1
|
Zhu N, Wu Z, He M, Chen B, Hu B. 3D printed stir bar sorptive extraction coupled with high performance liquid chromatography for trace estrogens analysis in environmental water samples. Anal Chim Acta 2023; 1281:341904. [PMID: 38783742 DOI: 10.1016/j.aca.2023.341904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Any imaginary shape with good preparation reproducibility can be made by 3D printing technology, and it has been applied in various fields. Comparatively, its applications in sample pre-treatment are relatively less, most of which involves making extraction sorbents and producing non-functionalized devices for support assistance. 3D printing has not been applied to fabricate stir bars in stir bar sorptive extraction, mainly due to the lacking of suitable printing feedstocks. This work aimed to fabricate stir bars by 3D printing, reducing the manufacturing cost and steps and improving preparation reproducibility. (90) RESULTS: By using fused deposition modeling technique and porous filament printing feedstock, stir bars were fabricated without any modifications. Adsorption performance of 3D printed stir bars were investigated for substances with different structures and polarities. Five estrogens with adsorption efficiencies of over 80 % were selected as the representatives. The 3D printed stir bars exhibited good preparation reproducibility (2.9-4.4 %) and higher extraction recoveries (73-81 %) for five estrogens than commercial polydimethylsiloxane coated stir bars (13-69 %) in a shorter time (90 vs 120 min). They showed long lifespan (160 times) with good mechanical properties and merited reduced manufacturing cost (0.064 $ per bar) and manual operation. A method of stir bar sorptive extraction coupled with high performance liquid chromatography was proposed for trace analysis of estrogens in environmental water. Under the optimized conditions, the linear ranges for estrogens were 0.5-200 μg/L with LODs of 0.13-0.17 μg/L. (136) SIGNIFICANCE: The feasibility of fused deposition modeling in stir bar fabrication was demonstrated, along with the potential of porous filament printing feedstock as the sorbent for substances with medium polarity. 3D printed stir bars were featured with excellent preparation reproducibility, long lifespan, and good mechanical properties. The stir bar fabrication method can be used for mass production with minimal differences in products performance. (62).
Collapse
Affiliation(s)
- Ning Zhu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Hubei Tobacco Company, Wuhan, 430040, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Zhang Q, Yao X, He M, Chen B, Zhu N, Hu B. Porous aromatic framework/polydimethylsiloxane coated stir bar sorptive extraction coupled with high performance liquid chromatography-diode array detection of trace polychlorinated biphenyls analysis in environmental waters. J Chromatogr A 2023; 1688:463709. [PMID: 36528902 DOI: 10.1016/j.chroma.2022.463709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
A porous aromatic framework (PAF-47) synthesized through Suzuki coupling reaction was introduced to prepare PAF-47/polydimethylsiloxane (PDMS) coated stir bar by sol-gel technique. PAF-47/PDMS coating provided high extraction recovery (77.6-90.6%, the ratio of actual enrichment factor (EF) to theoretical EF) for five polychlorinated biphenyls (PCBs) in a relatively short time (60 min), exhibiting a faster extraction kinetics over commercial PDMS coating (12/24 h). Based on this, a new method based on PAF-47/PDMS coated stir bar sorptive extraction and high-performance liquid chromatography-diode array detection was proposed for trace analysis of target PCBs in environmental water. Under the optimized conditions, the limits of detection for five PCBs were within 44-70 ng/L, with actual EF of 64.0-71.5-fold (maximal EF of 83.3-fold). This method was successfully used to detect trace PCBs in Yangtze River water and East Lake water, with recoveries of 81.0-113% and 86.1-111%, respectively.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xuezi Yao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Tian Y, Xu Z, Yang Y, Wang D, Liu Z, Si X. Magnetic solid phase extraction based on Fe3O4@SiO2@CTS nano adsorbent for the sensitive detection of trace polychlorinated biphenyls in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Green method to determine triazine pesticides in water using Rotating Disk Sorptive Extraction (RDSE). Heliyon 2021; 7:e07878. [PMID: 34522798 PMCID: PMC8426532 DOI: 10.1016/j.heliyon.2021.e07878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/23/2020] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The following work presents the development of the solid phase extraction technique with rotary disk (RDSE) in which the analysis for seven triazines in surface waters was first implemented. All the variables involved in extraction have been studied and optimized using a solid phase of octadecyl (C18) deposited on surface of the disk. Triazines were analyzed quantitatively by gas chromatography with simple quadruple mass detector, recoveries obtained for seven triazines were between 80% and 120%, accuracy expressed as RSD was between 3.21% and 6.34%, and detection limit of the method was between 0.020-0.056 μgL-1 according to each analyte, which indicates a good reproducibility and precision of the method. Finally, the method was applied to analyze the objective compounds in water samples obtained in the Bolo River (Palmira-Colombia), in which triazines were not detected.
