1
|
Rozbicka B, Koncki R, Fiedoruk-Pogrebniak M. A Trianalyte µPAD for Simultaneous Determination of Iron, Zinc, and Manganese Ions. Molecules 2024; 29:4805. [PMID: 39459174 PMCID: PMC11510364 DOI: 10.3390/molecules29204805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
In this work, a microfluidic paper-based analytical device (µPAD) for simultaneous detection of Fe, Zn, and Mn ions using immobilized chromogenic reagents Ferene S, xylenol orange, and 1-(2-pyridylazo)-2-naphthol, respectively, is presented. As the effective recognition of analytes via respective chromogens takes place under extremely different pH conditions, experiments reported in this publication are focused on optimization of the µPAD architecture allowing for the elimination of potential cross effects. The paper-based microfluidic device was fabricated using low-cost and well-reproducible wax-printing technology. For optical detection of color changes, an ordinary office scanner and self-made RGB-data processing program were applied. Optimized and stable over time, µPADs allow fast, selective, and reproducible multianalyte determinations at submillimolar levels of respective heavy metal ions, which was confirmed by results of the analysis of solutions mimicking real samples of wastewater. The presented concept of simultaneous determination of different analytes that required extremely different conditions for detection can be useful for the development of other multianalyte microfluidic paper-based devices in the µPAD format.
Collapse
|
2
|
Fiedoruk-Pogrebniak M. Mathematical processing of RGB data in microfluidic paper-based analytical devices. Sci Rep 2024; 14:13635. [PMID: 38871747 DOI: 10.1038/s41598-024-63546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Microfluidic paper-based analytical devices often are combined with scanners as detectors. In this work, different scanning options offered by scanners: resolution, scanning mode, exposure to radiation, colour restoration, and saving format were tested. Moreover, different attempts to mathematical data treatment based on intensities of three channels-Red, Green and Blue, were studied. All measurements presented in this article were conducted for a model dye-bromothymol blue and a model analyte-zinc(II) ion (complexed with xylenol orange in a paper matrix). The article summarizes the scanning options and possibilities of mathematical calculations. Nevertheless, it is suggested that the best option is to use the prior prepared calculation file to paste obtained intensities and compare all presented in this article (and the most frequently used) equations to process intensities and decide which one should be used in the particular analysis.
Collapse
|
3
|
Rypar T, Bezdekova J, Pavelicova K, Vodova M, Adam V, Vaculovicova M, Macka M. Low-tech vs. high-tech approaches in μPADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing. Talanta 2024; 266:124911. [PMID: 37536103 DOI: 10.1016/j.talanta.2023.124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 08/05/2023]
Abstract
Paper-based analysis has captivated scientists' attention in the field of analytical chemistry and related areas for the last two decades. Arguably no other area of modern chemical analysis is so broad and diverse in its approaches spanning from simple 'low-tech' low-cost paper-based analytical devices (PADs) requiring no or simple instrumentation, to sophisticated PADs and microfluidic paper-based analytical devices (μPADs) featuring elements of modern material science and nanomaterials affording high selectivity and sensitivity. Correspondingly diverse is the applicability, covering resource-limited scenarios on the one hand and most advanced approaches on the other. Herein we offer a view reflecting this diversity in the approaches and types of devices. The core idea of this article rests in dividing μPADs according to their type into two groups: A) instrumentation-free μPADs for resource-limited scenarios or developing countries and B) instrumentation-based μPADs as futuristic POC devices for e-diagnostics mainly aimed at developed countries. Each of those two groups is presented and discussed with the view of the main requirements in the given area, the most common targets, sample types and suitable detection approaches either implementing high-tech elements or low-tech low-cost approaches. Finally, a socioeconomic perspective is offered in discussing the fabrication and operational costs of μPADs, and, future perspectives are offered.
