1
|
Klaverdijk M, Ottens M, Klijn ME. Single compound data supplementation to enhance transferability of fermentation specific Raman spectroscopy models. Anal Bioanal Chem 2025:10.1007/s00216-025-05768-5. [PMID: 39912897 DOI: 10.1007/s00216-025-05768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Raman spectroscopy is a valuable analytical tool for real-time analyte quantification in fermentation processes. Quantification is performed with chemometric models that translate Raman spectra into concentration values, which are typically calibrated with process data from multiple comparable fermentations. However, process-specific models underperform for minor process variation(s) or different operation modes due to the integration of cross-correlations, resulting in low target analyte specificity. Thus, model transferability is poor and labor-intensive (re-)calibration of models is required for related processes. In this work, partial least-squares models for glucose, ethanol, and biomass were calibrated with Saccharomyces cerevisiae batch fermentation data and subsequently transferred to a fed-batch operation. To enhance model transferability without additional process runs, single compound data supplementation was performed. The supplemented models increased overall target analyte specificity and demonstrated sufficient prediction accuracy for the fed-batch process (root-mean-square errors of prediction (RMSEP) of 3.06 mM, 8.65 mM, and 0.99 g/L for glucose, ethanol, and biomass), while maintaining high prediction accuracy for the batch process (RMSEP of 1.71 mM, 4.20 mM, and 0.17 g/L for glucose, ethanol, and biomass). This work showcases that process data in combination with single compound spectra is a fast and efficient strategy to apply Raman spectroscopy for real-time process monitoring across related processes.
Collapse
Affiliation(s)
- Maarten Klaverdijk
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Marieke E Klijn
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
2
|
Saccomano SC, Branning JM, Samo TJ, Nuccio EE, Sodia TZ, Mendonsa AA, Weber PK, Cash KJ. A scalable and autoclavable oxygen nanosensor platform for metabolic monitoring of Saccharomyces cerevisiae in a bioreactor and other in situ systems. Mikrochim Acta 2025; 192:120. [PMID: 39890649 DOI: 10.1007/s00604-025-06989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
Polymer-encapsulated dye nanoparticle sensors are a valuable approach to achieving in situ analyte measurements with luminescence; however, typical emulsion-based nanosensors are poorly suited for large-scale biological samples due to limitations of synthesis scalability and stability. Branched polyethylenimine (PEI) is a versatile polymer scaffold ideal for constructing nanoparticles with various covalently conjugated moieties due to their high density of reactive primary amines, high water solubility, and biological stability. In this work, we used branched polyethylenimine as a scaffold-based approach for making a stable and scalable ratiometric oxygen sensor. Pt (II) tetracarboxyporphine was used as an oxygen-sensing dye and coumarin 343 as a reference dye, all covalently linked to the PEI scaffold producing a product that could withstand sterilization procedures and easily be scaled. To minimize toxicity from the PEI scaffold, we conjugated it with 2000 MW PEG. The applicability of the sensors was demonstrated in a 200 mL Saccharomyces cerevisiae yeast culture, using orthogonal luminescent and electrochemical oxygen measurements to validate sensor response and measure the metabolic activity of the yeast in our culture. This approach was able to match the sensitivity of our electrochemical measurements while improving upon drawbacks of other luminescent methods of oxygen detection, demonstrating effective monitoring for at least 20 h. Our scaffold-based approach is a modular and easily translatable technology that could be useful in various biotechnological applications.
Collapse
Affiliation(s)
- Samuel C Saccomano
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - John M Branning
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, 80401, USA
- The MITRE Corporation, Bedford, MA, USA
| | - Ty J Samo
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Erin E Nuccio
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tyler Z Sodia
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adrian A Mendonsa
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Peter K Weber
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
3
|
Chen S, Nguyen TD, Lee KZ, Liu D. Ex vivo T cell differentiation in adoptive immunotherapy manufacturing: Critical process parameters and analytical technologies. Biotechnol Adv 2024; 77:108434. [PMID: 39168355 DOI: 10.1016/j.biotechadv.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures. Advanced process analytical technologies (PATs) are crucial for monitoring these parameters and the assessment of T cell differentiation during culture. In this review, we examine such critical process parameters and PATs, with an emphasis on their impact on enriching less-differentiated T cell population. We also discuss the limitations of current technologies and advocate for further efforts from the community to establish more stringent critical process parameters (CPPs) and develop more at-line/online PATs that are specific to T cell differentiation. These advancements will be essential to enable the manufacturing of more efficacious adoptive immunotherapy products.
