1
|
Redondo-Fernández G, Cid-Barrio L, Fernández-Argüelles MT, de la Escosura-Muñiz A, Soldado A, Costa-Fernández JM. Controlled silver electrodeposition on gold nanoparticle antibody tags for ultrasensitive prostate specific antigen sensing using electrochemical and optical smartphone detection. Talanta 2024; 275:126095. [PMID: 38653118 DOI: 10.1016/j.talanta.2024.126095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
One of the current challenges in medicine is to achieve a rapid and unequivocal detection and quantification of extremely low levels of disease biomarkers in complex biological samples. Here, we present the development and analytical evaluation of a low-cost smartphone-based system designed for ultrasensitive detection of the prostate-specific antigen (PSA) using two detection alternatives: electrochemical or optical, by coupling the smartphone with a portable potentiostat or magnifying lenses. An antibody tagged with gold nanoparticles (AuNPs), and indium tin oxide coated polyethylene terephthalate platform (ITO-PET) have been used to develop a sandwich-type immunoassay. Then, a controlled silver electrodeposition on the AuNPs surface is carried out, enhancing their size greatly. Due to such strong nanoparticle-size amplification (from nm to μm), the final detection can be dual, by measuring current intensity or the number of silver-enlarged microstructures generated. The proposed strategies exhibited limit detections (LOD) of 102 and 37 fg/mL for electrochemical and optical detection respectively. The developed immunosensor reaches excellent selectivity and performance characteristics to quantify biomarkers at clinically relevant values without any pretreatment. These proposed procedures could be useful to check and verify possible recurrence after clinical treatment of tumors or even report levels of disease serum biomarkers in early stages.
Collapse
Affiliation(s)
- Guillermo Redondo-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - María T Fernández-Argüelles
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
2
|
Turk Z, Armani A, Jafari-Gharabaghlou D, Madakbas S, Bonabi E, Zarghami N. A new insight into the early detection of HER2 protein in breast cancer patients with a focus on electrochemical biosensors approaches: A review. Int J Biol Macromol 2024; 272:132710. [PMID: 38825266 DOI: 10.1016/j.ijbiomac.2024.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.
Collapse
Affiliation(s)
- Zeynep Turk
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyfullah Madakbas
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.
| |
Collapse
|
3
|
Ye S, Wang P, Li Y, Wang W, Liu Q, Li Y. Halloysite nanotubes-loaded conductive polymer as substrate and label material for sensitive detection of amyloid-β protein by electrochemical immunosensor. Talanta 2023; 268:125345. [PMID: 39491948 DOI: 10.1016/j.talanta.2023.125345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Amyloid-beta protein (Aβ) is a unique biomarker for Alzheimer's disease (AD). The sandwich-type electrochemical immunosensor, one of the key tools for detecting biomarkers, relies on a high-performance signal amplification approach to enhance its sensitivity. Ni/PdH nanodendrites (Ni/PdH NDs) have increased catalytic activity due to their unique interaction with palladium hydride and their nickel-rich surface, tunable shape and high specific surface area. Modified halloysite nanotubes (mHNT)-loaded with polypyrrole (PPy@mHNT) possess excellent dispersion and a large surface area. This enables the formation of a conductive network to prevent the accumulation of Ni/PdH NDs. Additionally, it exposes more electrocatalytic active centers, effectively amplifying electrical signals. By utilizing Ni/PdH@PPy@mHNT as the labeling material, it shows a consistent and remarkable electrocatalytic activity in H2O2 reduction, leading to signal amplification. The acid-etched HNT coated with polyaniline (PANI@eHNT) exhibits an exceptionally low background signal and outstanding conductivity. This not only accelerates electron transfer on the electrode surface, but also ensures the stable incubation of biomolecules post-amino grafting. Utilizing NH2-PANI@eHNT as a substrate material can guarantee stable biomolecule incubation, offer a stable sensing platform and enhance immunosensor performance. The signal can be amplified and the immunosensor's sensitivity can be raised through the efficient cooperation of the aforementioned nanomaterials. Under optimum circumstances, the electrochemical immunosensor had the lowest detection limit of 5.53 fg mL-1 and a linear range of 50 fg mL-1 to 100 ng mL-1. Based on the outstanding performance previously mentioned, this immunosensor is anticipated to aid in the early detection of AD.
Collapse
Affiliation(s)
- Sujie Ye
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Yang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Wenzhong Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
4
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
5
|
Nxele SR, Nkhahle R, Nyokong T. The synergistic effects of coupling Au nanoparticles with an alkynyl Co(II) phthalocyanine on the detection of prostate specific antigen. Talanta 2022; 237:122948. [PMID: 34736674 DOI: 10.1016/j.talanta.2021.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Prostate specific antigen (PSA) aptasensors are fabricated using a novel asymmetrically substituted Co phthalocyanine (CoPc), gold nanoparticles (AuNPs) and PSA-specific antigen. The fabricated aptasensors are: GCE-AuNPs-Aptamer, GCE@CoPc-Aptamer and GCE-AuNPs@CoPc-Aptamer (GCE = glassy carbon electrode). The fabricated sensors are characterized at each modification step to monitor the changes occurring at the sensor surface. Concentration studies were carried out using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) to determine detection limits. All the fabricated aptasensors were found to be highly specific and selective but the GCE-AuNPs@CoPc-Aptamer nanoconjugate performed the best. The aptasensors were also tested in spiked serum samples and detection limits, as well as % recoveries were determined. The results obtained showed that the GCE-AuNPs@CoPc-Aptamer has the potential to be used for clinical studies as the results agree with those obtained for detection of PSA in buffer.