Collapse
Affiliation(s)
- Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jaroslava Bezdekova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Milada Vodova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic; Australian Centre for Research on Separation Science and School o Natural Sciences, University of Tasmania, Private Bag 75, Hobart TAS, 7001, Australia.
| |
Collapse
|
4
|
Deng C, Zhao Q, Gan Y, Yang C, Zhu H, Mo S, Zheng J, Li J, Jiang K, Feng Z, Wei X, Zhang Q, Yang Z, Xu S. High-sensitivity hemoglobin detection based on polarization-differential spectrophotometry. Biosens Bioelectron 2023; 241:115667. [PMID: 37696221 DOI: 10.1016/j.bios.2023.115667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Hemoglobin content is recognized as a momentous and fundamental physiological indicator, especially the precise detection of trace hemoglobin is of great significance for early diagnosis and prevention of tumors, cancer, organic injury, etc. Therefore, high-sensitivity hemoglobin detection is imperative. However, effective detection methods and reliable detection systems are still lacking and remain enormous challenges. Herein, we present a synthetical strategy to break through the existing bottleneck based on polarization-differential spectrophotometry and high-performance single-frequency green fiber laser. Importantly, this framework not only has precisely extracted the two-dimensional information of intensity and polarization during the interaction between laser and hemoglobin, but also has taken advantage of the high monochromaticity and fine directivity in the optimized laser source to reduce the undesirable scattered disturbance. Thus, the hemoglobin detection sensitivity of 7.2 × 10-5 g/L has advanced a hundredfold compared with conventional spectrophotometry, and the responsive dynamic range is close to six orders of magnitude. Results indicate that our technology can realize high-sensitivity detection of trace hemoglobin content, holding promising applications for precision medicine and early diagnosis as an optical direct and fast detection method.
Collapse
Affiliation(s)
- Chunlan Deng
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Qilai Zhao
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China.
| | - Yichuan Gan
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Changsheng Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China; Hengqin Firay Sci-Tech Company Ltd., Zhuhai, 519031, China
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Shiman Mo
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Junjie Zheng
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Jialong Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Kui Jiang
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Zhouming Feng
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoming Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China
| | - Qinyuan Zhang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, 510640, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, 510640, China; Guangdong Engineering Technology Research and Development Center of High-performance Fiber Laser Techniques and Equipments, Zhuhai, 519031, China
| | - Shanhui Xu
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou, 510640, China; School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China; State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510640, China; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, 510640, China; Guangdong Engineering Technology Research and Development Center of High-performance Fiber Laser Techniques and Equipments, Zhuhai, 519031, China; Hengqin Firay Sci-Tech Company Ltd., Zhuhai, 519031, China.
| |
Collapse
|
5
|
Kayirangwa Y, Mohibullah M, Easley CJ. Droplet-based μChopper device with a 3D-printed pneumatic valving layer and a simple photometer for absorbance based fructosamine quantification in human serum. Analyst 2023; 148:4810-4819. [PMID: 37605899 PMCID: PMC10530610 DOI: 10.1039/d3an01149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The development of microfluidic systems for biological assays presents challenges, particularly in adapting traditional optical absorbance assays to smaller volumes or to microfluidic formats. This often requires assay modification or translation to a fluorescence version, which can be impractical. To address this issue, our group has developed the μChopper device, which uses microfluidic droplet formation as a surrogate for an optical beam chopper, allowing for lock-in analysis and improved limits of detection with both absorbance and fluorescence optics without modifying the optical path length. Here, we have adapted the μChopper to low-cost optics using a light-emitting diode (LED) source and photodiode detector, and we have fabricated the pnuematically valved devices entirely by 3D printing instead of traditional photolithography. Using a hybrid device structure, fluidic channels were made in polydimethylsiloxane (PDMS) by moulding onto a 3D-printed master then bonding to a prefabricated thin layer, and the pneumatic layer was directly made of 3D-printed resin. This hybrid structure allowed an optical slit to be fabricated directly under fluidic channels, with the LED interfaced closely above the channel. Vacuum-operated, normally closed valves provided precise temporal control of droplet formation from 0.6 to 2.0 Hz. The system was validated against the standard plate reader format using a colorimetric fructosamine assay and by quantifying fructosamine in human serum from normal and diabetic patients, where strong correlation was shown. Showing a standard benefit of microfluidics in analysis, the device required 6.4-fold less serum volume for each assay. This μChopper device and lower cost optical system should be applicable to various absorbance based assays in low volumes, and the reliance on inexpensive 3D printers makes it more accessible to users without cleanroom facilities.
