1
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Thatikayala D, Min B. Enhancing electrochemical nitrite sensing with a novel nanocomposite of activated carbon/carbon cloth derived from microbial biofilm. Biosens Bioelectron 2023; 241:115659. [PMID: 37696222 DOI: 10.1016/j.bios.2023.115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
A novel approach was employed to fabricate a biofilm-derived activated carbon (BioAc) electrode on a carbon cloth (Cc) substrate for electrochemical nitrite sensing in water samples. The biofilm/Cc electrode was developed using a bioelectrochemical reactor, featuring a three-electrode system with nutrient media and microbial sources. The resultant biofilm electrode was activated at 450 °C for 2 h to eliminate impurities and enhance porosity. Morphological analysis of the BioAc/Cc electrode revealed a surface characterized by a compact film composed of numerous carbon nanoparticles. X-ray diffraction (XRD) analysis exhibited broad, highly crystalline peaks, enhancing both the electrode surface area and conductivity. Amperometry tests on the modified BioAc/Cc electrodes demonstrated a detection limit of 0.015 μM, a sensitivity of 1946.54 μA mM-1 cm-2, and a linear range spanning 0.35-478.21 μM at neutral pH conditions. Moreover, the electrodes demonstrated good stability with a RSD of 2.25% after 60 days and high reproducibility with an RSD of 1.64%. Real-time results showed 99.2 and 100.1% recovery for tap water and drinking water, respectively, highlighting the potential for commercialization in the future. These findings suggest that the BioAc/Cc electrode holds substantial potential for precise nitrite detection in environmental and wastewater applications.
Collapse
Affiliation(s)
- Dayakar Thatikayala
- Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Booki Min
- Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
3
|
Anusha T, Bhavani KS, Hassan RYA, Brahman PK. Ferrocene tagged primary antibody generates electrochemical signal: An electrochemical immunosensing platform for the monitoring of vitamin D deficiency in clinical samples. Int J Biol Macromol 2023; 239:124269. [PMID: 37003374 DOI: 10.1016/j.ijbiomac.2023.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In this paper, a new kind of ultrasensitive and low-cost electrochemical immunosensing probe was designed to monitor vitamin D deficiency using 25(OH)D3 as a clinical biomarker. Ferrocene carbaldehyde conjugated on Ab-25(OH)D3 antibodies was used as an electrochemical probe for generating signals. The graphene nanoribbon-modified electrode (GNRs) was used to immobilize the (Ab-25(OH)D3-Fc) conjugate. The high electron transferability, greater surface area, and effective biocompatibility of GNRs enabled the capture of the greater number of primary antibodies (Ab-25(OH)D3). The developed probe was structurally and morphologically characterized. The step-wise modification was investigated by electrochemical techniques. The direct electrochemistry of ferrocene enabled 25(OH)D3 biomarker detection with excellent sensitivity. The reduction in peak current was proportional to the concentrations of 25(OH)D3 in the range of 1-100 ng mL-1 with a 0.1 ng mL-1 limit of detection. The probe was tested in terms of reproducibility, repeatability, and stability. Finally, the developed immunosensing probe was applied in serum samples for 25(OH)D3 quantification, and no significant difference was noticed in the assay results when compared with the standard chemiluminescent immunoassay (CLIA) method. The developed detection strategy has a wider scope for future potential clinical diagnostics applications.
Collapse
Affiliation(s)
- Tummala Anusha
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India; Chemsens Technologies PVT. LTD., Vijayawada 520013, Andhra Pradesh, India
| | - Kalli Sai Bhavani
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Rabeay Y A Hassan
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt; Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Pradeep Kumar Brahman
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India; Chemsens Technologies PVT. LTD., Vijayawada 520013, Andhra Pradesh, India.
| |
Collapse
|
4
|
A new ultrasound-assisted liquid-liquid microextraction method utilizing a switchable hydrophilicity solvent for spectrophotometric determination of nitrite in food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Pathiraja G, Bonner CDJ, Obare SO. Recent Advances of Enzyme-Free Electrochemical Sensors for Flexible Electronics in the Detection of Organophosphorus Compounds: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031226. [PMID: 36772265 PMCID: PMC9918968 DOI: 10.3390/s23031226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/10/2023]
Abstract
Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.
