1
|
Gęca I, Korolczuk M. Highly sensitive and selective anodic stripping voltammetric procedure of As(III) determination following double deposition and double stripping steps mode in combination with a flow system. Talanta 2025; 282:126982. [PMID: 39378765 DOI: 10.1016/j.talanta.2024.126982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Double deposition and double stripping steps mode was used for the first time in combination with a flow system for anodic stripping voltammetric determination of As(III) ions. The proposed way of the voltammetric measurements leads to a decrease of the detection limit as compared to the values obtained using a traditional three-electrode system thanks to an initial preconcentration of the analyte on the first working electrode as well as the significant increase of the selectivity of As(III) determination thanks to the application of a flow system. Optimization of the analytical procedure was performed. The calibration curve of As(III) determination was a straight line in the range from 1 × 10-9 to 5 × 10-8 mol L-1. The estimated detection limit was 4.8 × 10-10 mol L-1 (deposition time of 120 s at both working electrodes). The repeatability of the proposed procedure calculated as RSD% for As(III) at a concentration of 1 × 10-8 mol L-1 was 3.8 % (n = 7). The tolerable limit of Cu(II) excess was significantly increased thanks to the solution exchange after the first deposition step. The correctness of the proposed procedure was confirmed by analysis of a real water sample and lake water certified reference material by obtaining satisfactory recovery values.
Collapse
Affiliation(s)
- Iwona Gęca
- Department of Analytical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie Sklodowska sq. 3, 20-031, Lublin, Poland.
| | - Mieczyslaw Korolczuk
- Department of Analytical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie Sklodowska sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
2
|
Sulthana SF, Iqbal UM, Suseela SB, Anbazhagan R, Chinthaginjala R, Chitathuru D, Ahmad I, Kim TH. Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review. ACS OMEGA 2024; 9:25493-25512. [PMID: 38911761 PMCID: PMC11190924 DOI: 10.1021/acsomega.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Heavy metal ions (HMIs) are very harmful to the ecosystem when they are present in excess of the recommended limits. They are carcinogenic in nature and can cause serious health issues. So, it is important to detect the metal ions quickly and accurately. The metal ions arsenic (As3+), cadmium (Cd2+), chromium (Cr3+), lead (Pb2+), and mercury (Hg2+) are considered to be very toxic among other metal ions. Standard analytical methods like atomic absorption spectroscopy, atomic fluorescence spectroscopy, and X-ray fluorescence spectroscopy are used to detect HMIs. But these methods necessitate highly technical equipment and lengthy procedures with skilled personnel. So, electrochemical sensing methods are considered to be more advantageous because of their quick analysis with precision and simplicity to operate. They can detect a wide range of heavy metals providing real-time monitoring and are cost-effective and enable multiparametric detection. Various sensing applications necessitate severe regulation regarding the modification of electrode surfaces. Numerous nanomaterials such as graphene, carbon nanotubes, and metal nanoparticles have been extensively explored as interface materials in electrode modifiers. These nanoparticles offer excellent electrical conductivity, distinctive catalytic properties, and high surface area resulting in enhanced electrochemical performance. This review examines different HMI detection methods in an aqueous medium by an electrochemical sensing approach and studies the recent developments in interface materials for altering the electrodes.
Collapse
Affiliation(s)
- S. Fouziya Sulthana
- Department
of Mechatronics Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - U. Mohammed Iqbal
- Department
of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreeja Balakrishnapillai Suseela
- Department
of Electronics and Communication Engineering, Centre for Medical Electronics,
College of Engineering, Anna University, Chennai, Tamil Nadu 600025, India
| | - Rajesh Anbazhagan
- School
of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613401, India
| | - Ravikumar Chinthaginjala
- School
of Electronics Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhanamjayulu Chitathuru
- School of
Electrical Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Tai-hoon Kim
- School
of Electrical and Computer Engineering Yeosu Campus, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do 59626, Republic of Korea
| |
Collapse
|
3
|
Gharous M, Bounab L, Pereira FJ, Choukairi M, López R, Aller AJ. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. Int J Mol Sci 2023; 24:11269. [PMID: 37511028 PMCID: PMC10378910 DOI: 10.3390/ijms241411269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Paracetamol (PCT), or acetaminophen, is an important drug used worldwide for various clinical purposes. However, the excessive or indiscriminate use of PCT can provoke liver and kidney dysfunction; hence, it is essential to determine the amount of this target in biological samples. In this work, we develop a quick, simple, and sensitive voltammetric method using chemically modified electrodes to determine PCT in complex matrices, including human serum and commercial solid formulations. We modify the carbon paste electrode with stevensite monoclinic clay mineral (Stv-CPE), using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy to characterise and detect PCT. The kinetics study provides a better electrochemical characterisation of the electrode behaviour, finding the detection and quantitation limits of 0.2 μM and 0.5 μM under favourable conditions. Further, the best linear working concentration range is 0.6-100 μM for PCT, applying the proposed method to the quantitative determination of PCT content in reference tablet formulations and biological samples for validation.
