, Huang Y. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg(2+) in water and food stuff. Talanta 2016; 154:409-15. [PMID: 27154693 DOI: 10.1016/j.talanta.2016.03.095] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/29/2022]
Abstract
In this study, Hg(2+) ions were found to quench the fluorescence of glutathione (GSH)-capped copper clusters (Cu NCs). The Cu NCs were prepared by a simple reduction of CuSO4 in the presence of GSH serving both as a reducing and protecting agents, and characterized by ultraviolet-visible absorption spectroscopy (UV-vis), high resolution scanning electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectrometer (XPS). The GSH-Cu NCs displayed a small size, excellent water-dispersibility, good storage stability, good photostability and were stable in the presence of high concentrations of salt. The GSH-Cu NCs possessed strong blue fluorescence with a quantum yield of 10.6% and exhibited an excitation-independent fluorescence behavior. The zeta potential, TEM, resonance light scattering and dynamic light scattering measurements demonstrated that the Hg(2+) ion-induced aggregation of the Cu NCs contributed to the fluorescence quenching of the dispersed Cu NCs. On these findings, a sensitive and selective fluorescent probe was developed for detecting Hg(2+) in the linear range from 10nM to 10μM with a detection limit of 3.3nM (S/N=3). The proposed method has been successfully applied to determine Hg(2+) content in water sample and food stuff. The results of the proposed method were in good agreement with those obtained by a hydride generation atomic fluorescence spectrometry (HG-AFS).
Collapse
Affiliation(s)
- Xue Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Yang M, Zeng H, Wu X, Yang X, Zhou W, Zhang S, Lu R, Li J, Gao H. Magnetic zinc oxide nanoflower-assisted ionic liquid-based nanofluid dispersive liquid–liquid microextraction for the rapid determination of acaricides in tea infusions. RSC Adv 2016. [DOI: 10.1039/c6ra22353b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ionic liquid based nanofluid with magnetic zinc oxide as a nanoparticle additive was used for the quick determination of acaricides.
Collapse
Affiliation(s)
- Miyi Yang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Haozhe Zeng
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Xiaoling Wu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Xiaoling Yang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Wenfeng Zhou
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Sanbing Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Runhua Lu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Jing Li
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Haixiang Gao
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|