Collapse
Affiliation(s)
- Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Chartanay D. J. Bonner
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Sherine O. Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| |
Collapse
|
6
|
Gholizadeh A, Black K, Kipen H, Laumbach R, Gow A, Weisel C, Javanmard M. Detection of respiratory inflammation biomarkers in non-processed exhaled breath condensate samples using reduced graphene oxide. RSC Adv 2022; 12:35627-35638. [PMID: 36545081 PMCID: PMC9745889 DOI: 10.1039/d2ra05764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we studied several important parameters regarding the standardization of a portable sensor of nitrite, a key biomarker of inflammation in the respiratory tract in untreated EBC samples. The storage of the EBC samples and electrical properties of both EBC samples and the sensor as main standardization parameters were investigated. The sensor performance was performed using differential pulse voltammetry (DPV) in a standard nitrite solution and untreated EBC samples. The storage effect was monitored by comparing sensor data of fresh and stored samples for one month at -80 °C. Results show, on average, a 20 percent reduction of peak current for stored solutions. The sensor's performance was compared with a previous EBC nitrite sensor and chemiluminescence method. The results demonstrate a good correlation between the present sensor and chemiluminescence for low nitrite concentrations in untreated EBC samples. The electrical behavior of the sensor and electrical variation between EBC samples were characterized using methods such as noise analysis, electrochemical impedance spectroscopy (EIS), electrical impedance (EI), and voltage shift. Data show that reduced graphene oxide (rGO) has lower electrical noise and a higher electron transfer rate regarding nitrite detection. Also, a voltage shift can be applied to calibrate the data based on the electrical variation between different EBC samples. This result makes it easy to calibrate the electrical difference between EBC samples and have a more reproducible portable chip design without using bulky EI instruments. This work helps detect nitrite in untreated and pure EBC samples and evaluates critical analytical EBC properties essential for developing portable and on-site point-of-care sensors.
Collapse
Affiliation(s)
- Azam Gholizadeh
- Department of Electrical and Computer Engineering, Rutgers UniversityPiscatawayNJ 08854USA
| | - Kathleen Black
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Howard Kipen
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Robert Laumbach
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Andrew Gow
- Ernest Mario School of Pharmacy, Rutgers UniversityPiscatawayNJ 08854USA
| | - Clifford Weisel
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers UniversityPiscatawayNJ 08854USA
| |
Collapse
|
7
|
Arivazhagan M, Kannan P, Maduraiveeran G. Gold Nanoclusters Dispersed on Gold Dendrite-Based Carbon Fibre Microelectrodes for the Sensitive Detection of Nitric Oxide in Human Serum. BIOSENSORS 2022; 12:bios12121128. [PMID: 36551095 PMCID: PMC9776376 DOI: 10.3390/bios12121128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Herein, gold nanoclusters (Au NC) dispersed on gold dendrite (Au DS)-based flexible carbon fibre (AuNC@AuDS|CF) microelectrodes are developed using a one-step electrochemical approach. The as-fabricated AuNC@AuDS|CF microelectrodes work as the prospective electrode materials for the sensitive detection of nitric oxide (NO) in a 0.1 M phosphate buffer (PB) solution. Carbon microfibre acts as an efficient matrix for the direct growth of AuNC@AuDS without any binder/extra reductant. The AuNC@AuDS|CF microelectrodes exhibit outstanding electrocatalytic activity towards NO oxidation, which is ascribed to their large electrochemical active surface area (ECSA), high electrical conductivity, and high dispersion of Au nanoclusters. As a result, the AuNC@AuDS|CF microelectrodes attain a rapid response time (3 s), a low limit of detection (LOD) (0.11 nM), high sensitivity (66.32 µA µM cm-2), a wide linear range (2 nM-7.7 µM), long-term stability, good reproducibility, and a strong anti-interference capability. Moreover, the present microsensor successfully tested for the discriminating detection of NO in real human serum samples, revealing its potential practicability.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
8
|
Paper-based electrochemical platform modified with graphene nanoribbons: A new and affordable approach for analysis of 5-hydroxy-l-tryptophan. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