Collapse
Affiliation(s)
- Moaad Gharous
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Loubna Bounab
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Fernando J Pereira
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - Mohamed Choukairi
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Roberto López
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - A Javier Aller
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| |
Collapse
|
4
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Piña S, Sandoval MA, Jara-Ulloa P, Contreras D, Hassan N, Coreño O, Salazar R. Nanostructured electrochemical sensor applied to the electrocoagulation of arsenite in WWTP effluent. CHEMOSPHERE 2022; 306:135530. [PMID: 35792212 DOI: 10.1016/j.chemosphere.2022.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 μg L-1 with a detection limit of 0.39 μg L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 μg L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm-2 in less than 3 min of treatment.
Collapse
Affiliation(s)
- Samuel Piña
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile; Laboratorio de Electroquímica del Medio Ambiente, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Miguel A Sandoval
- Laboratorio de Electroquímica del Medio Ambiente, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile; Departamento de Ingenieria Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Paola Jara-Ulloa
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Santiago, 7941169, Chile
| | - David Contreras
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Natalia Hassan
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile; Millenium Nucleous in NanoBioPhysics, Chile
| | - Oscar Coreño
- Universidad de Guanajuato, Departamento de Ingeniería Civil, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
6
|
López R, Pereira F, Suárez D, Aller A. Speciation of organoarsenicals in aqueous solutions by Raman spectrometry and quantum chemical calculations. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Pereira F, López R, Suárez D, Aller A. pH-dependent structural changes of arsenic oxoacids in solution and solid phase: Raman spectrometry and computational studies. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Hu H, Xie B, Lu Y, Zhu J. Advances in Electrochemical Detection Electrodes for As(III). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:781. [PMID: 35269271 PMCID: PMC8912440 DOI: 10.3390/nano12050781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
Arsenic is extremely abundant in the Earth's crust and is one of the most common environmental pollutants in nature. In the natural water environment and surface soil, arsenic exists mainly in the form of trivalent arsenite (As(III)) and pentavalent arsenate (As(V)) ions, and its toxicity can be a serious threat to human health. In order to manage the increasingly serious arsenic pollution in the living environment and maintain a healthy and beautiful ecosystem for human beings, it is urgent to conduct research on an efficient sensing method suitable for the detection of As(III) ions. Electrochemical sensing has the advantages of simple instrumentation, high sensitivity, good selectivity, portability, and the ability to be analyzed on site. This paper reviews various electrode systems developed in recent years based on nanomaterials such as noble metals, bimetals, other metals and their compounds, carbon nano, and biomolecules, with a focus on electrodes modified with noble metal and metal compound nanomaterials, and evaluates their performance for the detection of arsenic. They have great potential for achieving the rapid detection of arsenic due to their excellent sensitivity and strong interference immunity. In addition, this paper discusses the relatively rare application of silicon and its compounds as well as novel polymers in achieving arsenic detection, which provides new ideas for investigating novel nanomaterial sensing. We hope that this review will further advance the research progress of high-performance arsenic sensors based on novel nanomaterials.
Collapse
Affiliation(s)
- Haibing Hu
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (Y.L.)
| | - Baozhu Xie
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (Y.L.)
| | - Yangtian Lu
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (Y.L.)
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Huang HQ, Li YY, Chen SH, Liu ZG, Cui YM, Li HQ, Guo Z, Huang XJ. Noble-metal-free Fe 3O 4/Co 3S 4 nanosheets with oxygen vacancies as an efficient electrocatalyst for highly sensitive electrochemical detection of As(III). Anal Chim Acta 2022; 1189:339208. [PMID: 34815044 DOI: 10.1016/j.aca.2021.339208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
The electrochemical method for highly sensitive determination of arsenic(III) in real water samples with noble-metal-free nanomaterials is still a difficult but significant task. Here, an electrochemical sensor driven by noble-metal-free layered porous Fe3O4/Co3S4 nanosheets was successfully employed for As(III) analysis, which was prepared via a facile two-step method involves a hydrothermal treatment and a subsequent sulfurization process. As expected, the electrochemical detection of As(III) in 0.1 M HAc-NaAc (pH 6.0) by square wave anodic stripping voltammetry (SWASV) with a considerable sensitivity of 4.359 μA/μg·L-1 was obtained, which is better than the commonly used noble metals modified electrodes. Experimental and characterization results elucidate the enhancement of As(III) electrochemical performance could be attributed to its nano-porous structure, the presence of oxygen vacancies and strong synergetic coupling effects between Fe3O4 and Co3S4 species. Besides, the Fe3O4/Co3S4 modified screen printed carbon electrode (Fe3O4/Co3S4-SPCE) shows remarkable stability and repeatability, valuable anti-interference ability and could be used for detection in real water samples. Consequently, the results confirm that as-prepared porous Fe3O4/Co3S4 nanosheets is identified as a promising modifier to detect As(III) in real sample analysis.