Collapse
Affiliation(s)
- Siphesihle Robin Nxele
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa
| | - Reitumetse Nkhahle
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
6
|
Chen L. Construction and Signal Feature Processing of Gold Nanobiosensors Based on the Internet of Things. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1432266. [PMID: 35047147 PMCID: PMC8763554 DOI: 10.1155/2022/1432266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
With the continuous development of signal amplification technology and nanotechnology, more and more electrochemical sensors combining nanotechnology and signal amplification technology are applied in the field of analysis. In this paper, combined with the Internet of Things technology, the construction of gold nanobiosensors and signal characteristic processing are carried out. In this paper, a T-rich DNA probe is used as the recognition element, modified on the electrode surface, combined with DNA-modified nanogold particle amplification technology, and the electroactive substance peg amine is used as the signal molecule to develop a highly sensitive electrochemical biosensor for the detection of melamine. The sensor has good specificity and sensitivity, and the detection limit is as low as 0.5 NM. In addition, by combining sensors with the Internet of Things technology, melamine monitoring and signal characteristic processing can be carried out in real time. This model can easily achieve the purpose of accurate and quantitative analysis of melamine toxins and can be effective for food safety.
Collapse
Affiliation(s)
- Ling Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
7
|
Robin Nxele S, Nkhahle R, Nyokong T. The composites of asymmetric Co phthalocyanines-graphitic carbon nitride quantum dots-aptamer as specific electrochemical sensors for the detection of prostate specific antigen: Effects of ring substituents. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Aayanifard Z, Alebrahim T, Pourmadadi M, Yazdian F, Dinani HS, Rashedi H, Omidi M. Ultra pH-sensitive detection of total and free prostate-specific antigen using electrochemical aptasensor based on reduced graphene oxide/gold nanoparticles emphasis on TiO 2/carbon quantum dots as a redox probe. Eng Life Sci 2021; 21:739-752. [PMID: 34764826 PMCID: PMC8576073 DOI: 10.1002/elsc.202000118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The development of a rapid, sensitive, and straightforward detection method of prostate-specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single-stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO-nanohybrid-modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle-containing electrolyte. Optimization of incubation time of aptamer/Au/GO-nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL-1 was achieved with a dynamic range from 0.5 to 7 ng ml-1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs-containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml-1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.
Collapse
Affiliation(s)
- Zahra Aayanifard
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Talieh Alebrahim
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | | | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| | | | - Hamid Rashedi
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Meisam Omidi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
9
|
Li M, Zhang W, Zhang Y. Aptamer-gold nanoparticle-signal probe bioconjugates amplify electrochemical signal for the detection of prostate specific antigen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4150-4156. [PMID: 34554161 DOI: 10.1039/d1ay01175h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we reported a simple and sensitive electrochemical immunosensor for the detection of PSA, a prostate cancer biomarker. In the design protocol, gold nanoparticles (Au NPs) were used a carrier to load an aptamer and the binding DNA labeled with methylene blue (MB, signal probe) for signal amplification (denoted as aptamer-Au NP-signal probe bioconjugate). The immunosensor was fabricated by immobilizing antibodies on the electrode surface modified with Au NPs to capture the PSA antigen, and then sandwiched with the aptamer-Au NP-signal probe (AASp) bioconjugates. Square wave voltammetry (SWV) was employed to record the detection signal in phosphate-buffered solution (PBS, pH 7.4). As a result, a well-shaped peak was obtained at about -0.45 V (vs. SCE) corresponding to the oxidation of MB, and the peak intensity was related to the concentration of PSA. Because of the amplification of the detection signal by the as-synthesized AASp bioconjugates, the immunosensor achieved a wide linear response range (0.001 to 75.0 ng mL-1) and a low detection limit of 3.0 pg mL-1 (at S/N = 3). Further, the immunoassay exhibited excellent selectivity.
Collapse
Affiliation(s)
- Mengyao Li
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Wenjuan Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| |
Collapse
|
10
|
Wan H, Cao X, Liu M, Zhang F, Sun C, Xia J, Wang Z. Aptamer and bifunctional enzyme co-functionalized MOF-derived porous carbon for low-background electrochemical aptasensing. Anal Bioanal Chem 2021; 413:6303-6312. [PMID: 34396471 DOI: 10.1007/s00216-021-03585-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
To improve the efficiency of aptasensors, a signal amplification strategy by coupling tyrosinase (Tyr)-triggered redox cycling with nanoscale porous carbon (NCZIF) has been proposed. The NCZIF was obtained by calcining ZIF-8 crystals in an inert atmosphere. It had high surface areas, great biocompatibility, and ease of functionalization, which was beneficial for immobilizing sufficient Tyr and aptamer covalently. When the target prostate-specific antigen (PSA) was present, the NCZIF functionalized with Tyr and an aptamer bound to the aptamer-modified Au electrode specifically through the sandwich structure. Then, Tyr acted to oxidize the electroinactive phenol, which led to low-background signal, in the substrate to electroactive catechol, and triggered the redox cycling under the action of NADH. The low detection limit of the proposed electrochemical aptasensor for PSA was 0.01 ng mL-1, and the wide detection range was from 0.01 to 50 ng mL-1. The use of ZIF-8 derived porous carbon and Tyr-triggered redox cycling system provided a promising solution for the development of simple, rapid, reliable, and low-background aptasensing methods, which had great potential in the field of disease diagnosis and biomedicine.