Collapse
Affiliation(s)
- Yvette Kayirangwa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | | |
Collapse
|
6
|
Tsaftari VC, Tarara M, Tzanavaras PD, Tsogas GZ. A Novel Equipment-Free Paper-Based Fluorometric Method for the Analytical Determination of Quinine in Soft Drink Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115153. [PMID: 37299880 DOI: 10.3390/s23115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
A simple, equipment-free, direct fluorometric method, employing paper-based analytical devices (PADs) as sensors, for the selective determination of quinine (QN) is described herein. The suggested analytical method exploits the fluorescence emission of QN without any chemical reaction after the appropriate pH adjustment with nitric acid, at room temperature, on the surface of a paper device with the application of a UV lamp at 365 nm. The devices crafted had a low cost and were manufactured with chromatographic paper and wax barriers, and the analytical protocol followed was extremely easy for the analyst and required no laboratory instrumentation. According to the methodology, the user must place the sample on the detection area of the paper and read with a smartphone the fluorescence emitted by the QN molecules. Many chemical parameters were optimized, and a study of interfering ions present in soft drink samples was carried out. Additionally, the chemical stability of these paper devices was considered in various maintenance conditions with good results. The detection limit calculated as 3.3 S/N was 3.6 mg L-1, and the precision of the method was satisfactory, being from 3.1% (intra-day) to 8.8% (inter-day). Soft drink samples were successfully analyzed and compared with a fluorescence method.
Collapse
Affiliation(s)
- Vasiliki C Tsaftari
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Tarara
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Catalan-Carrio R, Saez J, Fernández Cuadrado LÁ, Arana G, Basabe-Desmonts L, Benito-Lopez F. Ionogel-based hybrid polymer-paper handheld platform for nitrite and nitrate determination in water samples. Anal Chim Acta 2022; 1205:339753. [DOI: 10.1016/j.aca.2022.339753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/01/2022]
|
8
|
Shi H, Jiang S, Liu B, Liu Z, Reis NM. Modern microfluidic approaches for determination of ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Evaluating TiO2 Photocatalysis Performance in Microtubes on Paper Background by Smartphone: Principles and Application Examples. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Titanium dioxide (TiO2) photocatalysis is a popular and promising technology in water treatment, but the performance evaluation usually depends on expensive equipment. In this study, using a smartphone for colorimetric detection, a self-invented method based on paper and microtubes (PMTs) is proposed to test the photocatalytic performance of TiO2. Firstly, the study has identified that PMTs achieved a correlation coefficient of above 0.9 between the greyscale values and concentrations during the physical process of different color dyes (i.e., rhodamine B (RhB), reactive yellow (RY), methylene blue (MB), and mixtures of the two or three dyes). The results indicate that when the principle of solution color follows the CMYK (Cyan, Magenta, Yellow, Black) color model, its photo color on white paper background conforms to the RGB (Red, Green, Blue) color model. Compared to the results obtained from the absorbance method, the PMTs method showed high reliabilities up to 99.36% on the monitoring of the photocatalytic process of the different dye solutions. Interestingly, the colorless solution of salicylic acid (SA) could also be analyzed by the PMTs after complexed with Fe(III) ion to develop a purple solution. These results suggest that the PMTs could be an alternative analysis method to evaluating physical and chemical reaction processes when the high-tech analysis equipment is unviable.
