1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Duan X, Tong Q, Fu C, Chen L. Lysosome-targeted fluorescent probes: Design mechanism and biological applications. Bioorg Chem 2023; 140:106832. [PMID: 37683542 DOI: 10.1016/j.bioorg.2023.106832] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
As an integral organelle in the eukaryote, the lysosome is the degradation center and metabolic signal center in living cells, and partakes in significant physiological processes such as autophagy, cell death and cellular senescence. Fluorescent probe has become a favorite tool for studying organelles and their chemical microenvironments because of its high specificity and non-destructive merits. Over recent years, it has been reported that increasingly new lysosome-targeted probes play a major role in the diagnosis and monitor of diseases, in particular cancer and neurodegenerative diseases. In order to deepen the relevant research on lysosome, it is challenging and inevitability to design novel lysosomal targeting probes. This review first introduces the concepts of lysosome and its closely related biological activities, and then introduces the fluorescent probes for lysosome in detail according to different detection targets, including targeting mechanism, biological imaging, and application in diseases. Finally, we summarize the specific challenges and discuss the future development direction facing the current lysosome-targeted fluorescent probes. We hope that this review can help biologists grasp the application of fluorescent probes and broaden the research ideas of researchers targeting fluorescent probes so as to design more accurate and functional probes for application in diseases.
Collapse
Affiliation(s)
- Xiangning Duan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Qin Tong
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengxiao Fu
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
3
|
Nguyen VN, Li H. Recent Development of Lysosome-Targeted Organic Fluorescent Probes for Reactive Oxygen Species. Molecules 2023; 28:6650. [PMID: 37764426 PMCID: PMC10535290 DOI: 10.3390/molecules28186650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Reactive oxygen species (ROS) are extremely important for various biological functions. Lysosome plays key roles in cellular metabolism and has been known as the stomach of cells. The abnormalities and malfunctioning of lysosomal function are associated with many diseases. Accordingly, the quantitative monitoring and real-time imaging of ROS in lysosomes are of great interest. In recent years, with the advancement of fluorescence imaging, fluorescent ROS probes have received considerable interest in the biomedical field. Thus far, considerable efforts have been undertaken to create synthetic fluorescent probes for sensing ROS in lysosomes; however, specific review articles on this topic are still lacking. This review provides a general introduction to fluorescence imaging technology, the sensing mechanisms of fluorescent probes, lysosomes, and design strategies for lysosome-targetable fluorescent ROS probes. In addition, the latest advancements in organic small-molecule fluorescent probes for ROS detection within lysosomes are discussed. Finally, the main challenges and future perspectives for developing effective lysosome-targetable fluorescent ROS probes for biomedical applications are presented.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Computer Science, Duy Tan University, Da Nang 550000, Vietnam
| | - Haidong Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
4
|
Qi X, Kan W, Zhao B, Du J, Ding L, Wang L, Song B. Two phenanthro[9,10-d]imidazole-based fluorescence probes for distinguishable detection of Cys and Fe3+ and their applications in food and water as well as living cells monitoring. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Bian QQ, Liu YJ, Zhao ZX, Wu H, Liu QX. Macrocyclic tetra-imidazolium salt sensor for p-nitroaniline sensing. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Lu X, Zhan Y, He W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112528. [PMID: 35907277 DOI: 10.1016/j.jphotobiol.2022.112528] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Fluorescence probes, as analytical tools with the ability to perform rapid and sensitive detection of target analytes, have made outstanding contributions to environmental analysis and bioassays. Considering the expanding developments in these areas, fluorophores play a key role in the de-sign of fluorescence probes. Compared to classical fluorophores, phenothiazines with elec-tron-rich characteristics have been widely applied to construct electron donor-acceptor dyes, which exhibit outstanding performance in both fluorimetric and colorimetric analysis. In addition, these probes also exhibit the pronounced ability in both solution and solid-state, achieving portable detection for environmental analysis. In this review, we summarize recent advances in the performance of phenothiazine-based fluorescent probes for detecting various analytes, especially in cations, anions, ROS/RSS, enzyme and other small molecules. The general design rules, response mechanisms and practical applications of the probes are analyzed, followed by a discussion of exiting challenges and future research perspectives. It is hoped that this review will provide a few strategies for the development of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Xianlin Lu
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Yu Zhan
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Wei He
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China.