Collapse
Affiliation(s)
- Hui Wan
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Min Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Chao Sun
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd, Qingdao, 266101, Shandong, China.
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| |
Collapse
|
11
|
The electrochemical detection of prostate specific antigen on glassy carbon electrode modified with combinations of graphene quantum dots, cobalt phthalocyanine and an aptamer. J Inorg Biochem 2021; 221:111462. [PMID: 33992966 DOI: 10.1016/j.jinorgbio.2021.111462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
Herein, a novel aptasensor is developed for the electrochemical detection of prostate specific antigen (PSA) on electrode surfaces modified using various combinations of a Cobalt phthalocyanine (CoPc), an aptamer and graphene quantum dots (GQDs). Electrochemical impedance spectroscopy (EIS) as well as differential pulse voltammetry (DPV) are employed for the detection of PSA. In both analytical techniques, linear calibration curves were observed at a concentration range of 1.2-2.0 pM. The glassy carbon electrode where CoPc and GQDs are placed on the electrode when non-covalently linked followed by addition of the aptamer (GQDs-CoPc(ππ)-aptamer (sequential)) showed the best performance with a limit of detection (LoD) as low as 0.66 pM when using DPV. The detection limits were much lower than the dangerous levels reported for PSA in males tested for prostate cancer. This electrode showed selectivity for PSA in the presence of bovine serum albumin, glucose and L-cysteine. The aptasensor showed good stability, reproducibility and repeatability, deeming it a promising early detection device for prostate cancer.
Collapse
|
12
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Kalyani T, Nanda A, Jana SK. Detection of a novel glycodelin biomarker using electrochemical immunosensor for endometriosis. Anal Chim Acta 2020; 1146:146-154. [PMID: 33461710 DOI: 10.1016/j.aca.2020.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/04/2023]
Abstract
Endometriosis is one of the important issues in women worldwide, which decreases the quality of women's lives in their reproductive age. The diagnosis of endometriosis is carried out by the invasive procedure, which is expensive and painful. In the last few decades, researchers have given more attention to constructing a suitable biomarker-based biosensor for semi/non-invasive diagnosis of endometriosis. As a result, glycodelin (GLY) was found as a promising biomarker because of its selectivity and sensitivity. To the best of our knowledge, it was the first study that reported the detection of GLY biomarker using an electrochemical immunosensor. Briefly, a label-free electrochemical immunosensing platform was constructed through in-situ surface modification of cysteamine layer and immobilisation of antibody (anti-GLY) with help of glutaraldehyde. The interaction between antigen and antibody was measured using square wave voltammetry (SWV). The SWV signal could decrease proportionally with the increasing GLY concentration ranging from 1 to 1000 ng mL-1 (R2 = 0.9981) and a detection limit (LOD) of 0.43 ng mL-1. Moreover, an immunosensor could exhibit high sensitivity, selectivity, long-term stability, reproducibility and regeneration. Accuracy of the immunosensor was compared with enzyme-linked immunosorbent assay (ELISA), and satisfying results were obtained. The detection of GLY biomarker may be a new possibility for endometriosis diagnosis.
Collapse
Affiliation(s)
- Thangapandi Kalyani
- Department of Biotechnology, National Institute of Technology, Papum Pare, 791112, Arunachal Pradesh, India
| | - Amalesh Nanda
- Department of Biotechnology, National Institute of Technology, Papum Pare, 791112, Arunachal Pradesh, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Papum Pare, 791112, Arunachal Pradesh, India.
| |
Collapse
|
14
|
Solhi E, Hasanzadeh M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed Pharmacother 2020; 132:110849. [PMID: 33068928 DOI: 10.1016/j.biopha.2020.110849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second most extended disease during the world with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome this problem. Aptamers can be employed as high-affinity tools for cancer detection. The utilization of aptamer-based strategy in cancer investigation and strategy shows new opportunities in biotechnology. The label-free system is an important method to study biomolecules in different sizes, such as biomarkers in real-time because of their greatest sensitivity, selectivity, and multi examination. In this review (with 75 references), excellent features of the label-free aptasensors on the sensitive and accurate monitoring of cancer biomarkers were discussed. Also, the role of advanced of nanomaterials on the construction of label-free aptasensors were investigated. In addition, application of different detection methods such as electrochemical, optical, electronic, and photoelectrochemical (PEC), electrochemiluminescence (ECL) were surveyed. Finally, advantages and limitation of different strategies on the early stage diagnosis of cancer biomarkers were discussed. This article has been updated until July 2020.
Collapse
Affiliation(s)
- Elham Solhi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Assari P, Rafati AA, Feizollahi A, Joghani RA. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111066. [PMID: 32600691 DOI: 10.1016/j.msec.2020.111066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
The aim of this research is to introduce a novel label free electrochemical immunosensor based on glassy carbon electrode (GCE) modified with carboxylated carbon nanotubes (COOH-MWCNTs)/polyaniline (PANI)/gold nanoparticles (AuNPs) for the detection of prostate specific antigen (PSA). The AuNPs were utilized as a connector for PSA antibody immobilization through NH2 groups on antibody. Investigations on modified electrode surface were performed by FT-IR spectrum, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) to evaluate the synthesized nanocomposite and modified electrode surface. As a sensitive analytical method for the detection of PSA, differential pulse voltammetry (DPV) was employed in different ranges of antigen concentration, 1.66 ag·mL-1 to 1.3 ng·mL-1. In addition, the detection limit was obtained 0.5 pg·mL-1, from the linear relationship between antigen concentration log and peak current. Also, the proposed immunosensor was carried out for the determination of PSA in human serum samples, indicating recoveries ranging from 92 to 104%. Finally, it should be noted that the reproducibility and specificity, along with the stability of the present immunosensor were examined, and satisfactory findings were obtained, thus proving it as a promising PSA immunosensor.