Collapse
|
10
|
An optoelectronic flow-through detectors for active ingredients determination in the pharmaceutical formulations. J Pharm Biomed Anal 2021; 201:114128. [PMID: 33989992 DOI: 10.1016/j.jpba.2021.114128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector's devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination in pure and pharmaceutical preparations. The developed method is based on the forming of a white, turbid product as a result of a reaction between the warfarin and semicarbazide which was used as an oxidizing agent. The developed flow-through detector system is semi mechanized, economic in materials consumption, easy to operate and characterized by excellent analytical results. Both developed analytical devices used in two channels flow injection system allow for turbidimetric measurements of warfarin in 0.9-154 μg ml-1 and 123-1600 μg ml-1 ranges of concentration, with limits of detections 0.73 μg ml-1 and 24.66 μg ml-1 for photodetectors 1& 2 respectively. The turbidity measurement procedure for the current flow system offers to conduct 60 tests per hour of the warfarin which is the most needs of quality control analysis in industrial applications. To ensure the analytical usefulness of the flow system, the warfarin has been analyzed in the real samples with a fully acceptable agreement and a correlation between the results offered by the developed flow system and the official method.
Collapse
|
11
|
Granica M, Tymecki Ł. Prussian Blue (bio)sensing device for distance-based measurements. Anal Chim Acta 2020; 1136:125-133. [PMID: 33081936 DOI: 10.1016/j.aca.2020.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 01/12/2023]
Abstract
In this research, microfluidic paper distance-based systems for the quantification of redox species are proposed. For the preparation of the sensing zone a Prussian Blue (PB) (convertible to Prussian White (PW)) layer was deposited in the channel manufactured by wax-printing technique. According to the chemical properties of PB/PW system, it is possible to develop optical sensors sensitive to both oxidizing and reducing agents. The created systems were evaluated for the determination of ascorbic acid and hydrogen peroxide, which were chosen and used as model analytes. The final versions of the proposed systems exhibited a linear response from 0.25 mmol L-1 to 4.0 and 2.0 mmol L-1 for ascorbic acid and H2O2, respectively. The analytical utility of the paper systems was confirmed by measuring the levels of ascorbic acid in dietary supplements. Results correlation obtained for the described systems and the reference method was over 0.98 (Pearson's R-coefficient). All measurements were characterized by satisfactory reproducibility and acceptable uncertainty (RSD (%) < 6%). Finally, it was demonstrated that the modification of the PW-strip systems with oxidoreductase led to an enzymatic assay for glucose up to 10 mmol L-1 range. Practical utility of the developed bio-strips was confirmed by quantifying glucose in drinks and dietary supplement samples.
Collapse
Affiliation(s)
- Mateusz Granica
- University of Warsaw, Faculty of Chemistry, Pasteur 1, 02-093, Warsaw, Poland.
| | - Łukasz Tymecki
- University of Warsaw, Faculty of Chemistry, Pasteur 1, 02-093, Warsaw, Poland
| |
Collapse
|
12
|
Fiedoruk-Pogrebniak M, Koncki R. LED&Paper-based analytical device for phosphatemia/calcemia diagnostics☆. J Pharm Biomed Anal 2020; 186:113321. [PMID: 32413826 DOI: 10.1016/j.jpba.2020.113321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/30/2023]
Abstract
In this communication a prototype of paper-based analytical device designed for simultaneous determination of orthophosphate and calcium ions, which levels are significant for hyperphosphatemia diagnostics, is presented. The laboratory-on-paper structure for two analytes detection was wax-printed on the surface of filter paper. These two-analyte disposable paper strips are combined with two paired LED-based fluorescence detectors and simple voltmeter used as recorder of analytical signal, what makes the developed device miniature, extremely low-cost, portable and user-friendly. Thus the developed device allows usage outside of specialized clinical laboratory. Moreover, each paper strip is disposable and its utilization is easy and fast and, additionally, burnt strip tests ensure waste non-infectious. The presented LED&Paper-based analytical device provides low detection limits: 1.4 μmol L-1 and 7.4 μmol L-1 for orthophosphate and calcium ions, respectively. The practical utility of the developed device for calcemia/phosphatemia diagnostics is demonstrated using control serum standards and real human serum.