Collapse
|
6
|
Wang X, Li C, Wu D, Shen J, Wei Y, Wang C. Enrichment of polychlorinated biphenyls in river water by using magnetic adsorbents with high selectivity to nonplanar aromatic compounds and their analysis with gas chromatography–mass spectrometry. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuesong Wang
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Chunyan Li
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Dan Wu
- Department of Solid Phase Materials Sunresin New Materials Co., Ltd. Xi'an China
| | - Jiwei Shen
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Yinmao Wei
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Chaozhan Wang
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
- Instrumental Analysis Lab National Demonstration Center for Experimental Chemistry Education (Northwest University) Xi'an China
| |
Collapse
|
7
|
He M, Wang Y, Zhang Q, Zang L, Chen B, Hu B. Stir bar sorptive extraction and its application. J Chromatogr A 2020; 1637:461810. [PMID: 33360434 DOI: 10.1016/j.chroma.2020.461810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Recent progress of stir bar sorptive extraction (SBSE) in the past six years is reviewed. The preparation methods including electrodeposition, self-assembly, solvent exchange, physical magnetic adsorption and electrostatic spinning, for the coated stir bar are summarized and compared, specifically for a specific material for coatings fabrication, e.g., carbon-based materials and metal organic frameworks. The emerging materials (e.g., graphene, graphene oxide, carbon nanotubes, monolith, metal-organic frameworks and porous organic polymers) applied for coated stir bar fabrication are one of the focus of this review, along with their respective advantages in extraction process and application in trace analysis. The development and application of extraction apparatus of SBSE are also involved. Based on these information, the development status and prospects of SBSE as an efficient sample pretreatment technique in real sample analysis are discussed.
Collapse
Affiliation(s)
- Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuxin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qiulin Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Lijuan Zang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Hasan CK, Ghiasvand A, Lewis TW, Nesterenko PN, Paull B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal Chim Acta 2020; 1139:222-240. [DOI: 10.1016/j.aca.2020.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
9
|
Liang S, Jian N, Cao J, Zhang H, Li J, Xu Q, Wang C. Rapid, simple and green solid phase extraction based on polyaniline nanofibers-mat for detecting non-steroidal anti-inflammatory drug residues in animal-origin food. Food Chem 2020; 328:127097. [DOI: 10.1016/j.foodchem.2020.127097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/01/2022]
|
10
|
Yuan X, Jiang Z, Wang Q, Gao N, Li H, Ma Y. Polychlorinated Biphenyl Electrochemical Aptasensor Based on a Diamond-Gold Nanocomposite to Realize a Sub-Femtomolar Detection Limit. ACS OMEGA 2020; 5:22402-22410. [PMID: 32923798 PMCID: PMC7482256 DOI: 10.1021/acsomega.0c02846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 05/31/2023]
Abstract
Polychlorinated biphenyls (PCBs) with high toxicity, low lethal dose, and bioaccumulation have been inhibited for application in wide fields, and a highly efficient trace detection is thus greatly desirable. In this study, we produce dense Au-nanoparticles by twice sputtering and twice annealing (T-Au-NPs) on boron-doped diamond (BDD). The successful formation of T-Au-NPs/BDD nanocomposites was confirmed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis. Based on T-Au-NPs/BDD, an electronic biosensor with aptamers is fabricated to detect trace polychlorinated biphenyl-77 (PCB-77) by electrochemical impedance. A good linear relationship in the range of femtomolar to micromolar and significantly low detection limit of sub-femtomolar level (0.32 fM) are realized based on the biosensor. The emphasis of this research lies in the key role of the diamond substrate in the biosensor. It is demonstrated that the biosensor has excellent sensitivity, specificity, stability, and recyclability, which are favorable for detecting the trace PCB-77 molecule. It is attributed to the important effect presented by the BDD substrate and the synergistic influence of T-Au-NPs combined with aptamers.