Collapse
Affiliation(s)
- Parnaz Assari
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Azizallah Feizollahi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Roghayeh Asadpour Joghani
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| |
Collapse
|
16
|
Negahdary M, Behjati-Ardakani M, Heli H, Sattarahmady N. A Cardiac Troponin T Biosensor Based on Aptamer Self-assembling on Gold. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 8:271-283. [PMID: 32587837 PMCID: PMC7305465 DOI: 10.22088/ijmcm.bums.8.4.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, a sensitive and accurate aptasensor was designed for early detection of myocardial infarction through the determination of troponin T (TnT). The successful immobilization of a specific aptamer sequence on the surface of gold that had a high affinity toward TnT was accomplished. TnT was electrochemically quantified. The results indicated that the aptasensor detected TnT in a range of 0.05-5 ng mL, and with a detection limit of 0.01 ng/mL. The performance of the aptasensor was investigated by analyzing 99 human serum samples. Both diagnostic specificity and sensitivity of the aptasensor were found to be 95%. The use of the designed aptamer-based biosensor could be an essential achievement in health policy, preventing deaths caused by myocardial infarction, and reducing patients with heart failure. The extensive use of this aptamer-based biosensor can also reduce costs, enhance speed, and improve accuracy in the diagnosis of TnT as an important myocardial infarction biomarker.
Collapse
Affiliation(s)
- Masoud Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal Chim Acta 2020; 1124:1-19. [PMID: 32534661 DOI: 10.1016/j.aca.2020.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
The tunability of SELEX procedure is an essential feature to supply bioaffinity receptors (aptamers) almost on demand for analytical and therapeutic purposes. This longstanding ambition is, however, not straightforward. Non-invasive cancer diagnosis, so called liquid biopsy, requires collection of body fluids with minimal or no sample pretreatment. In those raw matrices, aptamers must recognize minute amounts of biomarkers that are not unique entities but large sets of variants evolving with the disease stage. The susceptibility of aptasensors to assay conditions has driven the selection of aptamers to natural environments to ensure their optimum performance in clinical samples. We present herein a compilation of the SELEX procedures in natural milieus. By revising the electrochemical aptasensors applied to clinical samples for cancer diagnosis and tracing back to the original SELEX we analyze whether aptamers raised using these SELEX strategies are being incorporated to the diagnostic devices and how aptasensors are finding their way to a market dominated by antibody-based assays.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Ramón Lorenzo-Gómez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Rebeca Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Noemí de-Los-Santos-Álvarez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - María Jesús Lobo-Castañón
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
18
|
Abstract
Aptasensors form a class of biosensors that function on the basis of a biological recognition. An aptasensor is advantageous because it incorporates a unique biologic recognition element, i.e., an aptamer, coupled to a transducer to convert a biological interaction to readable signals that can be easily processed and reported. In such biosensors, the specificity of aptamers is comparable to and sometimes even better than that of antibodies. Using the SELEX technique, aptamers with high specificity and affinity to various targets can be isolated from large pools of different oligonucleotides. Nowadays, new modifications of the SELEX technique and, as a result, easy generation and synthesis of aptamers have led to the wide application of these materials as biological receptors in biosensors. In this regard, aptamers promise a bright future. In the present research a brief account is initially provided of the recent developments in aptasensors for various targets. Then, immobilization methods, design strategies, current limitations and future directions are discussed for aptasensors.
Collapse
Affiliation(s)
- Laleh Hosseinzadeh
- Department of Chemistry, Dehloran Branch, Islamic Azad University, Dehloran, Iran
| | | |
Collapse
|
19
|
Shayesteh OH, Ghavami R. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117644. [PMID: 31614271 DOI: 10.1016/j.saa.2019.117644] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
In this colorimetric assay for sensitive detection of prostate specific antigen (PSA) tumor marker, adsorbed non-thiolated poly-Adenine aptamer (polyA Apt) on the gold nanoparticles (AuNPs) surface was used. By incubating the AuNPs and the PSA specific aptamer prior to target addition, polyA Apt adsorbed on the gold nanoparticles and could bind the target while preventing non-specific interactions. Adsorbed polyA Apt on the AuNPs prevents aggregation of them by poly(diallyldimethylammoniumchloride) (PDDA). Upon the addition of PSA, it bind to the polyA Apt and induce the formation of a secondary structure. Therefore, interaction between polyA Apt and PDDA is repressed and PDDA induce the aggregation of the AuNPs. This analytical platform produces a remarkable optical signal in the absence and presence of PSA that accompanied by a color change from red to blue. This effect as a sensing strategy can be observed with naked eyes and quantified by colorimetry via measurement of the ratio of absorbances at 680 nm and 520 nm. Fabricated aptasensor for detection of PSA is linear in the concentration range of 0.1-100 ng/ml with 20 pg/ml as the limit of detection (S/N = 3). Because of the selectively recognized for PSA in the presence of other interfering substances, this proposed assay applied to real samples for the rapid screening of PSA.
