1
|
Transferrin analysis in wistar rats plasma: Towards an electrochemical point-of-care approach for the screening of alcohol abuse. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Effect of nanocellulose polymorphism on electrochemical analytical performance in hybrid nanocomposites with non-oxidized single-walled carbon nanotubes. Mikrochim Acta 2022; 189:62. [PMID: 35031873 PMCID: PMC8816370 DOI: 10.1007/s00604-021-05161-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Two cellulose nanocrystals/single-walled carbon nanotube (CNC/SW) hybrids, using two cellulose polymorphs, were evaluated as electrochemical transducers: CNC type I (CNC-I/SW) and CNC type II (CNC-II/SW). They were synthesized and fully characterized, and their analytical performance as electrochemical sensors was carefully studied. In comparison with SWCNT-based and screen-printed carbon electrodes, CNC/SW sensors showed superior electroanalytical performance in terms of sensitivity and selectivity, not only in the detection of small metabolites (uric acid, dopamine, and tyrosine) but also in the detection of complex glycoproteins (alpha-1-acid glycoprotein (AGP)). More importantly, CNC-II/SW exhibited 20 times higher sensitivity than CNC-I/SW for AGP determination, yielding a LOD of 7 mg L-1.These results demonstrate the critical role played by nanocellulose polymorphism in the electrochemical performance of CNC/SW hybrid materials, opening new directions in the electrochemical sensing of these complex molecules. In general, these high-active-surface hybrids smartly exploited the preserved non-oxidized SW conductivity with the high aqueous dispersibility of the CNC, avoiding the use of organic solvents or the incorporation of toxic surfactants during their processing, making the CNC/SW hybrids promising nanomaterials for electrochemical detection following greener approaches.
Collapse
|
3
|
Sierra T, Jang I, Noviana E, Crevillen AG, Escarpa A, Henry CS. Pump-Free Microfluidic Device for the Electrochemical Detection of α 1-Acid Glycoprotein. ACS Sens 2021; 6:2998-3005. [PMID: 34350757 DOI: 10.1021/acssensors.1c00864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
α1-Acid glycoprotein (AGP) is a glycoprotein present in serum, which is associated with the modulation of the immune system in response to stress or injuries, and a biomarker for inflammatory diseases and cancers. Here, we propose a pump-free microfluidic device for the electrochemical determination of AGP. The microfluidic device utilizes capillary-driven flow and a passive mixing system to label the AGP with the Os (VI) complex (an electrochemical tag) inside the main channel, before delivering the products to the electrode surface. Furthermore, thanks to the resulting geometry, all the analytical steps can be carried out inside the device: labeling, washing, and detection by adsorptive transfer stripping square wave voltammetry. The microfluidic device exhibited a linear range from 500 to 2000 mg L-1 (R2 = 0.990) and adequate limit of detection (LOD = 231 mg L-1). Commercial serum samples were analyzed to demonstrate the success of the method, yielding recoveries around 83%. Due to its simplicity, low sample consumption, low cost, short analysis time, disposability, and portability, the proposed method can serve as a point-of-care/need testing device for AGP.