Collapse
Affiliation(s)
- Sixun Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Tan Dai Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Kang-Zheng Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Dan Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore.
| |
Collapse
|
4
|
Okamura K, Badr S, Ichida Y, Yamada A, Sugiyama H. Modeling of cell cultivation for monoclonal antibody production processes considering lactate metabolic shifts. Biotechnol Prog 2024; 40:e3486. [PMID: 38924316 PMCID: PMC11659809 DOI: 10.1002/btpr.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.
Collapse
Affiliation(s)
- Kozue Okamura
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Sara Badr
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Yusuke Ichida
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Akira Yamada
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Hirokazu Sugiyama
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Williamson HK, Mendes PM. An integrated perspective on measuring cytokines to inform CAR-T bioprocessing. Biotechnol Adv 2024; 75:108405. [PMID: 38997052 DOI: 10.1016/j.biotechadv.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Chimeric antigen receptor (CAR)-T cells are emerging as a generation-defining therapeutic however their manufacture remains a major barrier to meeting increased market demand. Monitoring critical quality attributes (CQAs) and critical process parameters (CPPs) during manufacture would vastly enrich acquired information related to the process and product, providing feedback to enable real-time decision making. Here we identify specific CAR-T cytokines as value-adding analytes and discuss their roles as plausible CPPs and CQAs. High sensitivity sensing technologies which can be easily integrated into manufacture workflows are essential to implement real-time monitoring of these cytokines. We therefore present biosensors as enabling technologies and evaluate recent advancements in cytokine detection in cell cultures, offering promising translatability to CAR-T biomanufacture. Finally, we outline emerging sensing technologies with future promise, and provide an overall outlook on existing gaps to implementation and the optimal sensing platform to enable cytokine monitoring in CAR-T biomanufacture.
Collapse
Affiliation(s)
- Hannah K Williamson
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Luo Y, Song Y, Wang J, Xu T, Zhang X. Integrated Mini-Pillar Platform for Wireless Real-Time Cell Monitoring. RESEARCH (WASHINGTON, D.C.) 2024; 7:0422. [PMID: 39050822 PMCID: PMC11266812 DOI: 10.34133/research.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Cell culture as the cornerstone of biotechnology remains a labor-intensive process requiring continuous manual oversight and substantial time investment. In this work, we propose an integrated mini-pillar platform for in situ monitoring of multiple cellular metabolism processes, which achieves media anchoring and cell culture through an arrayed mini-pillar chip. The assembly of polyaniline (PANI)/dendritic gold-modified microelectrode biosensors exhibits high sensitivity (63.55 mV/pH) and excellent interference resistance, enabling real-time acquisition of biosensing signals. We successfully employed such integrated devices to real-time measuring pH variations in multiple cells and real-time monitoring of cell metabolism under drug interventions and to facilitate in situ assisted cultivation of 3-dimensional (3D) cell spheroids. This mini-pillar array-based cell culture platform exhibits excellent biosensing sensitivity and real-time monitoring capability, offering considerable potential for the advancement of biotechnology and medical drug development.
Collapse
Affiliation(s)
- Yong Luo
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology,
University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles,
Qingdao University, Qingdao 266071, P. R. China
| | - Jing Wang
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Tailin Xu
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- School of Biomedical Engineering,
Shenzhen UniversityHealth Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xueji Zhang
- Synthetic Biology Research Center, The Institute for Advanced Study (IAS),
Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- School of Biomedical Engineering,
Shenzhen UniversityHealth Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
7
|
Orzechowska A, Czaderna-Lekka A, Trtílek M, Szymańska R, Trela-Makowej A, Wątor K. Novel technique for the ultra-sensitive detection of hazardous contaminants using an innovative sensor integrated with a bioreactor. Sci Rep 2024; 14:12836. [PMID: 38834660 DOI: 10.1038/s41598-024-63631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases, along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.