Collapse
Affiliation(s)
- Xiaoxi Yuan
- State
Key Laboratory of Superhard Materials, Jilin
University, Changchun 130012, P. R. China
- Institute
for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun 130052, P. R.
China
| | - Zhigang Jiang
- State
Key Laboratory of Superhard Materials, Jilin
University, Changchun 130012, P. R. China
| | - Qiliang Wang
- State
Key Laboratory of Superhard Materials, Jilin
University, Changchun 130012, P. R. China
| | - Nan Gao
- State
Key Laboratory of Superhard Materials, Jilin
University, Changchun 130012, P. R. China
| | - Hongdong Li
- State
Key Laboratory of Superhard Materials, Jilin
University, Changchun 130012, P. R. China
| | - Yibo Ma
- College
of Sciences, Beihua University, Jilin 132013, P. R. China
| |
Collapse
|
11
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
12
|
Gentili A. Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 2019; 1609:460654. [PMID: 31679713 DOI: 10.1016/j.chroma.2019.460654] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Cyclodestrins (CDs) are cyclic oligosaccharides well-known for their ability to form host-guest inclusion complexes with properly sized compounds. They have been used for decades as chiral selectors as well as drug delivery systems within the frameworks of separation science and pharmaceutical science. More recently, their use has been extended to the field of extractive science under the stimulus of additional advantageous characteristics, such as low-price, negligible environmental impact, non-toxicity, as arising from the fact that natural CDs are starch degradation products. To abate their solubility in water and generate novel sorbents for solid phase extraction, the following approaches have been employed: (i) immobilization onto inert materials (silica, attapulgite, etc.); (ii) immobilization onto nanomaterials (magnetic nanoparticles, titanium oxide, carbon nanotubes, graphene oxide, etc.); (iii) polymerisation with specific cross-linkers to form the so-called CD-based nanosponges. Particularly promising are these last ones for their selectivity, mesoporous structure, insolubility in aqueous media and good dispersibility. This review offers a concise overview on the state of art and future prospects of CDs in this important sector of the analytical chemistry, offering a critical perspective of the most significant applications.
Collapse
Affiliation(s)
- Alessandra Gentili
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, "Sapienza" University of Rome, P.le A. Moro n° 5, 00185 Rome, Italy.