Collapse
Affiliation(s)
- Tania Sierra
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala,
Alcala de Henares, Madrid E-28871, Spain
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Agustín G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid E-28040, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala,
Alcala de Henares, Madrid E-28871, Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR), University of Alcala, Alcala de Henares, Madrid E-28805, Spain
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
| |
Collapse
|
4
|
Owczarzy A, Zięba A, Pożycka J, Kulig K, Rogóż W, Szkudlarek A, Maciążek-Jurczyk M. Spectroscopic Studies of Quinobenzothiazine Derivative in Terms of the In Vitro Interaction with Selected Human Plasma Proteins. Part 1. Molecules 2021; 26:4776. [PMID: 34443360 PMCID: PMC8401767 DOI: 10.3390/molecules26164776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Plasma proteins play a fundamental role in living organisms. They participate in the transport of endogenous and exogenous substances, especially drugs. 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts, have been synthesized as potential anticancer substances used for cancer treatment. Most anticancer substances generate a toxic effect on the human body. In order to check the toxicity and therapeutic dosage of these chemicals, the study of ligand binding to plasma proteins is very relevant. The present work presents the first comparative analysis of the binding of one of the 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium derivatives (Salt1) with human serum albumin (HSA), α-1-acid glycoprotein (AGP) and human gamma globulin (HGG), assessed using fluorescence, UV-Vis and CD spectroscopy. In order to mimic in vivo ligand-protein binding, control normal serum (CNS) was used. Based on the obtained data, the Salt1 binding sites in the tertiary structure of all plasma proteins and control normal serum were identified. Both the association constants (Ka) and the number of binding site classes (n) were calculated using the Klotz method. The strongest complex formed was Salt1-AGPcomplex (Ka = 7.35·104 and 7.86·104 mol·L-1 at excitation wavelengths λex of 275 and 295 nm, respectively). Lower values were obtained for Salt1-HSAcomplex (Ka = 2.45·104 and 2.71·104 mol·L-1) and Salt1-HGGcomplex (Ka = 1.41·104 and 1.33·104 mol·L-1) at excitation wavelengths λex of 275 and 295 nm, respectively, which is a positive phenomenon and contributes to the prolonged action of the drug. Salt1 probably binds to the HSA molecule in Sudlow sites I and II; for the remaining plasma proteins studied, only one binding site was observed. Moreover, using circular dichroism (CD), fluorescence and UV-Vis spectroscopy, no effect on the secondary and tertiary structures of proteins in the absence or presence of Salt1 has been demonstrated. Despite the fact that the conducted studies are basic, from the scientific point of view they are novel and encourage further in vitro and in vivo investigations. As a next part of the study (Part 2), the second new synthetized quinobenzothiazine derivative (Salt2) will be analyzed and published.
Collapse
Affiliation(s)
- Aleksandra Owczarzy
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.O.); (J.P.); (K.K.); (W.R.); (A.S.)
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.O.); (J.P.); (K.K.); (W.R.); (A.S.)
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.O.); (J.P.); (K.K.); (W.R.); (A.S.)
| | - Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.O.); (J.P.); (K.K.); (W.R.); (A.S.)
| | - Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.O.); (J.P.); (K.K.); (W.R.); (A.S.)
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.O.); (J.P.); (K.K.); (W.R.); (A.S.)
| |
Collapse
|
5
|
Silica embedded carbon nanosheets derived from biomass acorn cupule for non-enzymatic, label-free, and wide range detection of α 1-acid glycoprotein in biofluids. Anal Chim Acta 2021; 1169:338598. [PMID: 34088365 DOI: 10.1016/j.aca.2021.338598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
In this work, we demonstrate the first report on a low-cost, non-enzymatic, label-free electrochemical sensing of alpha-1-acid-glycoprotein (α1GP) biomarker in biofluids using silica embedded carbon nanosheets (SEC) derived from acorn cupules biomass. The SEC/GCE sensor exhibits low detection limit (LOD) of 30 ng/mL (LOD = 3 s/m) which is far below the lowest physiological concentration of α1GP and a wide linear detection range from 100 ng/mL to 10 mg/mL which covers entire clinical concentration range reported for various diseases like cancer, sepsis, etc. The sensing mechanism of the sensor relies on the direct electrooxidation of sialic acid from the α1GP structure which hinder the interfacial electron-transfer process of [Fe (CN)6]3-/4- redox probe at the electrode-electrolyte interface. The sensor exhibits excellent selectivity and stability towards detection of α1GP which is ascribed to the presence of embedded silica nanoparticles on the surface of the carbon nanosheets. The successful determination of α1GP in the simulated blood serum sample with good recovery percentage (i.e., from ∼94.03% to ∼103.50%) proves the feasibility of the sensor towards clinical applications. The overall efficacy of the sensor proves it as a promising low-cost, sustainable, and non-enzymatic platform for a wide variety of bioanalytical applications.