Collapse
Affiliation(s)
- Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Anna Czaderna-Lekka
- Department of Machine Learning, Faculty of Informatics and Communication, University of Economics in Katowice, 1 Maja 50, 40-287, Katowice, Poland
| | - Martin Trtílek
- Photon Systems Instruments, Průmyslová 470, 664 24, Drásov, Czech Republic
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Katarzyna Wątor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
8
|
Ilchenko O, Pilhun Y, Kutsyk A, Slobodianiuk D, Goksel Y, Dumont E, Vaut L, Mazzoni C, Morelli L, Boisen S, Stergiou K, Aulin Y, Rindzevicius T, Andersen TE, Lassen M, Mundhada H, Jendresen CB, Philipsen PA, Hædersdal M, Boisen A. Optics miniaturization strategy for demanding Raman spectroscopy applications. Nat Commun 2024; 15:3049. [PMID: 38589380 PMCID: PMC11001912 DOI: 10.1038/s41467-024-47044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm-1 resolution within the 400-4000 cm-1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.
Collapse
Affiliation(s)
- Oleksii Ilchenko
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark.
- Lightnovo ApS, Birkerød, Denmark.
| | - Yurii Pilhun
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Andrii Kutsyk
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Technical University of Denmark, Department of Energy Conversion and Storage, Kgs. Lyngby, Denmark
| | - Denys Slobodianiuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Magnetism, Kyiv, Ukraine
| | - Yaman Goksel
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Elodie Dumont
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lukas Vaut
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Chiara Mazzoni
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lidia Morelli
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | | | | | | | - Tomas Rindzevicius
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Merete Hædersdal
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Anja Boisen
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int 2023; 173:113464. [PMID: 37803787 DOI: 10.1016/j.foodres.2023.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The high population growth rate, massive animal food consumption, fast economic progress, and limited food resources could lead to a food crisis in the future. There is a huge requirement for dietary proteins including cultured meat is being progressed to fulfill the need for meat-derived proteins in the diet. However, production of cultured meat requires monitoring numerous bioprocess parameters. This review presents a comprehensive overview of various widely adopted techniques (optical, spectroscopic, electrochemical, capacitive, FETs, resistive, microscopy, and ultrasound) for monitoring physical, chemical, and biological parameters that can improve the bioprocess control in cultured meat. The methods, operating principle, merits/demerits, and the main open challenges are reviewed with the aim to support the readers in advancing knowledge on novel sensing systems for cultured meat applications.
Collapse
Affiliation(s)
- Dnyandeo Pawar
- Microwave Materials Group, Centre for Materials for Electronics Technology (C-MET), Athani P.O, Thrissur, Kerala 680581, India.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
10
|
Survyla A, Urniezius R, Simutis R. Viable cell estimation of mammalian cells using off-gas-based oxygen uptake rate and aging-specific functional. Talanta 2023; 254:124121. [PMID: 36462281 DOI: 10.1016/j.talanta.2022.124121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
This study developed an estimation routine for counting the viable cells in an in vitro fed-batch Chinese hamster ovary cultivation that relies on off-gas information and inlet gas mixture knowledge. We computed the oxygen uptake rate bound to the bioreactor exhaust gas outlet when the inlet gas mixture was stationary. Our mammalian biosynthesis analysis determined the stoichiometric parameters as a function of the average population age. We cross-validated an identical algorithm for mammalian and microbial cultivations and found that the' 99% confidence band of the model generally overlapped with the error bars defined from observations. The resulting RMSE and MAE averages were 0.188 and 0.14e9cells L-1, respectively, when estimating the viable mammalian cell count. The validation for the estimation of total bacterial biomass yielded an MAE and RMSE of 1.78 g L-1 and 2.53 g L-1, respectively. Moreover, our proposed approach provides an online estimation of the average population age for both aerobically cultivated microorganisms.
Collapse
Affiliation(s)
- Arnas Survyla
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367, Kaunas, Lithuania
| | - Renaldas Urniezius
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367, Kaunas, Lithuania.
| | - Rimvydas Simutis
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367, Kaunas, Lithuania
| |
Collapse
|
11
|
Nikita S, Mishra S, Gupta K, Runkana V, Gomes J, Rathore AS. Advances in bioreactor control for production of biotherapeutic products. Biotechnol Bioeng 2023; 120:1189-1214. [PMID: 36760086 DOI: 10.1002/bit.28346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Advanced control strategies are well established in chemical, pharmaceutical, and food processing industries. Over the past decade, the application of these strategies is being explored for control of bioreactors for manufacturing of biotherapeutics. Most of the industrial bioreactor control strategies apply classical control techniques, with the control system designed for the facility at hand. However, with the recent progress in sensors, machinery, and industrial internet of things, and advancements in deeper understanding of the biological processes, coupled with the requirement of flexible production, the need to develop a robust and advanced process control system that can ease process intensification has emerged. This has further fuelled the development of advanced monitoring approaches, modeling techniques, process analytical technologies, and soft sensors. It is seen that proper application of these concepts can significantly improve bioreactor process performance, productivity, and reproducibility. This review is on the recent advancements in bioreactor control and its related aspects along with the associated challenges. This study also offers an insight into the future prospects for development of control strategies that can be designed for industrial-scale production of biotherapeutic products.