A novel ZIF-8@ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Feng L, Zou M, Lv X, Min X, Lin X, Ni Y. Facile synthesis of ZIF-67C@RGO/NiNPs nanocomposite for electrochemical non-enzymatic sensing platform of nitrite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Salhi O, Ez-zine T, Oularbi L, El Rhazi M. Cysteine combined with carbon black as support for electrodeposition of poly (1,8-Diaminonaphthalene): Application as sensing material for efficient determination of nitrite ions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Yang Y, Zhang J, Li YW, Shan Q, Wu W. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Design a high sensitive electrochemical sensor based on immobilized cysteine on Fe3O4@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
CuO/Cu-MOF nanocomposite for highly sensitive detection of nitric oxide released from living cells using an electrochemical microfluidic device. Mikrochim Acta 2021; 188:240. [PMID: 34184110 DOI: 10.1007/s00604-021-04891-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The integration of large surface area and high catalytic profiles of Cu-MOF and CuO nanoparticles is described toward electrochemical sensing of nitric oxide (NO) in a microfluidic platform. The CuO/Cu-MOF nanocomposite was prepared through hydrothermal method, and its formation was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). The CuO/Cu-MOF nanostructured modified Au electrodes enabled electrocatalytic NO oxidation at 0.6 V vs. reference electrode, demonstrating linear response over a broad concentration range of 0.03-1 μM and 1-500 μM with a detection limit of 7.8 nM. The interference effect of organic molecules and common ions was negligible, and the sensing system demonstrated excellent stability. Finally, an electrochemical microfluidic NO sensor was developed to detect of NO released from cancer cells, which were stimulated by L-arginine. Furthermore, in the presence of Fe3+, the stressed cells produced more NO. This work offers considerable potential for its practical applications in clinical diagnostics through determination of chemical symptoms in microliter-volume biological samples. Electrochemical microfluidic NO sensor was developed for detection of NO released from cancer cells. This miniaturized device consumes less materials and provides the basis for greener analytical chemistry.
Collapse
|
15
|
Chavan PP, Sapner VS, Sathe BR. Enhanced Electrochemical NO
2
−
Oxidation Reactions on Biomolecule Functionalised Graphene Oxide. ChemistrySelect 2021. [DOI: 10.1002/slct.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Parag P. Chavan
- Department of Chemistry Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Vijay S. Sapner
- Department of Chemistry Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Bhaskar R. Sathe
- Department of Chemistry Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| |
Collapse
|
16
|
Curulli A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020; 25:E5759. [PMID: 33297366 PMCID: PMC7730649 DOI: 10.3390/molecules25235759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
17
|
Taweekarn T, Wongniramaikul W, Limsakul W, Sriprom W, Phawachalotorn C, Choodum A. A novel colorimetric sensor based on modified mesoporous silica nanoparticles for rapid on-site detection of nitrite. Mikrochim Acta 2020; 187:643. [PMID: 33155149 DOI: 10.1007/s00604-020-04620-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022]
Abstract
A novel colorimetric sheet based on Griess reagent-doped mesoporous silica nanoparticles was developed for nitrite detection. Griess reagent was adsorbed on long-range ordered hexagonal mesoporous silica nanoparticles and developed ink-bottle pores with some disorder. When the modified nanoparticles were bound using starch to fabricate a thin (~ 313 μm) colorimetric sheet, spherical particles with a rougher surface and some distortion of their mesoporosity were observed. The sheet was used in conjunction with digital image colorimetry (DIC) and provides a wide linear range of 0.05 to 2.50 mg L-1 with a low detection limit (15.0 μg L-1-NO2-, equal to 4.5 μg L-1 NO2--N), good inter-day precision (1.93%RSD), and excellent precision (2.67% relative error). The colorimetric sensors produced from the sheet costs only 0.04 USD each, while the DIC uses a standard smartphone for photographic detection. The method developed offers an easier and cheaper means of conducting rapid on-site determination of nitrite in water with reliable quantitative results. Graphical abstract.
