1
|
Raju CM, Buchowiecki K, Urban PL. An economical setup for atmospheric pressure chemical ionization drift tube ion-mobility mass spectrometry. Anal Chim Acta 2023; 1268:341359. [PMID: 37268338 DOI: 10.1016/j.aca.2023.341359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Ion-mobility (IM) separations-performed in conjunction with mass spectrometry (MS)-increase selectivity of MS analyses. However, IM-MS instruments are costly, and many laboratories are only equipped with standard MS instruments without an IM separation stage. Therefore, it is appealing to upgrade the existing mass spectrometers with low-cost IM separation devices. Such devices can be constructed using widely available materials such as printed-circuit boards (PCBs). We demonstrate coupling of an economical PCB-based IM spectrometer (disclosed previously) with a commercial triple quadrupole (QQQ) mass spectrometer. The presented PCB-IM-QQQ-MS system incorporates an atmospheric pressure chemical ionization (APCI) source, drift tube comprising desolvation and drift regions, ion gates, and transfer line to the mass spectrometer. The ion gating is accomplished with the aid of two floated pulsers. The separated ions are divided into packets, which are sequentially introduced to the mass spectrometer. Volatile organic compounds (VOCs) are transferred with the aid of nitrogen gas flow from the sample chamber to the APCI source. The operation of the system has been demonstrated using standard compounds. The limits of detection for 2,4-lutidine, (-)-nicotine, and pyridine are 2.02 × 10-7 M, 1.54 × 10-9 mol, and 4.79 × 10-10 mol, respectively. The system was also used to monitor VOCs emitted from the porcine skin after exposure to nicotine patches, and VOCs released from meat undergoing the spoilage process. We believe this simple APCI-PCB-IM-QQQ-MS platform can be reproduced by others to augment the capabilities of the existing MS instrumentation.
Collapse
Affiliation(s)
- Chamarthi Maheswar Raju
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Krzysztof Buchowiecki
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan.
| |
Collapse
|
2
|
Moura PC, Vassilenko V. Long-term in situ air quality assessment in closed environments: A gas chromatography-ion mobility spectrometry applicability study. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:231-239. [PMID: 37441794 PMCID: PMC10466997 DOI: 10.1177/14690667231187502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Contemporary life is mostly spent in indoor spaces like private houses, workplaces, vehicles and public facilities. Nonetheless, the air quality in these closed environments is often poor which leads to people being exposed to a vast range of toxic and hazardous compounds. Volatile organic compounds (VOCs) are among the main factors responsible for the lack of air quality in closed spaces and, in addition, some of them are particularly hazardous to the human organism. Considering this fact, we conducted daily in situ air analyses over 1 year using a gas chromatography-ion mobility spectrometry (GC-IMS) device in an indoor location. The obtained results show that 10 VOCs were consistently present in the indoor air throughout the entire year, making them particularly important for controlling air quality. All of these compounds were successfully identified, namely acetic acid, acetone, benzene, butanol, ethanol, isobutanol, propanoic acid, propanol, 2-propanol and tert-butyl methyl ether. The behaviour of the total VOCs (tVOCs) intensity during the period of analysis and the relative variation between consecutive months were studied. It was observed that the overall trend of tVOCs closely mirrored the variation of air temperature throughout the year suggesting their strong correlation. The results obtained from this study demonstrate the high quality and relevance of the data, highlighting the suitability of GC-IMS for in situ long-term air quality assessment in indoor environments and, consequently, for identifying potential health risks for the human organism in both short-term and long-term exposure scenarios.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LibPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LibPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- NMT, S.A., Edifício Madan Parque, Rua dos Inventores, Caparica, Portugal
| |
Collapse
|
3
|
Lattouf E, Anttalainen O, Kotiaho T, Hakulinen H, Vanninen P, Eiceman G. Parametric Sensitivity in a Generalized Model for Atmospheric Pressure Chemical Ionization Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2218-2226. [PMID: 34264074 DOI: 10.1021/jasms.1c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas phase reactions between hydrated protons H+(H2O)n and a substance M, as seen in atmospheric pressure chemical ionization (APCI) with mass spectrometry (MS) and ion mobility spectrometry (IMS), were modeled computationally using initial amounts of [M] and [H+(H2O)n], rate constants k1 to form protonated monomer (MH+(H2O)x) and k2 to form proton bound dimer (M2H+(H2O)z), and diffusion constants. At 1 × 1010 cm-3 (0.4 ppb) for [H+(H2O)n] and vapor concentrations for M from 10 ppb to 10 ppm, a maximum signal was reached at 4.5 μs to 4.6 ms for MH+(H2O)x and 7.8 μs to 46 ms for M2H+(H2O)z. Maximum yield for protonated monomer for a reaction time of 1 ms was ∼40% for k1 from 10-11 to 10-8 cm3·s-1, for k2/k1 = 0.8, and specific values of [M]. This model demonstrates that ion distributions could be shifted from [M2H+(H2O)z] to [MH+(H2O)x] using excessive levels of [H+(H2O)n], even for [M] > 10 ppb, as commonly found in APCI MS and IMS measurements. Ion losses by collisions on surfaces were insignificant with losses of <0.5% for protonated monomer and <0.1% for proton bound dimer of dimethyl methylphosphonate (DMMP) at 5 ms. In this model, ion production in an APCI environment is treated over ranges of parameters important in mass spectrometric measurements. The models establish a foundation for detailed computations on response with mixtures of neutral substances.