Collapse
Affiliation(s)
- Saxena Nikita
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Somesh Mishra
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Keshari Gupta
- TCS Research, Tata Consultancy Services Limited, Pune, India
| | | | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| |
Collapse
|
12
|
Brehove M, Rogers C, Menon R, Minor P, Allington J, Lam A, Vielmetter J, Menon N. Cell monitoring with optical coherence tomography. Cytotherapy 2023; 25:120-124. [PMID: 36274007 DOI: 10.1016/j.jcyt.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AIMS We evaluated a commercially available instrument, OCTiCell (chromologic.com/octicell), for monitoring cell growth in suspended agitated bioreactors based on optical coherence tomography. OCTiCell is an in-line, completely non-invasive instrument that can operate on any suspended-cell bioreactor with a window or transparent wall. In traditional optical coherence tomography, the imaging beam is rastered over the sample to form a three-dimensional image. OCTiCell, instead uses a fixed imaging beam and takes advantage of the motion of the media to move the cells across the interrogating optical beam. RESULTS We found strong correlations between the non-invasive, non-contact, reagent-free OCTiCell measurements of cell concentration and viability and those obtained from the automated cell counter, and the XTT viability assay, which is a colorimetric assay for quantifying metabolic activity. CONCLUSIONS This novel cell monitoring method can adapt to different bioreactor form factors and could reduce the labor cost and contamination risks associated with cell growth monitoring.
Collapse
Affiliation(s)
| | | | | | - Paul Minor
- ChromoLogic LLC, Monrovia, California, USA
| | | | - Annie Lam
- Protein Expression Center, California Institute of Technology, Pasadena, California, USA
| | - Jost Vielmetter
- Protein Expression Center, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
13
|
McCorry MC, Reardon KF, Black M, Williams C, Babakhanova G, Halpern JM, Sarkar S, Swami NS, Mirica KA, Boermeester S, Underhill A. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication 2022; 15:10.1088/1758-5090/ac94a1. [PMID: 36150372 PMCID: PMC10283157 DOI: 10.1088/1758-5090/ac94a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Kenneth F Reardon
- Chemical and Biological Engineering and Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
| | - Marcie Black
- Advanced Silicon Group, Lowell, MA 01854, United States of America
| | - Chrysanthi Williams
- Access Biomedical Solutions, Trinity, Florida 34655, United States of America
| | - Greta Babakhanova
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States of America
- Materials Science and Engineering Program, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sumona Sarkar
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Sarah Boermeester
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Abbie Underhill
- Scientific Bioprocessing Inc., Pittsburgh, PA 15238, United States of America
| |
Collapse
|
14
|
Samaras JJ, Micheletti M, Ding W. Transformation of Biopharmaceutical Manufacturing Through Single-Use Technologies: Current State, Remaining Challenges, and Future Development. Annu Rev Chem Biomol Eng 2022; 13:73-97. [PMID: 35700527 DOI: 10.1146/annurev-chembioeng-092220-030223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.
Collapse
Affiliation(s)
- Jasmin J Samaras
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Martina Micheletti
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Weibing Ding
- Manufacturing Science & Technology, GSK, King of Prussia, Pennsylvania, USA;
| |
Collapse
|
15
|
Udomsom S, Budwong A, Wongsa C, Sangngam P, Baipaywad P, Manaspon C, Auephanwiriyakul S, Theera-Umpon N, Paengnakorn P. Automatic Programmable Bioreactor with pH Monitoring System for Tissue Engineering Application. Bioengineering (Basel) 2022; 9:bioengineering9050187. [PMID: 35621465 PMCID: PMC9138136 DOI: 10.3390/bioengineering9050187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering technology has been advanced and applied to various applications in the past few years. The presence of a bioreactor is one key factor to the successful development of advanced tissue engineering products. In this work, we developed a programmable bioreactor with a controlling program that allowed each component to be automatically operated. Moreover, we developed a new pH sensor for non-contact and real-time pH monitoring. We demonstrated that the prototype bioreactor could facilitate automatic cell culture of L929 cells. It showed that the cell viability was greater than 80% and cell proliferation was enhanced compared to that of the control obtained by a conventional cell culture procedure. This result suggests the possibility of a system that could be potentially useful for medical and industrial applications, including cultured meat, drug testing, etc.