Collapse
Affiliation(s)
| | - Robert Koncki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
13
|
Low-cost Point-of-Care Biosensors Using Common Electronic Components as Transducers. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4104-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Seetasang S, Kaneta T. Development of a miniaturized photometer with paired emitter-detector light-emitting diodes for investigating thiocyanate levels in the saliva of smokers and non-smokers. Talanta 2019; 204:586-591. [PMID: 31357338 DOI: 10.1016/j.talanta.2019.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
A simple, small and inexpensive photometer that uses a pair of light-emitting diodes (LEDs) and a simple operational amplifier was developed for investigating thiocyanate levels in saliva obtained from smokers and non-smokers. The photometer is based on paired emitter-detector diodes (PEDDs), and the entire system can be purchased for less than a hundred US dollars. The PEDD-based photometer can measure the transmittance of a solution in a 1-cm disposable polystyrene cuvette using only rechargeable dry-cell batteries, which makes it suitable for analysis outside of equipped laboratories. The metal complex formation between Fe (III) and thiocyanate ions in an acidic condition permits colorimetric detection of thiocyanate ions using LEDs emitting at 465 nm, because the complex shows maximum absorption at 457 nm. The developed photometer exhibits excellent performance with linearity ranging from 0.05 mmol L-1 to 0.75 mmol L-1 and a correlation coefficient (r2) > 0.999. The limits of detection and quantification were 0.01 mmol L-1 and 0.05 mmol L-1, respectively. Both intra- and inter-day precision were obtained with relative standard deviations (RSD) of less than 1% in the determination of thiocyanate. The proposed method is simple, facile, and sensitive enough to investigate the levels of thiocyanate in the saliva samples of smokers and non-smokers with centrifugation being the only special treatment for samples. The results showed that the concentrations of thiocyanate were approximately 5-fold higher in smokers than in non-smokers.
Collapse
Affiliation(s)
- Sasikarn Seetasang
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
15
|
New Single-Layered Paper-Based Microfluidic Devices for the Analysis of Nitrite and Glucose Built via Deposition of Adhesive Tape. SENSORS 2019; 19:s19194082. [PMID: 31546594 PMCID: PMC6806245 DOI: 10.3390/s19194082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
A simple, low-cost technique has been developed for the rapid fabrication of single-layered paper-based microfluidic devices (μPADs). This technique, for the first time, made use of the deposition of patterned adhesive tape into the filter paper to construct hydrophobic barriers, with the help of toluene. Unlike other reported multi-layered μPADs that merely made use of adhesive tape as a separate layer for sealing or fluid flow controlling, the patterned adhesive tape was simultaneously dissolved and penetrated into the filter paper, which resulted in the successful transfer of the pattern from the tape to the filter paper. To demonstrate the effectiveness of this approach, nitrite and glucose were individually measured; detection limits as low as 0.015 ± 0.004 mM and 0.022 ± 0.006 mM were reported for nitrite and glucose, respectively. Multiplexed analysis of both analytes was also carried out with respective detection limits of 0.048 ± 0.005 mM and 0.025 ± 0.006 mM for nitrite and glucose. The application of the method was demonstrated by measuring nitrite and glucose in spiked artificial urine samples and satisfied recovery results were obtained.