Collapse
Affiliation(s)
- Elie Lattouf
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Osmo Anttalainen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Hanna Hakulinen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Paula Vanninen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Gary Eiceman
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Chemistry and Biochemistry, New Mexico State University, 1175 N Horseshoe Drive, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
4
|
Anttalainen O, Lattouf E, Kotiaho T, Eiceman G. Ion density of positive and negative ions at ambient pressure in air at 12-136 mm from 4.9 kV soft x-ray source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:054104. [PMID: 34243310 DOI: 10.1063/5.0050669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The abundance of ions is an essential parameter for ion mobility and mass spectrometry instrument design and for the control or optimization of chemical reactions with reactant ions. This information also advances the study of atmospheric pressure ion kinetics under continuous ionization, which has a role in developing trace level chemical analyzers. In this study, an ionization chamber is described to measure the abundance of ions produced by a 4.9 keV, model L12535, soft x-ray source from Hamamatsu Corporation. Ions of positive and negative polarity were measured independently in an 8 × 30 mm2 cross section at distances of 12-136 mm at ambient air from an uncollimated beam. Ions were collected using electric fields and 16 sets of plates. The ion current decreased exponentially with distance from the source, and the calculated ion concentration varied between 1.0 × 108 and 3.8 × 105 ions cm-3 on plates. A 2D-COMSOL model including losses by recombination and diffusion was favorably matched to changes in ion current intensity in the ionization chamber. Although the ionization chamber was built to characterize a commercial ion source, the design may be considered generally applicable to other x-ray sources.
Collapse
Affiliation(s)
- Osmo Anttalainen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Elie Lattouf
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Gary Eiceman
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
5
|
Du X, Mou J, Zeng H, Zeng R, Jiang Y, Li H. Printed Circuit Board (PCB) Brazing and Ion Source Integration of a High-Field Asymmetric Ion Mobility Spectrometry (FAIMS) Chip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1803347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Du
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, GuangXi, China
| | - Jiahao Mou
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, GuangXi, China
| | - Hongda Zeng
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, GuangXi, China
| | - Ruosheng Zeng
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, GuangXi, China
| | - Yongrong Jiang
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, GuangXi, China
| | - Hua Li
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, GuangXi, China
| |
Collapse
|
6
|
Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Cooper H, Bailey MJ. Exploring a route to a selective and sensitive portable system for explosive detection- swab spray ionisation coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS). Forensic Sci Int Synerg 2019; 1:214-220. [PMID: 32411973 PMCID: PMC7219150 DOI: 10.1016/j.fsisyn.2019.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022]
Abstract
Paper spray mass spectrometry is a rapid and sensitive tool for explosives detection but has so far only been demonstrated using high resolution mass spectrometry, which bears too high a cost for many practical applications. Here we explore the potential for paper spray to be implemented in field applications with portable mass spectrometry. This involved (a) replacing the paper substrate with a swabbing material (which we call “swab spray”) for compatibility with standard collection materials; (b) collection of explosives from surfaces; (c) an exploration of interferences within a ± 0.5 m/z window; and (d) demonstration of the use of high-field assisted waveform ion mobility spectrometer (FAIMS) for enhanced selectivity. We show that paper and Nomex® are viable collection materials, with Nomex providing cleaner spectra and therefore greater potential for integration with portable mass spectrometers. We show that sensitive detection using swab spray will require a mass spectrometer with a mass resolving power of 4000 or more. We show that by coupling the swab spray ionisation source with FAIMS, it is possible to reduce background interferences, thereby facilitating the use of a low resolving power (e.g. quadrupole) mass spectrometer.