| |
Collapse
|
7
|
Reut VE, Gorudko IV, Grigorieva DV, Sokolov AV, Panasenko OM. Fluorescent Probes for HOCl Detection in Living Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Liu Q, Liu C, He S, Zhao L, Zeng X, Zhou J, Gong J. A New Phenylazo-Based Fluorescent Probe for Sensitive Detection of Hypochlorous Acid in Aqueous Solution. Molecules 2022; 27:2978. [PMID: 35566328 PMCID: PMC9102862 DOI: 10.3390/molecules27092978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
In this paper, we designed and synthesized a novel phenylazo-based fluorescent probe (RHN) for the sensing and imaging of hypochlorous acid (HClO) in mitochondria in living cells. In this process, HClO promoted the oxidation of the phenylazo group to generate a free Rhodol fluorophore moiety, which in turn restored strong fluorescence and realized the detection of HClO. As expected, RHN exhibited high selectivity, high sensitivity and rapid response, with detection limits as low as 22 nM (1.155 ng/mL). Importantly, the results of the cell imaging experiments indicated that RHN has the ability to image and sense HClO in mitochondria, which is of great significance for exploration of the specific role of HClO in both the immune system and diseases.
Collapse
Affiliation(s)
- Qiuchen Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, China;
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (C.L.); (S.H.); (L.Z.)
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (C.L.); (S.H.); (L.Z.)
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (C.L.); (S.H.); (L.Z.)
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (C.L.); (S.H.); (L.Z.)
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (C.L.); (S.H.); (L.Z.)
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China;
| | - Jin Gong
- School of Pharmacy, Weifang Medical University, Weifang 261053, China;
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (C.L.); (S.H.); (L.Z.)
| |
Collapse
|
9
|
Ruan L, Bai J, Ji X, Zhao W, Dong X. A series of meso amide BODIPY based lysosome-targeting fluorescent probe with high photostability and sensitivity. Anal Chim Acta 2022; 1205:339771. [DOI: 10.1016/j.aca.2022.339771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|
10
|
Leng J, Nie W, Yuan L, Liu S, Liu T, Cheng J, Liu Z. A BODIPY‐Diaminomaleonitrile Based Water‐Soluble Fluorescent Probe for Selective “Off‐On” Detection of Hypochlorite**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junqiang Leng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Wen Nie
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Linying Yuan
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Shuang Liu
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Tianxin Liu
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Jianbo Cheng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Zhenbo Liu
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| |
Collapse
|
11
|
|
12
|
Guo FF, Wu WN, Zhao XL, Wang Y, Fan YC, Zhang CX, Xu ZH. A deep-red lysosome-targetable fluorescent probe for detection of hypochlorous acid in pure water and its imaging application in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120270. [PMID: 34438115 DOI: 10.1016/j.saa.2021.120270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Hypochlorite plays a significant role in physiological processes, particularly regulation of lysosomal functions, and is involved in various diseases. Thus, it is crucial to develop highly sensitive and selective molecule tools to detect HClO in lysosomes. Herein, a novel 2H-benzo[h]chromene-pyridine derivative (1) was synthesized through condensation reaction, which exhibited a notable deep-red emission at 640 nm in pure water. This deep-red emission was specifically quenched by adding ClO-. The response of probe 1 toward ClO- was rapid (within 10 s), sensitive (detection limit of 0.012 μM), and effective over a wide range of pH (1.0-12.0). Due to the existence of morpholine as the lysosome-targeting unit, the probe was successfully utilized to monitor lysosomal ClO-. Moreover, the probe 1 was also applied to detecting ClO- in zebrafish.
Collapse
Affiliation(s)
- Fang-Fang Guo
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Chuan-Xiang Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
13
|
Wang Q, Zheng D, Cao Q, Huang K, Qin D. A dual-response fluoran-phenothiazine hybrid fluorescent probe for selective sensing of Fe 3+ and ClO - and cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120061. [PMID: 34146825 DOI: 10.1016/j.saa.2021.120061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Bifunctional fluorescent probes with dual-emission response attract extensive attention. A novel fluorescent probe FP, a hybrid of fluoran and phenothiazine, has been designed and synthesized for selective sensing of Fe3+ and ClO- with dual-emission changes, which involes mechanisms of Fe3+-promoted spirolactone ring opening and ClO--induced oxidation of phenothiazine moiety, respectively. In addition, the detection limits for Fe3+ and ClO- were estimated to be 49.1 and 35.9 nM, respectively. Significantly, FP can be employed as an tracer for the detection of Fe3+ ions within living HeLa cells by fluorescence imaging.