Collapse
|
16
|
Buking S, Suedomi Y, Nacapricha D, Kaneta T. Characterization of Pieces of Paper That Form Reagent Containers for Use as Portable Analytical Devices. ACS OMEGA 2019; 4:15249-15254. [PMID: 31552371 PMCID: PMC6751694 DOI: 10.1021/acsomega.9b02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Reagent-deposited pieces of paper were characterized by the use of a compact conductometer, a compact pH sensor, and a conventional spectrophotometer to assess their suitability for use as reagent containers. The pieces of paper were fabricated by wax printing to form a limited hydrophilic area to which a consistent volume of an aqueous reagent could be added. The pieces of paper without the reagent increased the conductivity of water gradually because of the release of sodium salts, whereas pH of NaOH decreased because of the acidity of the functional groups in the paper. Three reagents, sulfamic acid as an acid, Na2CO3 as a base, and BaCl2 as a metal salt, were deposited on the pieces of paper to evaluate their ability to release from the pieces of paper. Sulfamic acid and Na2CO3 were released in quantities of 58 and 73% into water after 420 s, whereas 100% of BaCl2 was released after 480 s. The conductometric titrations of NaOH, HCl, and Na2SO4, and the spectrophotometry of Fe2+ were examined using the pieces of paper that contained sulfamic acid, Na2CO3, BaCl2, and 1,10-phenanthroline. Titrations using the pieces of paper suggested that the reagents were quantitatively released into the titrant, which resulted in a linear relationship between the endpoints and the equivalent points. In 120 s of soaking time, 60-70% of the reagents were released. The spectrophotometric measurements of Fe2+ indicated that when an excess amount of the reagents was deposited onto the pieces of paper, they nonetheless sufficiently fulfilled the role of a reagent container.
Collapse
Affiliation(s)
- Supatana Buking
- Flow
Innovation-Research for Science and Technology Laboratories
(FIRST Labs) and Department of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yusuke Suedomi
- Department
of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Duangjai Nacapricha
- Flow
Innovation-Research for Science and Technology Laboratories
(FIRST Labs) and Department of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Takashi Kaneta
- Department
of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
17
|
Bakulina O, Rashevskii A, Dar'in D, Halder S, Khagar P, Krasavin M. Modular Assembly of Tunable Fluorescent Chemosensors Selective for Pb
2+
and Cu
2+
Metal Ions via the Multicomponent Castagnoli‐Cushman Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Olga Bakulina
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Artem Rashevskii
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Sandipan Halder
- Department of ChemistryVisvesvaraya National Institute of Technology, Nagpur Maharashtra, 440010 India
| | - Prerna Khagar
- Department of ChemistryVisvesvaraya National Institute of Technology, Nagpur Maharashtra, 440010 India
| | - Mikhail Krasavin
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| |
Collapse
|
18
|
Deng M, Liao C, Wang X, Chen S, Qi F, Zhao X, Yu P. A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel, simple, and low-cost spray painting technique has been developed for the fabrication of microfluidic paper-based devices. The devices that we developed utilize aerosol spray paint to build hydrophobic barriers and employ a hole puncher to obtain paper-based patterned layers and paper dots without using any specialized instruments (e.g., without a laser cutter). The entire manufacturing process is extremely simple, inexpensive, and rapid, which means that it can be applied broadly. Furthermore, the application of the device to iron detection was demonstrated. A linear relationship between the colour value and the iron concentration was observed from 0 to 0.02 g/L. The developed microfluidic paper-based device for iron detection exhibited a low detection limit (0.00090 g/L), good selectivity, and acceptable recovery.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Changhan Liao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xueliang Zhao
- Key Laboratory of Geological Environment Monitoring Technology, Center for Hydrogeology and Environmental Geology Survey, Baoding 071051, PR China
| | - Peng Yu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
19
|
Granica M, Tymecki Ł. Analytical aspects of smart (phone) fluorometric measurements. Talanta 2019; 197:319-325. [DOI: 10.1016/j.talanta.2019.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/25/2022]
|
20
|
Qi J, Li B, Wang X, Fu L, Luo L, Chen L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal Chem 2018; 90:11827-11834. [DOI: 10.1021/acs.analchem.8b01291] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ji Qi
- College of Sciences, Shanghai University, Shanghai 200444, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|