Collapse
Affiliation(s)
- Suruk Udomsom
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
| | - Apiwat Budwong
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
| | - Chanyanut Wongsa
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
| | - Pakorn Sangngam
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
| | - Sansanee Auephanwiriyakul
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
- Department of Computational Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Theera-Umpon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
- Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pathinan Paengnakorn
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (A.B.); (C.W.); (P.S.); (P.B.); (C.M.); (S.A.); (N.T.-U.)
- Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
16
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
17
|
Modern Sensor Tools and Techniques for Monitoring, Controlling, and Improving Cell Culture Processes. Processes (Basel) 2022. [DOI: 10.3390/pr10020189] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The growing biopharmaceutical industry has reached a level of maturity that allows for the monitoring of numerous key variables for both process characterization and outcome predictions. Sensors were historically used in order to maintain an optimal environment within the reactor to optimize process performance. However, technological innovation has pushed towards on-line in situ continuous monitoring of quality attributes that could previously only be estimated off-line. These new sensing technologies when coupled with software models have shown promise for unique fingerprinting, smart process control, outcome improvement, and prediction. All this can be done without requiring invasive sampling or intervention on the system. In this paper, the state-of-the-art sensing technologies and their applications in the context of cell culture monitoring are reviewed with emphasis on the coming push towards industry 4.0 and smart manufacturing within the biopharmaceutical sector. Additionally, perspectives as to how this can be leveraged to improve both understanding and outcomes of cell culture processes are discussed.
Collapse
|
18
|
Mitra S, Murthy GS. Bioreactor control systems in the biopharmaceutical industry: a critical perspective. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:91-112. [PMID: 38624976 PMCID: PMC8340809 DOI: 10.1007/s43393-021-00048-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
Industrial-scale bioprocessing underpins much of the production of pharmaceuticals, nutraceuticals, food, and beverage processing industries of the modern world. The profitability of these processes increasingly leverages the economies of scale and scope that are critically dependent on the product yields, titers, and productivity. Most of the processes are controlled using classical control approaches and represent over 90% of the industrial controls used in bioprocessing industries. However, with the advances in the production processes, especially in the biopharmaceutical and nutraceutical industries, monitoring and control of bioprocesses such as fermentations with GMO organisms, and downstream processing has become increasingly complex and the inadequacies of the classical and some of the modern control systems techniques is becoming apparent. Therefore, with increasing research complexity, nonlinearity, and digitization in process, there has been a critical need for advanced process control that is more effective, and easier process intensification and product yield (both by quality and quantity) can be achieved. In this review, industrial aspects of a process and automation along with various commercial control strategies have been extensively discussed to give an insight into the future prospects of industrial development and possible new strategies for process control and automation with a special focus on the biopharmaceutical industry. Supplementary Information The online version contains supplementary material available at 10.1007/s43393-021-00048-6.
Collapse
Affiliation(s)
- Sagnik Mitra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, 453552 India
| | - Ganti S. Murthy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, 453552 India
| |
Collapse
|
19
|
Werner J, Belz M, Klein KF, Sun T, Grattan KTV. Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Analyst 2021; 146:4811-4821. [PMID: 34195717 DOI: 10.1039/d1an00631b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optical, and especially fiber-optic techniques for the sensing of pH have become very attractive and considerable research progress in this field has been made over recent years. The determination of the value of pH across a broad range of applications today, important for areas of study such as life sciences, environmental monitoring, manufacturing industry and widely in biological research is now accessible from such optical sensors. The need for such technology arises because familiar, commercial sensors are often limited in terms of their response time and the presence of drift, all of which emphasize the value of newer and rapidly developing technologies such as fiber-optic sensors, to address these wider applications. As a result, a new compact sensor design has been developed, designed around a specially-formed fiber-optic tip, coated with a pH-sensitive dye, and importantly covalently linked to a hydrogel matrix to provide high stability. The sensor developed was designed to have a very fast response time (to 90% of saturation, Δt90) of <5 s and a sensing uncertainty of ∼±0.04 pH units. Given the covalently bonded nature of the dye, the problem of leaching of the indicator dye is reduced, creating a probe which has been shown to be very stable over many days of use. Illustrating this through extended continuous use, over ∼12 h at pH 7, this stability was confirmed showing a drift of <0.05 pH h-1. In order to give an illustration of the value of the probe in an important biological application, the monitoring of pH levels between pH 7 to pH 8 in an AMES' medium, a substance which is important to maintain the metabolism of retinal cells is shown and the results as well as temperature stability of the probe discussed.