Collapse
Affiliation(s)
- Hong-Qi Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Yong-Yu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Zhong-Gang Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Yu-Min Cui
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Hui-Quan Li
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Zheng Guo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Xing-Jiu Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
10
|
Núñez C, Triviño JJ, Arancibia V. A electrochemical biosensor for As(III) detection based on the catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle-modified screen-printed carbon electrode. Talanta 2021; 223:121702. [PMID: 33298256 DOI: 10.1016/j.talanta.2020.121702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023]
Abstract
A electrochemical biosensor for As(III) determination has been developed by immobilization of the Alcaligenis faecalis bacteria on gold nanoparticle-modified screen-printed carbon electrode (AuNPs-SPCE). The detection of As(III) is due to the catalytic activity of arsenite oxidase enzyme which oxidizes As(III) to As(V) producing an analytical signal. To enhance the performance of the biosensor, was optimized the amount of bacteria, amount of glutaraldehyde and incubation time applied in the preparation of the electrode, in addition to the effect of pH and applied potential. The analytical application was carried out applying 300 mV (pH = 7) obtaining a LOD of 6.61 μmol L-1 (R = 0.9975) and 700 mV (pH = 12) obtaining a LOD of 1.84 μmol L-1 (R = 0.9983). AF/AuNPs-SPCE was applied to the determination of total arsenic in Loa river water samples after reduction, with satisfactory results.
Collapse
Affiliation(s)
- Claudia Núñez
- Pontificia Universidad Católica de Chile, Chemistry and Pharmacy Faculty, Santiago, 7820436, Chile.
| | - Juan José Triviño
- Pontificia Universidad Católica de Chile, Chemistry and Pharmacy Faculty, Santiago, 7820436, Chile
| | - Verónica Arancibia
- Pontificia Universidad Católica de Chile, Chemistry and Pharmacy Faculty, Santiago, 7820436, Chile.
| |
Collapse
|
11
|
Nguyen LD, Huynh TM, Nguyen TSV, Le DN, Baptist R, Doan TCD, Dang CM. Nafion/platinum modified electrode-on-chip for the electrochemical detection of trace iron in natural water. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Giménez-Gómez P, Baldi A, Ayora C, Fernández-Sánchez C. Automated Determination of As(III) in Waters with an Electrochemical Sensor Integrated into a Modular Microfluidic System. ACS Sens 2019; 4:3156-3165. [PMID: 31657207 DOI: 10.1021/acssensors.9b01286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of high levels of arsenic in waters poses a threat to the human health in many countries all over the world. Effective surveillance programs of water quality require the implementation of in-field tests to assess early the presence of this metal ion and other contaminants. To date, there exist few market-available analytical approaches that suffer from important limitations related to cost, in addition to complex reactions, very long analysis times, and/or high limits of detection. This work describes a robust electrochemical sensor integrated into a modular microfluidic system that shows a clear potential to be deployed for the on-site monitoring of inorganic As(III) species. Flexible and transparent microfluidic modules are fabricated by rapid prototyping techniques and include different microfluidic components among them, flow cells where electrochemical sensors can be easily and reversibly inserted. The electrochemical sensor comprises a gold nanoparticle (AuNP)-modified gold thin-film electrode that is readily applied to the sensitive detection of As(III) by anodic stripping linear sweep voltammetry. The microfluidic system enables the automatic sensor calibration, sample uptake, and preconditioning as well as As(III) detection. The system response to As(III) is linear in a concentration range of 1-150 μg L-1, with a detection limit of 0.42 μg L-1, which is well below the threshold value of 10 μg L-1 set by the World Health Organization. Analysis of tap water and two water samples from two Argentinean aquifers, spiked with different As(III) concentrations, demonstrates the excellent performance of the system.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Baldi
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Ayora
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nonomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
13
|
Wang X, Xu G, Chen P, Sun Y, Yao X, Lv Y, Guo W, Wang G. Fully-automated magnetic stirring-assisted lab-in-syringe dispersive liquid–liquid microextraction for the determination of arsenic species in rice samples. RSC Adv 2018; 8:16858-16865. [PMID: 35540556 PMCID: PMC9080300 DOI: 10.1039/c8ra00875b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/01/2018] [Indexed: 01/31/2023] Open
Abstract