Collapse
Affiliation(s)
- Tarawee Taweekarn
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand
| | - Worawit Wongniramaikul
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand
- Research Program: The Development of Management System for Reduction and Control of Water Contamination and Distribution in Songkhla Lake Basin and the Western Coastline of the South of Thailand, Center of Excellence on Hazardous Substance Management (HSM), 10330, Bangkok, Thailand
| | - Wadcharawadee Limsakul
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand
| | - Wilasinee Sriprom
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand
| | - Chanadda Phawachalotorn
- Department of Applied Science and Business Management, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Pathiu, Chumphon, 86160, Thailand
| | - Aree Choodum
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand.
| |
Collapse
|
18
|
Hong J, Wang Y, Zhu L, Jiang L. An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3956. [PMID: 32708669 PMCID: PMC7412347 DOI: 10.3390/s20143956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023]
Abstract
A simple and low-cost electrochemical sensor based on multimodified screen-printed electrodes (SPEs) was successfully synthesized for the sensitive detection of β-lactoglobulin (β-Lg). The surface treatment of SPEs was accomplished by a simple drip coating method using polyethyleneimine (PEI), reduced graphene oxide (rGO), and gold nanoclusters (AuNCs), and the treated SPEs showed excellent electrical conductivity. The modified SPEs were then characterized with UV-Vis, SEM, TEM, and FTIR to analyze the morphology and composition of the AuNCs and the rGO. An anti-β-Lg antibody was then immobilized on the composite material obtained by modifying rGO with PEI and AuNCs (PEI-rGO-AuNCs), leading to the remarkable reduction in conductivity of the SPEs due to the reaction between antigen and antibody. The sensor obtained using this novel approach enabled a limit of detection (LOD) of 0.08 ng/mL and a detection range from 0.01 to 100 ng/mL for β-Lg. Furthermore, pure milk samples from four milk brands were measured using electrochemical sensors, and the results were in excellent agreement with those from commercial enzyme-linked immunosorbent assay (ELISA) methods.
Collapse
Affiliation(s)
- Jingyi Hong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
19
|
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P, Afkhami A, Arduini F, Bagheri H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01940-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review. SENSORS 2019; 20:s20010054. [PMID: 31861855 PMCID: PMC6983230 DOI: 10.3390/s20010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
Collapse
Affiliation(s)
- Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| | - Tan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Yanqing Duan
- Business school, University of Bedfordshire, Luton LU1 3BE, UK;
| |
Collapse
|
21
|
A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113630] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Pol R, Diez L, Gabriel D, Baeza M. Versatile Three-Dimensional-Printed Platform for Nitrite Ion Analyses Using a Smartphone with Real-Time Location. Anal Chem 2019; 91:13916-13923. [DOI: 10.1021/acs.analchem.9b03409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Roberto Pol
- Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Laura Diez
- Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Mireia Baeza
- Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
23
|
Bibi S, Zaman MI, Niaz A, Rahim A, Nawaz M, Bilal Arian M. Voltammetric determination of nitrite by using a multiwalled carbon nanotube paste electrode modified with chitosan-functionalized silver nanoparticles. Mikrochim Acta 2019; 186:595. [DOI: 10.1007/s00604-019-3699-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
|
24
|
Stanković DM, Ognjanović M, Jović M, Cuplić V, Lesch A, Girault HH, Gavrović Jankulović M, Antić B. Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications. ELECTROANAL 2019. [DOI: 10.1002/elan.201900129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dalibor M. Stanković
- The “Vinča” Institute of Nuclear SciencesUniversity of Belgrade, POB 522 11001 Belgrade Serbia
| | - Miloš Ognjanović
- The “Vinča” Institute of Nuclear SciencesUniversity of Belgrade, POB 522 11001 Belgrade Serbia
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry (LEPA)EPFL Valais Wallis Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Valentina Cuplić
- Faculty of ChemistryUniversity of Belgrade Studentski trg 12–16 11000 Belgrade Serbia
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Hubert H. Girault
- Laboratory of Physical and Analytical Electrochemistry (LEPA)EPFL Valais Wallis Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | | | - Bratislav Antić
- The “Vinča” Institute of Nuclear SciencesUniversity of Belgrade, POB 522 11001 Belgrade Serbia
| |
Collapse
|
25
|