Collapse
Affiliation(s)
- Omid Heydari Shayesteh
- Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Raouf Ghavami
- Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| |
Collapse
|
20
|
Negahdary M, Sattarahmady N, Heli H. Advances in prostate specific antigen biosensors-impact of nanotechnology. Clin Chim Acta 2020; 504:43-55. [PMID: 32004532 DOI: 10.1016/j.cca.2020.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
Prostate cancer is one of the most dangerous and deadly cancers in elderly men. Early diagnosis using prostate-specific antigen (PSA) facilitates disease detection, management and treatment. Biosensors have recently been used as sensitive, selective, inexpensive and rapid diagnostic tools for PSA detection. In this review, a variety of PSA biosensors such as aptasensors, peptisensors and immunesensors are highlighted. These use aptamers, peptides and antibodies in the biorecognition element, respectively, and can detect PSA with very high sensitivity via electrochemical, electrochemiluminescence, fluorescence and surface-enhanced Raman spectroscopy. To improve the sensitivity of most of these PSA biosensors, different nanostructured materials have played a critical role.
Collapse
Affiliation(s)
- M Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020; 152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
Heart disease (especially myocardial infarction (MI)) and cancer are major causes of death. Recently, aptasensors with the applying of different nanostructures have been able to provide new windows for the early and inexpensive detection of these deadly diseases. Early, inexpensive, and accurate diagnosis by portable devices, especially aptasensors can increase the likelihood of survival as well as significantly reduce the cost of treatment. In this review, recent studies based on the designed aptasensors for the diagnosis of these diseases were collected, ordered, and reviewed. The biomarkers for the diagnosis of each disease were discussed separately. The primary constituent elements of these aptasensors including, analyte, aptamer sequence, type of nanostructure, diagnostic technique, analyte detection range, and limit of detection (LOD), were evaluated and compared.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Negahdary M, Heli H. An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-β (1-42) using a microporous gold nanostructure. Mikrochim Acta 2019; 186:766. [PMID: 31713687 DOI: 10.1007/s00604-019-3903-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/06/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is connected to aggregation of amyloid-β (Aβ) peptide and formation of insoluble plaques in the brain. Aβ level can be monitored as an AD early diagnosis route. In this study, an irregular shaped microporous gold nanostructure with a typical size of 150 × 250 nm was electrodeposited on a polycrystalline gold surface at 0 mV (vs. AgCl) using sodium alendronate. The nanostructure was then characterized by field-emission scanning electron microscopy. An electrochemical peptide-based biosensor was fabricated by immobilizing an Aβ(1-42)-binding peptide on the gold nanostructure. Binding of Aβ(1-42) by the peptide was followed electrochemically using ferro/ferricyanide as a redox probe. Differential pulse voltammograms in a potential range of 0-500 mV (vs. AgCl) with typical peak potentials at 224 mV are linear in the 3-7000 pg mL-1 Aβ(1-42) concentration range, with a 0.2 pg mL-1 detection limit. The biosensor is free of interferences and was applied to the quantitation of Aβ(1-42) in artificial cerebrospinal fluid and spiked serum samples. Graphical abstractSchematic presentation of an immobilized amyloid-β(1-42)-specific peptide on the surface of a microporous gold nanostructure to fabricate an electrochemical biosensor for early diagnosis of Alzheimer's disease. Aβ(1-42) capturing by the peptide led to repulsion of ferrocyanide/ferricyanide redox couple.
Collapse
Affiliation(s)
- Masoud Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, 7193635899, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, 7193635899, Iran.
| |
Collapse
|
23
|
Akhtartavan S, Karimi M, Sattarahmady N, Heli H. An electrochemical signal-on apta-cyto-sensor for quantitation of circulating human MDA-MB-231 breast cancer cells by transduction of electro-deposited non-spherical nanoparticles of gold. J Pharm Biomed Anal 2019; 178:112948. [PMID: 31704128 DOI: 10.1016/j.jpba.2019.112948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 11/29/2022]
Abstract
A highly simple, sensitive, specific and low-cost electrochemical apta-cyto-sensor for determination of circulating human MDA-MB-231 breast cancer cells was fabricated. Non-spherical nanoparticles of gold were electro-deposited in the presence of ethosuximide as a shape directing and size controlling agent. The nanoparticles had dimensions ranging 50-150 nm, and covered the underlying surface with a roughness factor of 8.03. The Non-spherical nanoparticles were then employed as the apta-cyto-sensor transducer. A 83-mer DNA aptamer that is specific to capturing the cell surface proteins was immobilized on the transducer surface, and binding with the cells was followed using the ferro/ferricyanide redox marker. The aptamer was immobilized within ∼200 min on the transducer surface. The cells were quantified with an equation of regression of ΔIp(μA) = (1.028 ± 0.027) log (C (cell mL-1)) + (0.2199 ± 0.0944), a sensitivity of 1.028 μA (log (concentration / cell mL-1))-1 and a quantitation limit of 2 cell mL-1, in a concentration range of 5 to 2 × 106 cell mL-1. The apta-cyto-sensor selectivity was also evaluated toward AsPC-1, Calu-6, HeLa, MCF-7 and melanoma B16/F10 cell lines. The apta-cyto-sensor had a fabrication reproducibility of 4.2%, regeneration capability of 5.1%, a stability of 35 days, and a potential application for the detection of MDA-MB-231 cells in the spiked blood serum samples with a sensitivity of 0.8975 μA (log (concentration / cell mL-1))-1 and a quantitation limit of 5 cell mL-1, in a concentration range of 10 to 1 × 103 cell mL-1. The apta-cyto-sensor would be applicable for breast cancer diagnosis at early stage.