Fully-automated magnetic stirring-assisted lab-in-syringe dispersive liquid–liquid microextraction (MAS-LIS-DLLME), combined with graphite furnace atomic absorption spectrometry (GFAAS) was developed for the fast and efficient separation and preconcentration of trace levels of inorganic arsenic species in rice samples. This totally automated analytical procedure combines the advantages of lab-in-syringe flow system and dispersive liquid–liquid microextraction (DLLME) aiming at separation of trace arsenite and arsenate species from natural matrix for the first time. With a single syringe pump that is coupled with a multiposition valve, the whole lab-in-syringe microextraction process including cleaning, mixing, microextraction, phase separation, and target analyte collection was implemented in a fully-automated way. Significant factors of the MAS-LIS-DLLME method were sample acidity, concentration of the chelating agent, amounts of ionic liquids (ILs), aspiration speed and matrix interference. Using the present method, the limits of detection (LODs) for As(v) was 0.005 μg L−1. The relative standard deviation (RSDs) for seven replicate measurements of 2.0 μg L−1 of As(v) was 3.7%. The linear dynamic range (LDR) was 0.04–5.0 μg L−1 and the determination coefficients was 0.9990. Under the optimum conditions, the developed totally automated analytical procedure was successfully applied for the trace arsenite and arsenate species studies in natural rice samples and standard reference materials with satisfactory results. The schematic of the MAS-LIS-DLLME system. D, detection system; SP, syringe pump; SV, three-way solenoid valve; W, waste; MPV, multiposition valve.![]()
Collapse
Affiliation(s)
- Xiaojun Wang
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Guoliang Xu
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Peng Chen
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Yueshu Sun
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Xiaoting Yao
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Yan Lv
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Weiwei Guo
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| | - Guozhen Wang
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- People's Republic of China
| |
Collapse
|
14
|
Kempahanumakkagari S, Deep A, Kim KH, Kumar Kailasa S, Yoon HO. Nanomaterial-based electrochemical sensors for arsenic - A review. Biosens Bioelectron 2017; 95:106-116. [DOI: 10.1016/j.bios.2017.04.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/04/2023]
|
15
|
Chimezie AB, Hajian R, Yusof NA, Woi PM, Shams N. Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe 3 O 4 ) as an electrochemical sensor for trace determination of As(III) in water resources. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
|
17
|
Carrera P, Espinoza-Montero PJ, Fernández L, Romero H, Alvarado J. Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Talanta 2017; 166:198-206. [PMID: 28213223 DOI: 10.1016/j.talanta.2017.01.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
We have developed an anodic stripping voltammetry method that employs carbon fiber ultra-microelectrodes modified with gold nanoparticles to determine arsenic in natural waters. Gold nanoparticles were potentiostatically deposited on carbon fiber ultra-microelectrodes at -0.90V (vs SCE) for a time of 15s, to form the carbon fiber ultra-microelectrodes modified with gold nanoparticles. Cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy coupled to an X-ray microanalysis system were used to check and confirm the presence of gold nanoparticles on the carbon fiber ultra-microelectrodes. Arsenic detection parameters such as deposition potential and deposition time were optimized allowing a detection range between 5 to 60µgL-1. The developed modified electrodes allowed rapid As determination with improved analytical characteristics including better repeatability, higher selectivity, lower detection limit (0.9μgL-1) and higher sensitivity (0.0176nAμgL-1) as compared to the standard carbon electrodes. The analytical capability of the optimized method was demonstrated by determination of arsenic in certified reference materials (trace elements in water (NIST SRM 1643d)) and by comparison of results with those obtained by hydride generation atomic absorption spectrometry (HG-AAS) in the determination of the analyte in tap and well waters.
Collapse
Affiliation(s)
| | | | - Lenys Fernández
- Universidad Simón Bolívar, Departamento de Química, Apartado 89000, Caracas, Venezuela.
| | - Hugo Romero
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de la Salud, Apartado 070151, Machala, Ecuador
| | - José Alvarado
- Universidad Simón Bolívar, Departamento de Química, Apartado 89000, Caracas, Venezuela
| |
Collapse
|
18
|
Antonova S, Zakharova E. Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: A mini-review. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|