Collapse
Affiliation(s)
- Jan Werner
- School of Mathematics, Computer Science and Engineering, City, University of London, Northampton Square, EC1 V 0HB, London, UK.
| | | | | | | | | |
Collapse
|
20
|
Pinto IF, Soares RRG, Mäkinen MEL, Chotteau V, Russom A. Multiplexed Microfluidic Cartridge for At-Line Protein Monitoring in Mammalian Cell Culture Processes for Biopharmaceutical Production. ACS Sens 2021; 6:842-851. [PMID: 33724791 PMCID: PMC8034812 DOI: 10.1021/acssensors.0c01884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The biopharmaceutical
market has been rapidly growing in recent
years, creating a highly competitive arena where R&D is critical
to strike a balance between clinical safety and profitability. Toward
process optimization, the recent development and adoption of new process
analytical technologies (PAT) highlight the dynamic complexity of
mammalian/human cell culture processes, as well as the importance
of fine-tuning and modeling key metabolites and proteins. In this
context, simple, rapid, and cost-effective devices allowing routine
at-line monitoring of specific proteins during process development
and production are currently lacking. Here, we report the development
of a versatile microfluidic protein analysis cartridge allowing the
multiplexed bead-based immunodetection of specific proteins directly
from complex mixtures with minimal hands-on time. Colorimetric quantification
of Chinese hamster ovary (CHO) host cell proteins as key impurities,
monoclonal antibodies as target biopharmaceuticals, and lactate dehydrogenase
as a marker of cell viability was achieved with limits of detection
in the 1–10 ng/mL range and analysis times as short as 30 min.
The device was further demonstrated for the monitoring of a Rituximab-producing
CHO cell bioreactor over the course of 8 days, providing comparable
recoveries to standard enzyme-linked immunosorbent assay (ELISA) kits.
The high sensitivity combined with robustness to matrix interference
highlights the potential of the device to perform at-line measurements
spanning from the bioreactor to the downstream processing.
Collapse
Affiliation(s)
- Inês F. Pinto
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, 171 21 Solna, Sweden
| | - Ruben R. G. Soares
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, 171 21 Solna, Sweden
| | - Meeri E.-L. Mäkinen
- KTH Royal Institute of Technology, Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, 106 91 Stockholm, Sweden
- AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, KTH, 100 44 Stockholm, Sweden
| | - Veronique Chotteau
- KTH Royal Institute of Technology, Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, 106 91 Stockholm, Sweden
- AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, KTH, 100 44 Stockholm, Sweden
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, 171 21 Solna, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
21
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|
22
|
Zidarič T, Milojević M, Vajda J, Vihar B, Maver U. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09253-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Guliy OI, Zaitsev BD, Burygin GL, Karavaeva OA, Fomin AS, Staroverov SA, Borodina IA. Prospects for the Use of Gold Nanoparticles to Increase the Sensitivity of an Acoustic Sensor in the Detection of Microbial Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1727-1737. [PMID: 32376190 DOI: 10.1016/j.ultrasmedbio.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The interaction of microbial cells with antibody-gold nanoparticle conjugates in conductive suspensions was experimentally studied by using an acoustic slot-mode sensor. The sensor consisted of a piezoelectric plate with a propagating acoustic wave and a liquid container located above this plate with a given gap. An analysis of the measured parameters of the sensor revealed that the specific interaction of bacterial cells with the conjugates led to a stronger change in the sensor output signal than the specific interaction of bacterial cells with antibodies. The measurements were made for Azospirillum brasilense Sp7 cells in buffer with an initial conductivity of 5-30 μS/cm. The limit of cell detection with the conjugates was 103 cells/mL, and the analysis took about 4 min. The advantage of the sensor is the possibility of repeated use and cleaning of the liquid container without damaging the sensor's elements. These results are promising for use in rapid test systems for the direct detection of microbial cells in actual samples of liquids in medical diagnostics.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, Russia.