Collapse
Affiliation(s)
- S Akhtartavan
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Karimi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Nazari-Vanani R, Sattarahmady N, Yadegari H, Khatami M, Heli H. Electrochemical biosensing of 16s rRNA gene sequence of Enterococcus faecalis. Biosens Bioelectron 2019; 142:111541. [DOI: 10.1016/j.bios.2019.111541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
|
25
|
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019; 142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early stage detection of prostate cancer, one of the main causes of mortality among men, is of great importance for better treatment of the patients. Prostate specific antigen (PSA) is a glycoprotein which has been considered as the most potential serological biomarker for the detection of prostate cancer. Among the various techniques employed for PSA detection, aptamer-based biosensors (aptasensors) have achieved notable attention because of their unique features and great potentials as diagnostic tools. A variety of strategies such as integration of nanomaterials (NMs) into the structure of aptasensors have also been applied for enhancing the sensitivity of PSA detection. This article reviews recent advances in various optical and electrochemical aptasensors used for PSA detection.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Negahdary M, Behjati-Ardakani M, Heli H. An electrochemical troponin T aptasensor based on the use of a macroporous gold nanostructure. Mikrochim Acta 2019; 186:377. [PMID: 31134399 DOI: 10.1007/s00604-019-3472-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022]
Abstract
A specific troponin T (TnT) binding aptamer was identified and immobilized on an electrodeposited macroporous gold nanostructure using poly(ethylene glycol) 600, to fabricate a novel and ultrasensitive TnT aptasensor. The transducer surface on the gold disk electrode was characterized by field emission scanning electron microscopy, and immobilization of the aptamer was monitored by open circuit potential measurements. Binding of TnT by the aptamer was monitored by differential pulse voltammetry using ferro/ferricyanide as the redox probe. The aptamer has a high affinity and specificity, and the electrode is sensitive and selective. Best operated at a working potential of 0.23 V (vs. Ag/AgCl), the electrode can detected TnT in the 0.05 to 5.0 ng mL-1 concentration range with a 23 pg mL-1 detection limit. The method was applied to the determination of TnT in 99 spiked human serum samples, and the diagnostic sensitivity and specificity were 94 and 95%, respectively. Graphical abstract Schematic presentation of an electrochemical troponin T aptasensor. A macroporous gold nanostructure was electrodeposited followed by immobilization of a specific TnT aptamer. Binding of TnT by the aptamer was electrochemically monitored. MCH: mercaptohexanol; TnT: troponin T.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 8916978477, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936355899, Iran
| | - Mostafa Behjati-Ardakani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 8916978477, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, 71936355899, Iran.
| |
Collapse
|
27
|
Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 2019; 126:773-784. [DOI: 10.1016/j.bios.2018.11.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
|
28
|
Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem 2019; 566:116-125. [DOI: 10.1016/j.ab.2018.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
29
|
Negahdary M, Heli H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer's disease, using a fern leaves-like gold nanostructure. Talanta 2019; 198:510-517. [PMID: 30876593 DOI: 10.1016/j.talanta.2019.01.109] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
An extremely sensitive and highly simple aptasensor was fabricated for quantitation of amyloid beta (Aβ) by electrochemical transduction of a fern leaves-like gold nanostructure. The gold nanostructure was synthesized by electrodeposition using polyethylene glycol 6000 as a shape-directing agent, and characterized electrochemically and by field emission scanning electron microscopy. A specific RNA aptamer was immobilized on the fern leaves-like gold nanostructure, and binding with Aβ was detected by the ferro/ferricyanide redox marker. The designed aptasensor was able to detect Aβ in a linear range of 0.002-1.28 ng mL-1 and a limit of detection of 0.4 pg mL-1 (88.6 amol L-1). The aptasensor was interference-free, and for demonstration of its viability for Aβ determination in real samples, the human blood serum and artificial cerebrospinal fluid containing Aβ were analyzed. The aptasensor is applicable for the assessment and management of Alzheimer's disease at early stages.
Collapse
Affiliation(s)
- M Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Int J Biol Macromol 2019; 126:1065-1073. [PMID: 30611810 DOI: 10.1016/j.ijbiomac.2019.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
In this study, a novel and efficient aptasensor based on immobilization of thiol terminated prostate specific antigen (PSA) binding DNA aptamer onto Au nanoparticles/fullerene C60-chitosan-ionic liquid/multiwalled carbon nanotubes/screen printed carbon electrode has been fabricated for ultrasensitive aptasensing of biomarker PSA. Formation of PSA-aptamer complex caused a variation in electrochemical impedance spectroscopic (EIS) and differential pulse voltammetric (DPV) responses of the aptasensor which enabled us to aptasensing of the PSA by EIS and DPV methods. Morphology and electrochemical properties of the fabricated aptasensor were examined by scanning electron microscopy (SEM), cyclic voltammetry (CV) and EIS. The aptasensor was successfully applied to the determination of PSA by EIS and DPV in the range of 1-200 pg mL-1 with a limit of detection (LOD) of 0.5 pg mL-1 and 2.5-90 ng mL-1 with a LOD of 1.5 ng mL-1, respectively. This aptasensor exhibited outstanding anti-interference ability towards co-existing molecules with good stability, sensitivity, repeatability and reproducibility. Practical application of the aptasensor was examined with analysis of the PSA levels in serum samples obtained from patients with prostate cancer using both the aptasensor and a reference method. The results revealed the proposed system to be a promising candidate for clinical analysis of PSA.