Manikandan VS, Adhikari B, Chen A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2019; 143:4537-4554. [PMID: 30113611 DOI: 10.1039/c8an00497h] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The issue of foodborne related illnesses due to additives and contaminants poses a significant challenge to food processing industries. The efficient, economical and rapid analysis of food additives and contaminants is therefore necessary in order to minimize the risk of public health issues. Electrochemistry offers facile and robust analytical methods, which are desirable for food safety and quality assessment over conventional analytical techniques. The development of a wide array of nanomaterials has paved the way for their applicability in the design of high-performance electrochemical sensing devices for medical diagnostics and environment and food safety. The design of nanomaterial based electrochemical sensors has garnered enormous attention due to their high sensitivity and selectivity, real-time monitoring and ease of use. This review article focuses predominantly on the synthesis and applications of different nanomaterials for the electrochemical determination of some common additives and contaminants, including hydrazine (N2H4), malachite green (MG), bisphenol A (BPA), ascorbic acid (AA), caffeine, caffeic acid (CA), sulfite (SO32-) and nitrite (NO2-), which are widely found in food and beverages. Important aspects, such as the design, fabrication and characterization of graphene-based materials, gold nanoparticles, mono- and bimetallic nanoparticles and metal nanocomposites, sensitivity and selectivity for electrochemical sensor development are addressed. High-performance nanomaterial based electrochemical sensors have and will continue to have myriad prospects in the research and development of advanced analytical devices for the safety and quality control of food and beverages.
Collapse
Affiliation(s)
- Venkatesh S Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
26
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Ning J, Luo X, Wang M, Li J, Liu D, Rong H, Chen D, Wang J. Ultrasensitive Electrochemical Sensor Based on Polyelectrolyte Composite Film Decorated Glassy Carbon Electrode for Detection of Nitrite in Curing Food at Sub-Micromolar Level. Molecules 2018; 23:molecules23102580. [PMID: 30304828 PMCID: PMC6222513 DOI: 10.3390/molecules23102580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023] Open
Abstract
To ensure food quality and safety, developing cost-effective, rapid and precision analytical techniques for quantitative detection of nitrite is highly desirable. Herein, a novel electrochemical sensor based on the sodium cellulose sulfate/poly (dimethyl diallyl ammonium chloride) (NaCS/PDMDAAC) composite film modified glass carbon electrode (NaCS/PDMDAAC/GCE) was proposed toward the detection of nitrite at sub-micromolar level, aiming to make full use of the inherent properties of individual component (biocompatible, low cost, good electrical conductivity for PDMDAAC; non-toxic, abundant raw materials, good film forming ability for NaCS) and synergistic enhancement effect. The NaCS/PDMDAAC/GCE was fabricated by a simple drop-casting method. Electrochemical behaviors of nitrite at NaCS/PDMDAAC/GCE were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, the NaCS/PDMDAAC/GCE exhibits a wide linear response region of 4.0 × 10−8 mol·L−1~1.5 × 10−4 mol·L−1 and a low detection 1imit of 43 nmol·L−1. The NaCS/PDMDAAC shows a synergetic enhancement effect toward the oxidation of nitrite, and the sensing performance is much better than the previous reports. Moreover, the NaCS/PDMDAAC also shows good stability and reproducibility. The NaCS/PDMDAAC/GCE was successfully applied to the determination of nitrite in ham sausage with satisfactory results.
Collapse
Affiliation(s)
- Jingheng Ning
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Xin Luo
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Min Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Jiaojiao Li
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Donglin Liu
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Hou Rong
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Donger Chen
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Jianhui Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| |
Collapse
|
28
|
Wu JX, Yan B. Luminescent Hybrid Tb3+ Functionalized Metal–Organic Frameworks Act as Food Preservative Sensor and Water Scavenger for NO2–. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00762] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing-Xing Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
29
|
|
30
|
Zheng H, Guan X, Mao X, Zhu Z, Yang C, Qiu H, Hu S. Determination of nitrite in water samples using atmospheric pressure glow discharge microplasma emission and chemical vapor generation of NO species. Anal Chim Acta 2018; 1001:100-105. [PMID: 29291791 DOI: 10.1016/j.aca.2017.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Hongtao Zheng
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xuedi Guan
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture of China, Beijing, 100081, China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture of China, Beijing, 100081, China.