| | - Boris D Zaitsev
- Kotel'nikov Institute of Radio Engineering and Electronics, RAS, Saratov Branch, Saratov, Russia
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, Russia
| | - Olga A Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, Russia
| | - Alexander S Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, Russia
| | - Sergey A Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, Russia
| | - Irina A Borodina
- Kotel'nikov Institute of Radio Engineering and Electronics, RAS, Saratov Branch, Saratov, Russia
| |
Collapse
|
24
|
Guliy OI, Zaitsev BD, Mehta SK, Borodina IA. Analysis of Microbial Cell Viability in a Liquid Using an Acoustic Sensor. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1026-1039. [PMID: 31932157 DOI: 10.1016/j.ultrasmedbio.2019.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
A method was developed for the rapid analysis and evaluation of the viability of bacteriophage-infected Escherichia coli (E.coli) XL-1 directly in a conducting suspension by using a slot-mode sensor. The method is based on recording the changes in the depth and frequency of resonant absorption peaks in the frequency dependence of the insertion loss of the sensor before and after the biologic interaction of E. coli with specific bacteriophages. The possibility was shown of recording the infection of E. coli with specific bacteriophages and assessing its viability in suspensions with a conductivity of 4.5-30 μS/cm. Сontrol experiments were carried out with non-specific interactions of E. coli cells with bacteriophages, in which no changes in the sensor variables were observed. The optimal informational variable for estimating the number of viable cells was the degree of change in the depth of the resonant peaks in the frequency dependence of the insertion loss of the sensor. The limit of cell detection was ∼102-103 cells mL-1, with an analysis time of about 5 min. An additional advantage of the sensor was the availability of a removable liquid container, which allows one to use it repeatedly and to facilitate the cleaning of the container from spent samples. The results are promising for the detection of bacteria and assessment of their viability in solutions with conductivity in the range 4.5-30 µS/cm.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences Saratov, Russia.
| | - Boris D Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
| | | | - Irina A Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
25
|
Goldrick S, Sandner V, Cheeks M, Turner R, Farid SS, McCreath G, Glassey J. Multivariate Data Analysis Methodology to Solve Data Challenges Related to Scale‐Up Model Validation and Missing Data on a Micro‐Bioreactor System. Biotechnol J 2019; 15:e1800684. [DOI: 10.1002/biot.201800684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 09/26/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Stephen Goldrick
- The Advanced Centre for Biochemical EngineeringDepartment of Biochemical EngineeringUniversity College London Gower Street London WC1E 6BT UK
- Cell Sciences, Biopharmaceutical DevelopmentMedImmune Cambridge CB1 6GH UK
| | - Viktor Sandner
- FUJIFILM Diosynth BiotechnologiesProcess Design and Data Science Belasis Ave, Stockton‐on‐Tees Billingham TS23 1LH UK
| | - Matthew Cheeks
- Cell Sciences, Biopharmaceutical DevelopmentMedImmune Cambridge CB1 6GH UK
| | - Richard Turner
- Cell Sciences, Biopharmaceutical DevelopmentMedImmune Cambridge CB1 6GH UK
| | - Suzanne S. Farid
- The Advanced Centre for Biochemical EngineeringDepartment of Biochemical EngineeringUniversity College London Gower Street London WC1E 6BT UK
| | - Graham McCreath
- FUJIFILM Diosynth BiotechnologiesProcess Design and Data Science Belasis Ave, Stockton‐on‐Tees Billingham TS23 1LH UK
| | - Jarka Glassey
- School of EngineeringNewcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
26
|
Dantism S, Röhlen D, Wagner T, Wagner P, Schöning MJ. A LAPS-Based Differential Sensor for Parallelized Metabolism Monitoring of Various Bacteria. SENSORS 2019; 19:s19214692. [PMID: 31671716 PMCID: PMC6864667 DOI: 10.3390/s19214692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022]
Abstract
Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| |
Collapse
|
27
|
Dantism S, Röhlen D, Selmer T, Wagner T, Wagner P, Schöning MJ. Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system. Biosens Bioelectron 2019; 139:111332. [PMID: 31132723 DOI: 10.1016/j.bios.2019.111332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Applying biosensors for evaluation of the extracellular acidification of microorganisms in various biotechnological fermentation processes is on demand. An early stage detection of disturbances in the production line would avoid costly interventions related to metabolically inactive microorganisms. Furthermore, the determination of the number of living cells through cell plating procedure after cultivations is known as time- and material-consuming. In this work, a differential light-addressable potentiometric sensor (LAPS) system was developed to monitor the metabolic activity of Corynebacterium glutamicum (C. glutamicum ATCC13032) as typical microorganism in fermentation processes. In this context, the number of living cells in suspensions was directly determined utilizing the read-out principle of the LAPS system. The planar sensor surface of the LAPS design allows to fixate 3D-printed multi-chamber structures, which enables differential measurements. In this way, undesirable external influences such as pH variations of the medium and sensor signal drift can be compensated.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Patrick Wagner