Collapse
Affiliation(s)
- Qinghui Wang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dasheng Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiuhui Cao
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
14
|
Cui H, Hou P, Li Y, Sun J, Zhang H, Zheng Y, Liu Q, Chen S. Ratiometric fluorescence imaging of hypochlorous acid in living cells and zebrafish using a novel phenothiazine-fused HPQ probe. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Gong J, Liu C, Cai S, He S, Zhao L, Zeng X. Novel near-infrared fluorescent probe with a large Stokes shift for sensing hypochlorous acid in mitochondria. Org Biomol Chem 2020; 18:7656-7662. [PMID: 32966521 DOI: 10.1039/d0ob01563f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Hypochlorous acid (HOCl) plays a crucial role in various physiological and pathological processes. However, it is still a challenge to design a xanthene-based near-infrared (NIR) fluorescent probe with a large Stokes shift for sensing HOCl. In this work, a novel mitochondria-targeted fluorescent probe, MXS, with a large Stokes shift based on a xanthene-hemicyanine dyad structure, has been successfully designed and synthesized for the specific detection of HOCl. Gratifyingly, the peak-to-peak Stokes shift of MXS was found to be 130 nm, which was obviously larger than those of conventional rhodamine dyes and most reported xanthene-based hypochlorous acid probes. As expected, MXS exhibited high selectivity, high sensitivity, and fast response time (30 s) for the detection of HOCl via a specific HOCl-promoted intramolecular charge transfer process. The detection limit of MXS for HOCl is calculated to be as low as 72 nM, enabling its use within the physiological concentration range of HOCl (5-25 μM). Importantly, MXS is able to permeate cell membranes and accumulate in the mitochondria, which is convenient for monitoring the variation of hypochlorous acid concentration in the mitochondria of living cells.
Collapse
Affiliation(s)
- Jin Gong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | | | | | | | | | | |
Collapse
|
16
|
Ultrasensitive and specific two-photon fluorescence detection of hypochlorous acid by a lysosome-targeting fluorescent probe for cell imaging. J Pharm Biomed Anal 2020; 190:113545. [PMID: 32846402 DOI: 10.1016/j.jpba.2020.113545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Hypochlorous acid (HOCl) is involved in numerous cellular processes, such as pathogen response, immune regulation, and anti-inflammation. Consequently, the development of HOCl detection at the cellular level has been an important issue in investigating the dynamic distributions of HOCl. Herein, a fluorescent probe, Lyso-NA, containing a HOCl-reactive aminophenol group and a lysosomal-targeting morpholine group, has been effectively designed for detecting lysosomal HOCl. The reaction of Lyso-NA with HOCl induces the oxidation of aminophenol and accompanied by a 136-fold fluorescence enhancement. The detection limit is found at 13 nM. The fluorescence enhancement is accomplished through the suppression of twisted intramolecular charge transfer (TICT). With morpholine, the probe Lyso-NA shows the great lysosomal targetable ability for imaging endogenous lysosomal HOCl in living cells and tissues by two-photon microscopy, providing an opportunity to monitor HOCl in the lysosomes for understanding its biological functions.
Collapse
|
17
|
Gao LL, Wang WW, Wu WN, Wang Y, Zhao XL, Fan YC, Li HJ, Xu ZH. Sensitive and selective fluorescent probe for hypochlorite in 100% aqueous solution and its application for lysosome-targetable cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118110. [PMID: 32007906 DOI: 10.1016/j.saa.2020.118110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 05/26/2023]
Abstract
A morpholine-functionalized pyrrole-cyanine probe was synthesized via a simple condensation reaction in high yield. This probe exhibits high selectivity toward ClO- on fluorescence and UV-vis spectra in neat aqueous solution. The strong green emission of the probe solution was quenched and the yellow color faded immediately upon the addition of ClO-. The detection limit of the probe for ClO- was 0.165 μM. The mechanism of hypochlorite-induced CC breakage was supposed on the basis of EIS-MS, NMR, and density functional theory (DFT) calculation. Finally, the probe was utilized to image ClO- in lysosomes of living cells.