Collapse
|
31
|
Chen X, Wang Y, Zhang J, Zhang Y. DNA concatemer-silver nanoparticles as a signal probe for electrochemical prostate-specific antigen detection. Analyst 2019; 144:6313-6320. [DOI: 10.1039/c9an01484e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A ultrasensitive electrochemical detection of prostate-specific antigen was reported based on hybridization chain reaction amplifying silver nanoparticles response signal.
Collapse
Affiliation(s)
- Xi Chen
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chem-Biosensing
- Anhui Normal University
- Wuhu 241000
- People's Republic of China
| | - Ya Wang
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chem-Biosensing
- Anhui Normal University
- Wuhu 241000
- People's Republic of China
| | - Junjun Zhang
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chem-Biosensing
- Anhui Normal University
- Wuhu 241000
- People's Republic of China
| | - Yuzhong Zhang
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chem-Biosensing
- Anhui Normal University
- Wuhu 241000
- People's Republic of China
| |
Collapse
|
32
|
A glassy carbon electrode modified with TiO2(200)-rGO hybrid nanosheets for aptamer based impedimetric determination of the prostate specific antigen. Mikrochim Acta 2018; 186:33. [DOI: 10.1007/s00604-018-3141-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
|
33
|
Beheshti-Marnani A, Hatefi-Mehrjardi A, Es'haghi Z. A sensitive biosensing method for detecting of ultra-trace amounts of AFB1 based on "Aptamer/reduced graphene oxide" nano-bio interaction. Colloids Surf B Biointerfaces 2018; 175:98-105. [PMID: 30522013 DOI: 10.1016/j.colsurfb.2018.11.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022]
Abstract
A simple, low-cost and sensitive label-free aptasensor assembled with assisting reduced graphene oxide nanosheets as the signal amplifier was fabricated and applied for detecting ultra-low levels of Aflatoxin B1(AFB1) through a nano-bio interaction system. The conditions of different modified glassy carbon electrodes as the base of aptasensor were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The performance of the fabricated aptasensor was evaluated by FESEM, HRTEM and AFM images. The proposed biosensor detected AFB1sensitively in a wide linear range (0.5 nM-4μM) by DPV with a considerable low limit of detection (LOD = 0.07 nM) and good repeatability (RSD = 2.9) and stability. Finally, the present aptasensor was applied successfully for monitoring AFB1 with appropriate recoveries in pasteurized cow milk and human blood plasma as real samples.
Collapse
Affiliation(s)
| | | | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University (PNU), P.O. Box: 19395-4697, Tehran, Iran.
| |
Collapse
|
34
|
Koyun S, Akgönüllü S, Yavuz H, Erdem A, Denizli A. Surface plasmon resonance aptasensor for detection of human activated protein C. Talanta 2018; 194:528-533. [PMID: 30609568 DOI: 10.1016/j.talanta.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/21/2023]
Abstract
The aim of this study is a highly sensitive and selective label-free surface plasmon resonance (SPR) aptasensor preparation for the specific detection of human activated protein C (APC). In the first step, DNA aptamer was complexed with N-methacryloyl-L-cysteine (MAC) monomer. Then, cyanamide and 2-hydroxyethyl methacrylate solution was mixed with the DNA-Apt/MAC complex. Two different SPR sensors (Random-DNA and HEMA-MAC polymeric films) were also prepared by following the same experimental procedure. The characterization of SPR aptasensors was done by contact angle, atomic force microscopy, and ellipsometer analysis. Selectivity studies of SPR aptasensors were performed in the presence of bovine serum albumin, hemoglobin and myoglobin. Desorption studies were performed by using 0.025 M NaCl solution. The limit of detection (LOD) and limit of quantification (LOQ) values of DNA-Apt SPR aptasensor was determined as 1.5 ng/mL and 5.2 ng/mL.
Collapse
Affiliation(s)
- Seda Koyun
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Semra Akgönüllü
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Handan Yavuz
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Arzum Erdem
- Ege University, Faculty of Pharmacy, Analytical Chemistry Department, 35100, Izmir, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey.
| |
Collapse
|
35
|
Occlusion phenomenon of redox probe by protein as a way of voltammetric detection of non-electroactive C-reactive protein. Biosens Bioelectron 2018; 117:232-239. [DOI: 10.1016/j.bios.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022]
|
36
|
A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf B Biointerfaces 2018; 166:245-253. [DOI: 10.1016/j.colsurfb.2018.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/22/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
|
37
|
Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Mikrochim Acta 2018; 185:159. [PMID: 29594519 DOI: 10.1007/s00604-018-2686-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
An electrochemical aptasensor is described for the detection of prostate specific antigen (PSA). The aptasensor is based on the use of hemin-functionalized graphene-conjugated palladium nanoparticles (H-Gr/PdNPs) deposited on a glassy carbon electrode. The nanocomposites integrate the high electrical conductivity of graphene with the easily functionalized surface chemistry of PdNPs and their excellent catalytic property. The hemin placed on graphene acts as both a protective agent and an in-situ redox probe. The PdNPs provide numerous binding sites for the immobilization of DNA-biotin via coordinative binding between Pd and amino groups. A sensitive and specific PSA assay was attained by immobilizing the PSA aptamer via biotin-streptavidin interaction. The resulting aptasensor has a linear response that covers the PSA concentration range from 0.025 to 205 ng·mL-1, with a 8 pg·mL-1 lower detection limit (at -0.362 V, scan rate: 0.1 mV·s-1, S/N = 3). The method was applied to the quantitation of PSA in spiked serum samples, giving recoveries ranging from 95.0 to 100.3%. Graphical abstract A signal amplified and approving electrochemical aptasensor was constructed for the determination of prostate specific antigen (PSA) based on the use of hemin-functionalized graphene conjugated to palladium nanoparticles (H-Gr/PdNPs). The sensor has a wide linear range, a relatively low detection limit, satisfying stability and high specificity.