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
28
|
Microbial biospherics: The experimental study of ecosystem function and evolution. Proc Natl Acad Sci U S A 2019; 116:11093-11098. [PMID: 31110020 DOI: 10.1073/pnas.1904326116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Awareness that our planet is a self-supporting biosphere with sunlight as its major source of energy for life has resulted in a long-term historical fascination with the workings of self-supporting ecological systems. However, the studies of such systems have never entered the canon of ecological or evolutionary tools and instead, have led a fringe existence connected to life support system engineering and space travel. We here introduce a framework for a renaissance in biospherics based on the study of matter-closed, energy-open ecosystems at a microbial level (microbial biospherics). Recent progress in genomics, robotics, and sensor technology makes the study of closed systems now much more tractable than in the past, and we argue that the time has come to emancipate the study of closed systems from this fringe context and bring them into a mainstream approach for studying ecosystem processes. By permitting highly replicated long-term studies, especially on predetermined and simplified systems, microbial biospheres offer the opportunity to test and develop strong hypotheses about ecosystem function and the ecological and evolutionary determinants of long-term system failure or persistence. Unlike many sciences, ecosystem ecology has never fully embraced a reductionist approach and has remained focused on the natural world in all its complexity. We argue that a reductionist approach to ecosystem ecology, using microbial biospheres, based on a combination of theory and the replicated study of much simpler self-enclosed microsystems could pay huge dividends.
Collapse
|
29
|
Ma F, Zhang A, Chang D, Velev OD, Wiltberger K, Kshirsagar R. Real-time monitoring and control of CHO cell apoptosis by in situ multifrequency scanning dielectric spectroscopy. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Yuan Y, Zong H, Bai J, Han L, Wang L, Zhang X, Zhang X, Zhang J, Xu C, Zhu J, Zhang B. Bioprocess development of a stable FUT8 -/--CHO cell line to produce defucosylated anti-HER2 antibody. Bioprocess Biosyst Eng 2019; 42:1263-1271. [PMID: 30982137 DOI: 10.1007/s00449-019-02124-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
Abstract
In recent years, an increasing number of defucosylated therapeutic antibodies have been applied in clinical practices due to their better efficacy compared to fucosylated counterparts. The establishment of stable and clonal manufacturing cell lines is the basis of therapeutic antibodies production. Bioprocess development of a new cell line is necessary for its future applications in the biopharmaceutical industry. We engineered a stable cell line expressing defucosylated anti-HER2 antibody based on an established α-1,6-fucosyltransferase (FUT8) gene knockout CHO-S cell line. The optimization of medium and feed was evaluated in a small-scale culture system. Then the optimal medium and feed were scaled up in a bioreactor system. After fed-batch culture over 13 days, we evaluated the cell growth, antibody yield, glycan compositions and bioactivities. The production of anti-HER2 antibody from the FUT8 gene knockout CHO-S cells in the bioreactor increased by 37% compared to the shake flask system. The N-glycan profile of the produced antibody was consistent between the bioreactor and shake flask system. The antibody-dependent cellular cytotoxicity activity of the defucosylated antibody increased 14-fold compared to the wild-type antibody, which was the same as our previous results. The results of our bioprocess development demonstrated that the engineered cell line could be developed to a biopharmaceutical industrial cell line.
Collapse
Affiliation(s)
- Yuan Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Huifang Zong
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jingyi Bai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lei Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xinyu Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jingyi Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chenxiao Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.,Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
31
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
32
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
33
|
Holzberg TR, Watson V, Brown S, Andar A, Ge X, Kostov Y, Tolosa L, Rao G. Sensors for biomanufacturing process development: facilitating the shift from batch to continuous manufacturing. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes. Appl Microbiol Biotechnol 2018; 102:7293-7308. [DOI: 10.1007/s00253-018-9194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|