Collapse
Affiliation(s)
- Liang-Liang Gao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wan-Wan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hui-Jun Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
18
|
He X, Chen H, Xu C, Fan J, Xu W, Li Y, Deng H, Shen J. Ratiometric and colorimetric fluorescent probe for hypochlorite monitor and application for bioimaging in living cells, bacteria and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122029. [PMID: 31954303 DOI: 10.1016/j.jhazmat.2020.122029] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/04/2020] [Indexed: 05/15/2023]
Abstract
Hypochlorous acid (HOCl)/hypochlorite (ClO-) was a biologically important component of reactive oxygen species (ROS) and plays a key role in human immune function systems. HOCl/ClO- can destroy invasive bacteria and pathogens, and mediate the physiological balance of the organism with low concentrations, and cause oxidation of the biomolecules such as proteins, cholesterol and nucleic acid in biological cells, leading to a series of diseases with over capacity. Therefore, quantifying the content of HOCl/ClO- in organisms are extremely urgent. In this work, coumarin-salicylic hydrazide Schiff base (CMSH), a ratiometric and colorimetric fluorescent probe for ClO- detection based on coumarin as the fluorophore unit was rationally designed and synthesized. The results indicated that CMSH exhibits high selectivity and sensitivity for ClO- identification. Additionally, the ratios (I470/I532) displayed brilliant ClO--dependent quick and sensitive performance within 40 s and limitation of 128 nM, respectively. As well as the color of the solution changes from green to colorless accompanied by the fluorescence form green turns into blue with addition of ClO-. Totally, CMSH has been successfully employed as ratiometric sensor to image in living cells, bacteria and zebrafish with low cytotoxicity and good permeability.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Chuchu Xu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyi Fan
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yahui Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
19
|
Hou P, Chen S, Liang G, Li H, Zhang H. A lysosome-targeted ratiometric fluorescent probe with a large blue shift for monitoring hypochlorous acid in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117866. [PMID: 31813721 DOI: 10.1016/j.saa.2019.117866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
A new phenothiazine derivative as lysosome-targeted fluorescent probe with a large blue-shift (128 nm) for ClO- detection in a fine ratiometric manner has been designed and synthesized. Probe Lyso-PTB has remarkable fluorescence ratiometric variations (98-fold), low cytotoxicity, rapid response time (50 s) and a low detection limit (23 nM). In particular, the application of Lyso-PTB for ClO- detection was successfully demonstrated in lysosome and in zebrafish.
Collapse
Affiliation(s)
- Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, PR China.
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, PR China
| | - Guilin Liang
- Department of Pharmacy, Qiqihar First Hospital, Qiqihar 161005, Heilongjiang Province, PR China
| | - Hongmei Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, PR China
| | - Hongguang Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, PR China
| |
Collapse
|
20
|
Tang X, Zhu Z, Wang Z, Tang Y, Wang L, Liu L. Developed a novel quinazolinone based turn-on fluorescence probe for highly selective monitoring hypochlorite and its bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117845. [PMID: 31784226 DOI: 10.1016/j.saa.2019.117845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A novel quinazolinone based turn-on fluorescence probe for sensitive monitoring hypochlorite was prepared using the mild condensation reaction between 2-(2'-hydroxyphenyl)-4(3H)-quinazolinone derivative and 4-methylbenzenesulfonyl hydrazide. The probe exhibited specific selectivity to ClO- with obvious optical signal changes from weak fluorescence at 560 nm to a strong fluorescence emission at 520 nm and color changes from colorless to yellow, which could be noticed by the naked eye. The detection limit toward hypochlorite is as low as 11.4 nM. Moreover, the probe could sensitively response to ClO- in living cells with satisfying imaging effect and has been successfully applied to the determination of ClO- in practical water samples, which indicated that the probe has certain application potential for hypochlorite monitoring.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhi Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zengkai Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
21
|
A novel target and pH dual-activatable fluorescent probe for precisely detecting hypochlorite in lysosomes. Anal Chim Acta 2020; 1094:122-129. [DOI: 10.1016/j.aca.2019.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
|
22
|
A highly selective and ultrafast near-infrared fluorescent turn-on and colorimetric probe for hypochlorite in living cells. Anal Chim Acta 2019; 1078:135-141. [DOI: 10.1016/j.aca.2019.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022]
|
23
|
Liu Q, Wu H, Zhao Z, Wei D. Macrometallocycle binuclear NHC silver(I) complex with bridging azobenzene: Synthesis, structure and recognition for hydrogen sulfate. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Jiao X, Huang K, He S, Liu C, Zhao L, Zeng X. A mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for real-time detection of hypochlorous acid. Org Biomol Chem 2019; 17:108-114. [DOI: 10.1039/c8ob02583e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A real-time mitochondria-targeted near-infrared fluorescent probeLhas been synthesized with large Stokes shifts, and high selectivity and sensitivity.