| |
Collapse
|
13
|
Wang X, Kou H, Wang J, Du T, Teng R, Du X, Lu X. Mesostructured cellular foam solid‐phase microextraction coating for the highly sensitive recognition of polychlorinated biphenyls in water samples. J Sep Sci 2019; 42:2851-2857. [DOI: 10.1002/jssc.201900480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province Lanzhou P. R. China
| | - Haixia Kou
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
| | - Juan Wang
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
| | - Tongtong Du
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
| | - Ruiju Teng
- Lanzhou Industrial Research Institute Lanzhou P. R. China
| | - Xinzhen Du
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province Lanzhou P. R. China
| | - Xiaoquan Lu
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province Lanzhou P. R. China
| |
Collapse
|
14
|
Phenyl propyl functionalized hybrid sol–gel reinforced aluminum strip as a thin film microextraction device for the trace quantitation of eight PCBs in liquid foodstuffs. Talanta 2019; 199:547-555. [DOI: 10.1016/j.talanta.2019.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022]
|
15
|
Novel Ceramic Carbon-Coated Magnetic Nanoparticles as Stir Bar Sorptive Extraction Coating for Simultaneous Extraction of Amphetamines from Urine Samples. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03810-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Wang C, Cheng L, Zhang L, Zuo Y. Graphene oxide based molecularly imprinted polymers modified with β-cyclodextrin for selective extraction of di(2-ethylhexyl) phthalate in environmental waters. J Sep Sci 2019; 42:1248-1256. [PMID: 30641617 DOI: 10.1002/jssc.201801171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
Graphene oxide based molecularly imprinted polymers modified with β-cyclodextrin were prepared as solid-phase extraction column sorbents for specific recognition and sensitive detection of di(2-ethylhexyl) phthalate in water samples. The morphology and composition of synthesized sorbents were characterized by scanning electron microscopy, thermo-gravimetric analysis, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The conditions affecting the performance of extraction procedures such as desorption solvent types and volume, sample pH and volume were investigated. The loading capacity (8.2 μg/mg) of the prepared sorbents increased eight times after modification with β-cyclodextrin. The developed extraction procedures coupled to high-performance liquid chromatography exhibited good linearity (0.2-500 μg/L), low limit of detection (0.052 μg/L), and good precision (relative standard deviation˂5.7%) under optimized conditions. The developed solid-phase extraction technique with prepared sorbents has been successfully applied in extracting trace di(2-ethylhexyl) phthalate from real natural waters with high efficiency, good selectivity, and desirable recoveries.
Collapse
Affiliation(s)
- Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Lidong Cheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Lin Zhang
- Department of Physical & Environmental Sciences, Texas A&M University, Corpus Christi, TX, USA
| | - Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
17
|
Jian N, Qian L, Wang C, Li R, Xu Q, Li J. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:81-89. [PMID: 30308368 DOI: 10.1016/j.jhazmat.2018.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 05/17/2023]
Abstract
Core-shell polyaniline/polyacrylonitrile nanofibers mat (PANI/Pan NFsM) was prepared for extraction of hydrophilic non-steroidal anti-inflammatory drugs (NSAIDs) in environmental water. Superior adsorption and desorption performance of PANI/Pan NFsM was confirmed by both static and dynamic adsorption/desorption experiments. These properties proved PANI/Pan NFsM was a potentially efficient and fast solid phase extraction (SPE) adsorbent for NSAIDs. Under the optimized conditions, only 3 mg of PANI/Pan NFsM could easily extract eight target analytes in 10 mL of water sample without any pre-treatment, and the analytes retained on NFsM could be easily eluted by 500 μL of 1% acetic acid methanol for direct UPLC-MS/MS analysis. In addition, each piece of PANI/Pan NFsM could be reused for at least 20 times without performance decline. Possible adsorption mechanisms were also proposed. Practical feasibility was validated through the actual sample analysis.
Collapse
Affiliation(s)
- Ningge Jian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liangliang Qian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China
| | - Ruixian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China.
| |
Collapse
|
18
|
Owczarek K, Szczepańska N, Płotka-Wasylka J, Namieśnik J. New Achievements in the Field of Extraction of Trace Analytes from Samples Characterized by Complex Composition of the Matrix. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2019. [DOI: 10.1007/978-981-13-9105-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Fan L, Zhang C, Shi H, Zhao G. Design of a simple and novel photoelectrochemical aptasensor for detection of 3,3',4,4'-tetrachlorobiphenyl. Biosens Bioelectron 2018; 124-125:8-14. [PMID: 30339976 DOI: 10.1016/j.bios.2018.09.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
In view of the urgent need of determining polychlorinated biphenyls in the environment, we developed a highly sensitive and selective photoelectrochemical (PEC) aptasensor for determination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) by immobilizing aptamer on N-doped TiO2 nanotubes (N-doped TiO2 NTs). To improve analytical performance of the PEC sensor, the complementary DNA functionalized CdS quantum dots (DNA-CdS QDs) were introduced onto N-doped TiO2 NTs by hybridization. In addition of PCB77, owing to high affinity of aptamer to PCB77, PCB77-aptamer complexes were formed by being bound of PCB77 whilst DNA-CdS QDs were released from the sensing surface. The complexes with poor conductivity hindered the interfacial electron transfer, leading to the photocurrent decrease. The more important is the release of DNA-CdS QDs enhanced the photocurrent decrease, playing the role of signal amplification. The photocurrent change was utilized to detect PCB77 quantitatively. The PEC aptasensor exhibited excellent analytical performance for detection of PCB77 with wide linear range of 0.1-100 ng/L and a low detection limit of 0.1 ng/L. It manifested outstanding selectivity for PCB77 in control experiments by employing six interferents which had similar structure or coexisted with PCB77. Besides, the PEC aptasensor was used to detect the content of PBC77 in the environment.