Collapse
Affiliation(s)
- C Costa
- Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - E M van Es
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| | - P Sears
- Defence Science and Technology Laboratory, Sevenoaks, Kent, TN14 7BP, UK
| | - J Bunch
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| | - Vladimir Palitsin
- Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - H Cooper
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - M J Bailey
- Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
7
|
Li H, Yun H, Jiang Y, Zeng R, Chen Z. A needle-to-post air discharge ion source in tandem with FAIMS system. PLoS One 2019; 14:e0221080. [PMID: 31419259 PMCID: PMC6697363 DOI: 10.1371/journal.pone.0221080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
A needle-to-post ionization source was designed for high-field asymmetric waveform ion mobility spectrometry (FAIMS). The needle-to-post ion source includes asymmetric electrode comprised of a copper post with a diameter of 2 mm and a stainless-steel needle with 200-μm tip radius and length of 28 mm. With the discharge voltage of -5.6 kV and N2 gas flow, glow discharge was realized at atmospheric pressure. The mass spectra of ionized ions about acetone, ethanol and ethyl acetate were gotten by Thermo Scientific LTQ XL ion trap mass spectrometer (MS). The MS experimental results show that the main ions are protonated and dimer ions. The needle-to-post ion source was mounted on the FAIMS system and FAIMS spectra are gotten successfully. Separation of p-xylene, o-xylene and m-xylene was realized. It shows that the needle-to-post electrode could be used as the ion source in a FAIMS system.
Collapse
Affiliation(s)
- Hua Li
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, Guangxi, China
- * E-mail: (H.L.); (Y.J.); (Z.C.)
| | - Hongmei Yun
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, Guangxi, China
| | - Yongrong Jiang
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, Guangxi, China
- * E-mail: (H.L.); (Y.J.); (Z.C.)
| | - Ruosheng Zeng
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, Guangxi, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin, Guangxi, China
- * E-mail: (H.L.); (Y.J.); (Z.C.)
| |
Collapse
|
8
|
Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Mosegaard K, Bailey MJ. Exploring Rapid, Sensitive and Reliable Detection of Trace Explosives Using Paper Spray Mass Spectrometry (PS‐MS). PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Catia Costa
- Ion Beam CentreUniversity of Surrey Guildford, Surrey GU2 7XH UK
| | - Elsje M. van Es
- National Physical Laboratory Teddington, Middlesex TW11 0LW UK
| | - Patrick Sears
- Defence Science and Technology Laboratory Sevenoaks, Kent TN14 7BP UK
| | - Josephine Bunch
- National Physical Laboratory Teddington, Middlesex TW11 0LW UK
| | | | - Kirsten Mosegaard
- Department of ChemistryUniversity of Surrey Guildford, Surrey GU2 7XH UK
| | - Melanie J. Bailey
- Department of ChemistryUniversity of Surrey Guildford, Surrey GU2 7XH UK
| |
Collapse
|
9
|
Li H, Yun H, Du X, Guo C, Zeng R, Jiang Y, Chen AZ. Design, Fabrication and Mass-spectrometric Studies of a Micro Ion Source for High-Field Asymmetric Waveform Ion Mobility Spectrometry. MICROMACHINES 2019; 10:mi10050286. [PMID: 31035626 PMCID: PMC6562519 DOI: 10.3390/mi10050286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
A needle-to-cylinder electrode, adopted as an ion source for high-field asymmetric ion mobility spectrometry (FAIMS), is designed and fabricated by lithographie, galvanoformung and abformung (LIGA) technology. The needle, with a tip diameter of 20 μm and thickness of 20 μm, and a cylinder, with a diameter of 400 μm, were connected to the negative high voltage and ground, respectively. A negative corona and glow discharge were realized. For acetone with a density of 99.7 ppm, ethanol with a density of 300 ppm, and acetic ether with a density of 99.3 ppm, the sample gas was ionized by the needle-to-cylinder chip and the ions were detected by an LTQ XL™ (Thermo Scientific Corp.) mass spectrometer. The mass spectra show that the ions are mainly the protonated monomer, the proton bound dimer, and an ion-H2O molecule cluster. In tandem with a FAIMS system, the FAIMS spectra show that the resolving power increases with an increase in the RF voltage. The obtained experimental results showed that the micro needle-to-cylinder chip may serve as a miniature, low cost and non-radioactive ion source for FAIMS.
Collapse
Affiliation(s)
- Hua Li
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| | - Hongmei Yun
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| | - Xiaoxia Du
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| | - Chaoqun Guo
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| | - Ruosheng Zeng
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| | - Yongrong Jiang
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| | - And Zhencheng Chen
- School of Life and Environmental Sciences, GuiLin University of Electronic Technology, Guilin 541004, China.
| |
Collapse
|
10
|
Vautz W, Franzke J, Zampolli S, Elmi I, Liedtke S. On the potential of ion mobility spectrometry coupled to GC pre-separation – A tutorial. Anal Chim Acta 2018; 1024:52-64. [DOI: 10.1016/j.aca.2018.02.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
|
11
|
Bunert E, Reinecke T, Kirk AT, Bohnhorst A, Zimmermann S. Ion mobility spectrometer with orthogonal X-Ray source for increased sensitivity. Talanta 2018; 185:537-541. [DOI: 10.1016/j.talanta.2018.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 11/27/2022]
|
12
|
|