Collapse
Affiliation(s)
- Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
| | - Kun Huang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
| |
Collapse
|
25
|
Zhang X, Zhao W, Li B, Li W, Zhang C, Hou X, Jiang J, Dong Y. Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice. Chem Sci 2018; 9:8207-8212. [PMID: 30542568 PMCID: PMC6240892 DOI: 10.1039/c8sc03226b] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023] Open
Abstract
Hypochlorous acid (HClO) is a promising diagnostic marker for inflammation and relevant diseases. Although many probes were previously developed for HClO imaging, the development of organ targeting probes is still lacking. Herein, we designed and synthesized a series of cyanine derivatives as ratiometric fluorescent probes to detect endogenous HClO in the lungs with inflammation. By installing diverse lipid chains and amino groups on cyanine, we identified that ClO1, with one n-octadecane chain and two 2-[[2-(dimethylamino)ethyl]methylamino]-ethyl groups, is a superior probe to target the lungs over other major organs in mice. ClO1 was able to sense both exogenous and endogenous HClO in A549 (human lung epithelial) cells through fluorescence ratiometric imaging. In a lipopolysaccharide (LPS)-induced lung inflammation mouse model, ClO1 effectively captured endogenous HClO in the lungs after intravenous administration. Overall, these cyanine-derived probes merit further development as organ targeting HClO sensors.
Collapse
Affiliation(s)
- Xinfu Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Bin Li
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Wenqing Li
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Justin Jiang
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
- Department of Biomedical Engineering , The Ohio State University , Columbus , Ohio 43210 , USA
- The Center for Clinical and Translational Science , The Ohio State University , Columbus , Ohio 43210 , USA
- The Comprehensive Cancer Center , The Ohio State University , Columbus , Ohio 43210 , USA
- Dorothy M. Davis Heart & Lung Research Institute , The Ohio State University , Columbus , OH 43210 , USA
- Department of Radiation Oncology , The Ohio State University , Columbus , OH 43210 , USA
| |
Collapse
|
26
|
Mao GJ, Liang ZZ, Bi J, Zhang H, Meng HM, Su L, Gong YJ, Feng S, Zhang G. A near-infrared fluorescent probe based on photostable Si-rhodamine for imaging hypochlorous acid during lysosome-involved inflammatory response. Anal Chim Acta 2018; 1048:143-153. [PMID: 30598144 DOI: 10.1016/j.aca.2018.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 02/08/2023]
Abstract
Hypochloric acid (HClO) is mainly distributed in acidic lysosomes of phagocytes and closely associated with numerous physiological and pathological processes, especially inflammatory response. Fluorescent probe has become an important tool for imaging HClO in lysosomes, but suffered from interference from autofluorescence in vivo, phototoxicity to biosamples and photobleaching phenomenon due to their short-wavelength excitation and emission. Unfortunately, up to now, no near-infrared (NIR) lysosome-targetable fluorescent probe has been reported for imaging HClO. In this paper, a near-infrared fluorescent probe Lyso-NIR-HClO for imaging lysosomal HClO was reported for the first time. Lyso-NIR-HClO based on Si-rhodamine is consisted of a morpholine unit as a lysosome-targetable group and a HClO-mediated cyclization reaction site as a response group, which was applied for highly selective and sensitive detection and imaging for endogenous and exogenous HClO in lysosomes, with a linear range from 5.0 × 10-8 to 1.0 × 10-5 M and a detection limit of 2.0 × 10-8 M in vitro. Attributed to NIR emission and excellent photostability of Si-rhodamine, Lyso-NIR-HClO exhibits excellent performances in vivo, such as low interference from intracellular autofluorescence, stable and persistent fluorescence signal and good tissue penetration, which are in favor of accurate, time-lapse and long-term imaging for HClO. Finally, we applied the probe Lyso-NIR-HClO to visualize endogenous HClO during lysosome-involved inflammatory response including bacteria-infected cells and inflamed mouse model with satisfactory results. The above results proved that Lyso-NIR-HClO would be a potentially useful tool for the study of biological functions and pathological roles of HClO in lysosomes, especially role of lysosome in the inflammatory response.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Chemo / Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zhen-Zhen Liang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jingjing Bi
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hua Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Hong-Min Meng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Li Su
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi-Jun Gong
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Suling Feng
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guisheng Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