Collapse
Affiliation(s)
- Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Caiyun Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huijie Shi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
20
|
Shi Y, Zhang J, He J, Liu D, Meng X, Huang T, He H. A method of detecting two tumor markers (p-hydroxybenzoic acid and p-cresol) in human urine using a porous magnetic <beta>-cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis. Talanta 2018; 191:133-140. [PMID: 30262042 DOI: 10.1016/j.talanta.2018.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
Abstract
Analyzing of tumor markers has become an important means for cancer diagnosis and prevention. In this study, a novel solid phase extraction based on porous magnetic cyclodextrin polymer (MA-CD) was developed and used for detection of trace small molecule gastric tumor markers in urine samples. The adsorption properties of the magnetic cyclodextrin polymer were tested. Through experiments of the solid phase extraction (SPE) at the different condition, the optimal condition was selected to test the two tumor markers by High-performance-liquid chromatography -Diode array detector (HPLC-DAD). The analytical performance of the method showed good accuracy (88.82%-104.34%) and precision (< 3.55%), appropriated detection limits (1.016 and 5.714 μg L-1) and linear ranges (0.6-24.0 μg L-1) with convenient determination coefficients (> 0.9994). The results demonstrated that the developed approach is efficient, low-cost for gastric tumor markers detection.
Collapse
Affiliation(s)
- Yi Shi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jingyi Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jia He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Donghao Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaoyan Meng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Tao Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Raza N, Hashemi B, Kim KH, Lee SH, Deep A. Aromatic hydrocarbons in air, water, and soil: Sampling and pretreatment techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples. MATERIALS 2018; 11:ma11040467. [PMID: 29565297 PMCID: PMC5951313 DOI: 10.3390/ma11040467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Abstract
Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.
Collapse
|
23
|
Zhang J, Liu D, Shi Y, Sun C, Niu M, Wang R, Hu F, Xiao D, He H. Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:24-32. [DOI: 10.1016/j.jchromb.2017.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 08/09/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
24
|
Beni Á, Lajtha K, Kozma J, Fekete I. Application of a Stir Bar Sorptive Extraction sample preparation method with HPLC for soil fungal biomass determination in soils from a detrital manipulation study. J Microbiol Methods 2017; 136:1-5. [DOI: 10.1016/j.mimet.2017.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/19/2023]
|
25
|
|
26
|
Facile preparation of hexadecyl-functionalized magnetic core-shell microsphere for the extraction of polychlorinated biphenyls in environmental waters. Anal Bioanal Chem 2017; 409:3337-3346. [DOI: 10.1007/s00216-017-0278-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
|
27
|
Li D, Zhu J, Wang M, Bi W, Huang X, Chen DDY. Extraction of trace polychlorinated biphenyls in environmental waters by well-dispersed velvet-like magnetic carbon nitride nanocomposites. J Chromatogr A 2017; 1491:27-35. [DOI: 10.1016/j.chroma.2017.02.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
|
28
|
Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples. Anal Chim Acta 2016; 934:114-21. [DOI: 10.1016/j.aca.2016.06.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 11/22/2022]
|
29
|
Magnetic metal-organic nanotubes: An adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples. J Chromatogr A 2016; 1449:39-47. [DOI: 10.1016/j.chroma.2016.04.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022]
|