Collapse
|
38
|
Vais RD, Karimian K, Heli H. Electrooxidation and amperometric determination of vorinostat on hierarchical leaf-like gold nanolayers. Talanta 2018; 178:704-709. [DOI: 10.1016/j.talanta.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/26/2023]
|
39
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
40
|
Talamini L, Zanato N, Zapp E, Brondani D, Westphal E, Gallardo H, Vieira IC. Heparin-gold Nanoparticles and Liquid Crystal Applied in Label-free Electrochemical Immunosensor for Prostate-specific Antigen. ELECTROANAL 2017. [DOI: 10.1002/elan.201700651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lucas Talamini
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Nicole Zanato
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education; Federal University of Santa Catarina - Campus Blumenau; 89036-256 Blumenau, SC Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education; Federal University of Santa Catarina - Campus Blumenau; 89036-256 Blumenau, SC Brazil
| | - Eduard Westphal
- Department of Chemistry and Biology; Federal University of Technology - Paraná; Campus Curitiba 81280-340 Curitiba, PR Brazil
| | - Hugo Gallardo
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry; Federal University of Santa Catarina - Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| |
Collapse
|
41
|
Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers. Mikrochim Acta 2017; 185:50. [PMID: 29594398 DOI: 10.1007/s00604-017-2589-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO2) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL-1 to 25 pg.mL-1, and from 25 pg.mL-1 to 25 ng.mL-1) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.
Collapse
|
42
|
A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf B Biointerfaces 2017; 160:65-72. [DOI: 10.1016/j.colsurfb.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
43
|
Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens Bioelectron 2017; 98:267-284. [DOI: 10.1016/j.bios.2017.06.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
|
44
|
Zhao J, Ma Z. Ultrasensitive detection of prostate specific antigen by electrochemical aptasensor using enzyme-free recycling amplification via target-induced catalytic hairpin assembly. Biosens Bioelectron 2017; 102:316-320. [PMID: 29156407 DOI: 10.1016/j.bios.2017.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Based on the target-induced catalytic hairpin assembly and bimetallic catalyst, the enzyme-free recycling amplification strategy for sensitive detection of prostate specific antigen (PSA) has been designed. The aptamer and its complementary DNA (C-apt) are modified on the magnetic particles. The aptamer-PSA binding event can release the C-apt that triggers the catalytic assembly between hairpin capture DNA and hairpin help DNA. Then the catalytic hairpin assembly leads to cyclic reuse the C-apt and the generation of many opened hairpin capture DNA, which can associate with the prepared Au/Pt-polymethylene blue (PMB) probes to yield electrochemical signal. Meanwhile, the Au/Pt-PMB probes exhibit excellent electrocatalytic ability for H2O2 to magnify the response current. The designed sensor possesses a wide dynamic range of 10fgmL-1 to 100ngmL-1 and ultra-low detection limit of 2.3fgmL-1. The present method has good performance in real serum sample analysis. This strategy is promising to be extended to provide a highly sensitive platform for various target analytes.
Collapse
Affiliation(s)
- Juncai Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
45
|
Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress. Toxins (Basel) 2017; 9:toxins9110349. [PMID: 29143760 PMCID: PMC5705964 DOI: 10.3390/toxins9110349] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023] Open
Abstract
Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.
Collapse
|
46
|
Huang Y, Xu J, Liu J, Wang X, Chen B. Disease-Related Detection with Electrochemical Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2375. [PMID: 29039742 PMCID: PMC5676665 DOI: 10.3390/s17102375] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023]
Abstract
Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.
Collapse
Affiliation(s)
- Ying Huang
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Jin Xu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Junjie Liu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Xiangyang Wang
- CET-College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Sattarahmady N, Rahi A, Heli H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci Rep 2017; 7:11238. [PMID: 28894225 PMCID: PMC5593896 DOI: 10.1038/s41598-017-11680-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023] Open
Abstract
A green electrodeposition method was firstly employed for the synthesis of round hairbrush-like gold nanostructure in the presence of cadaverine as a size and shape directing additive. The nanostructure which comprised of arrays of nanospindles was then applied as a transducer to fabricate a signal-on built in-marker electrochemical aptasensor for the detection of human prostate-specific antigen (PSA). The aptasensor detected PSA with a linear concentration range of 0.125 to 128 ng mL-1 and a limit of detection of 50 pg mL-1. The aptasensor was then successfully applied to detect PSA in the blood serum samples of healthy and patient persons.
Collapse
Affiliation(s)
- Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amid Rahi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
48
|
Xia N, Cheng C, Liu L, Peng P, Liu C, Chen J. Electrochemical glycoprotein aptasensors based on the in-situ aggregation of silver nanoparticles induced by 4-mercaptophenylboronic acid. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2488-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Electrochemical biosensing of influenza A subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal Chim Acta 2017; 979:51-57. [DOI: 10.1016/j.aca.2017.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 02/01/2023]
|
50
|
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017; 184:3049-3067. [PMID: 29109592 PMCID: PMC5669453 DOI: 10.1007/s00604-017-2410-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Collapse
Affiliation(s)
- Dominika Damborska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Erika Dosekova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Alena Holazova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|