| | - Chun Yang
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Haiou Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
31
|
Natiele Tiago da Silva E, Marques Petroni J, Gabriel Lucca B, Souza Ferreira V. Pencil graphite leads as simple amperometric sensors for microchip electrophoresis. Electrophoresis 2017; 38:2733-2740. [DOI: 10.1002/elps.201700160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Bruno Gabriel Lucca
- Departamento de Ciências Naturais; Universidade Federal do Espírito Santo; São Mateus Brazil
| | - Valdir Souza Ferreira
- Instituto de Química; Universidade Federal de Mato Grosso do Sul; Campo Grande Brazil
| |
Collapse
|
32
|
Muthumariappan A, Govindasamy M, Chen SM, Sakthivel K, Mani V. Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2379-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Petroni JM, Lucca BG, Ferreira VS. Simple and Inexpensive Electrochemical Platform Based on Novel Homemade Carbon Ink and its Analytical Application for Determination of Nitrite. ELECTROANAL 2017. [DOI: 10.1002/elan.201700117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Bruno Gabriel Lucca
- Departamento de Ciências Naturais; Universidade Federal do Espírito Santo; São Mateus, ES 29932-540 Brazil
| | - Valdir Souza Ferreira
- Instituto de Química; Universidade Federal de Mato Grosso do Sul; Campo Grande, MS 79074-460 Brazil
| |
Collapse
|
34
|
Chen L, Liu X, Wang C, Lv S, Chen C. Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2189-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2180-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Seo Y, Manivannan S, Kang I, Lee SW, Kim K. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions. Biosens Bioelectron 2017; 94:87-93. [PMID: 28262612 DOI: 10.1016/j.bios.2017.02.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022]
Abstract
We developed a biosensor for nitrite ion on an electrode surface modified with M13 viruses and gold nanostructures. Gold dendritic nanostructures (Au-DNs) are electrochemically co-deposited from 4E peptides engineered M13 virus (M134E) mixed electrolyte on to the ITO electrode. The M134E could specifically nucleate Au precursor (Gold (III) chloride), which enable the efficient growth of dendritic nanostructures, whereas such dendritic structures were not obtained in the presence of wild-type and Y3E peptides engineered M13 viruses. The structural features of the Au-DNs and their interfacing mechanism with ITO electrode are characterized by SEM, EDX and XRD analyses. The growth of Au-DNs at ITO electrode has been monitored by time dependent SEM study. The M134E induces the formation and plays a crucial role in shaping the dendritic morphology for Au. Biosensor electrode was constructed using Au-DNs modified electrode for nitrite ions and found improved sensitivity relative to the sensor electrode prepared from wild-type M13, Y3E peptides engineered M13 and without M13. Sensor electrode exhibited good selectivity toward target analyte from the possible interferences. Furthermore, 4E native peptides were used as additive to deposit Au nanostructures and it is compared with the structure and reactivity of the Au nanostructures prepared in the presence of M134E. Our novel biosensor fabrication can be extended to other metal and metal oxide nanostructures and its application might be useful to develop novel biosensor electrode for variety of biomolecules.
Collapse
Affiliation(s)
- Yeji Seo
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University, Incheon 406-772, Republic of Korea
| | - Shanmugam Manivannan
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University, Incheon 406-772, Republic of Korea
| | - Inhak Kang
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University, Incheon 406-772, Republic of Korea
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|
37
|
Petroni JM, Lucca BG, Ferreira VS. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis. Anal Chim Acta 2017; 954:88-96. [DOI: 10.1016/j.aca.2016.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
38
|
Wang Y, Ji Z, Shen X, Zhu G, Wang J, Yue X. Facile growth of Cu2O hollow cubes on reduced graphene oxide with remarkable electrocatalytic performance for non-enzymatic glucose detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj01952a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and eco-friendly strategy was developed to grow highly dispersed Cu2O hollow nanocubes on RGO sheets, which exhibit excellent electrocatalytic activity for glucose oxidation.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhenyuan Ji
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jiheng Wang
- School of Material Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Xiaoyang Yue
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
39
|
Rabti A, Ben Aoun S, Raouafi N. A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1959-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|