27
|
Li C, Wang Y, Huang S, Zhang X, Kang X, Sun Y, Hu Z, Han L, Du L, Liu Y. A photostable fluorescent probe for long-time imagining of lysosome in cell and nematode. Talanta 2018; 188:316-324. [DOI: 10.1016/j.talanta.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
|
28
|
Wang S, Zhang B, Wang W, Feng G, Yuan D, Zhang X. Elucidating the Structure-Reactivity Correlations of Phenothiazine-Based Fluorescent Probes toward ClO−. Chemistry 2018; 24:8157-8166. [DOI: 10.1002/chem.201800356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Shichao Wang
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| | - Boyu Zhang
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Fuzhou 350002 China
| | - Gang Feng
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Fuzhou 350002 China
| | - Xuanjun Zhang
- Faculty of Health Sciences; University of Macau, Taipa; Macau SAR China
| |
Collapse
|
29
|
Rong RX, Wang SS, Liu X, Li RF, Wang KR, Cao ZR, Li XL. Lysosomes-targeting imaging and anticancer properties of novel bis-naphthalimide derivatives. Bioorg Med Chem Lett 2018; 28:742-747. [DOI: 10.1016/j.bmcl.2018.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/27/2022]
|
30
|
Ruan Q, Mu L, Zeng X, Zhao JL, Zeng L, Chen ZM, Yang C, Wei G, Redshaw C. A three-dimensional (time, wavelength and intensity) functioning fluorescent probe for the selective recognition/discrimination of Cu2+, Hg2+, Fe3+ and F− ions. Dalton Trans 2018; 47:3674-3678. [DOI: 10.1039/c7dt04785a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new probe for the selective recognition/discrimination of Cu2+, Hg2+, Fe3+ and F− ions by measuring their response time, wavelength and fluorescence intensity.
Collapse
Affiliation(s)
- Qin Ruan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- School of Chemistry and Chemical Engineering
- Guizhou University
- Guiyang 550025
- China
| | - Lan Mu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- School of Chemistry and Chemical Engineering
- Guizhou University
- Guiyang 550025
- China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- School of Chemistry and Chemical Engineering
- Guizhou University
- Guiyang 550025
- China
| | - Jiang-Lin Zhao
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Li Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- School of Chemistry and Chemical Engineering
- Guizhou University
- Guiyang 550025
- China
| | - Zhen-Min Chen
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Cai Yang
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | | | - Carl Redshaw
- Chemistry
- School of Mathematics and Physical Sciences
- University of Hull
- Hull HU6 7RX
- UK
| |
Collapse
|
31
|
Zheng D, Qiu X, Liu C, Jiao X, He S, Zhao L, Zeng X. Synthesis and bioapplication of a highly selective and sensitive fluorescent probe for HOCl based on a phenothiazine–dicyanoisophorone conjugate with large Stokes shift. NEW J CHEM 2018. [DOI: 10.1039/c8nj00279g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe with a large Stokes shift for monitoring endogenous HOCl in living cells has been prepared.
Collapse
Affiliation(s)
- Dasheng Zheng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xiaoying Qiu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
32
|
Wang Q, Jiao X, Liu C, He S, Zhao L, Zeng X. A rhodamine-based fast and selective fluorescent probe for monitoring exogenous and endogenous nitric oxide in live cells. J Mater Chem B 2018; 6:4096-4103. [DOI: 10.1039/c8tb00646f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A sensitive and selective fluorescent probe for fast detection of nitric oxide was synthesized by grafting a NO-trapper o-phenylenediamine onto a rhodamine fluorophore.
Collapse
Affiliation(s)
- Qing Wang
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- Department of Function Materials
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- Department of Function Materials
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- Department of Function Materials
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Liancheng Zhao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
- Tianjin Key Laboratory for Photoelectric Materials and Devices
| | - Xianshun Zeng
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
- Tianjin Key Laboratory for Photoelectric Materials and Devices
| |
Collapse
|
33
|
Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J. Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem 2017. [DOI: 10.1039/c7py01289f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FRET-based fluorescent polymer dots (FPD) with good membrane permeability have been developed for ratiometric imaging of lysosomal HClO in living cells.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Yongxiang Hong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Bin Zhao
- College of Chemistry and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province
- Xiangtan University
- Xiangtan 411105
- PR China
| | - Pinggui Yi
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| |
Collapse
|