Collapse
|
6
|
Sierra T, Crevillen AG, Escarpa A. Electrochemical sensor for the assessment of carbohydrate deficient transferrin: Application to diagnosis of congenital disorders of glycosilation. Biosens Bioelectron 2021; 179:113098. [PMID: 33636501 DOI: 10.1016/j.bios.2021.113098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
Carbohydrate deficient transferrin (CDT) is used as biomarker of different health problems as, for example, congenital disorders of glycosylation (CDG). We propose a screen-printed-based electrochemical sensor for the determination of carbohydrate deficient transferrin using an Os (VI) tag-based electrochemistry. When transferrin is labeled with Os (VI) complex, it generates two voltammetric signals: one from carbohydrates (electrochemical signal of osmium (VI) complex at -0.9 V/Ag) and one from the amino acids present in glycoprotein (intrinsic electrochemical signal of glycoprotein at +0.8 V/Ag). The relationship between the two analytical signals (carbohydrate signal/protein signal) is an indicator of the degree of glycosylation (electrochemical index of glycosylation), which has shown an excellent correlation (r = 0.990) with the official parameter %CDT obtained by CE-UV. The suitability of this approach was demonstrated by analyzing serum samples from CDG patients.
Collapse
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871, Alcala de Henares, Madrid, Spain
| | - Agustín G Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), E-28040, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871, Alcala de Henares, Madrid, Spain; Chemical Research Institute "Andrés M. Del Río" (IQAR), University of Alcala, E-28805, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Lorenzetti AS, Sierra T, Domini CE, Lista AG, Crevillen AG, Escarpa A. Electrochemically Reduced Graphene Oxide-Based Screen-Printed Electrodes for Total Tetracycline Determination by Adsorptive Transfer Stripping Differential Pulse Voltammetry. SENSORS 2019; 20:s20010076. [PMID: 31877748 PMCID: PMC6983226 DOI: 10.3390/s20010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Disposable electrochemically reduced graphene oxide-based (ERGO) screen-printed electrodes (SPE) were developed for the determination of total tetracyclines as a sample screening approach. To this end, a selective adsorption-detection approach relied on adsorptive transfer stripping differential pulse voltammetry (AdTDPV) was devised, where the high adsorption capacity and the electrochemical properties of ERGO were simultaneously exploited. The approach was very simple, fast (6 min.), highly selective by combining the adsorptive and the electrochemical features of tetracyclines, and it used just 10 μL of the sample. The electrochemical sensor applicability was demonstrated in the analysis of environmental and food samples. The not-fully explored AdTDPV analytical possibilities on disposable nanostructured transducers become a new tool in food and environmental fields; drawing new horizons for “in-situ” analysis.
Collapse
Affiliation(s)
- Anabela S. Lorenzetti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871 Alcala de Henares, Spain; (A.S.L.); (T.S.)
- INQUISUR, Department of Chemistry, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina;
| | - Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871 Alcala de Henares, Spain; (A.S.L.); (T.S.)
| | - Claudia E. Domini
- INQUISUR, Department of Chemistry, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina;
- Correspondence: (C.E.D.); (A.E.)
| | - Adriana G. Lista
- INQUISUR, Department of Chemistry, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina;
| | - Agustin G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), E-28040 Madrid, Spain;
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871 Alcala de Henares, Spain; (A.S.L.); (T.S.)
- Chemical Research Institute “Andrés M. del Río” (IQAR), University of Alcalá, E-28805 Alcalá de Henares, Spain
- Correspondence: (C.E.D.); (A.E.)
| |
Collapse
|
8
|
Gannon BM, Glesby MJ, Finkelstein JL, Raj T, Erickson D, Mehta S. A point-of-care assay for alpha-1-acid glycoprotein as a diagnostic tool for rapid, mobile-based determination of inflammation. CURRENT RESEARCH IN BIOTECHNOLOGY 2019; 1:41-48. [PMID: 32342042 PMCID: PMC7185229 DOI: 10.1016/j.crbiot.2019.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation is a key component of immune response to infections and pathogenesis of metabolic and cardiovascular diseases. Inflammatory biomarkers, including alpha-1-acid glycoprotein (AGP), are considered prognostic tools for predicting risk, monitoring response to therapy, and adjusting nutritional biomarkers for accurate interpretation. Serum is considered a primary source of biomarkers; urine and saliva are increasingly being explored and utilized as rapidly accessible, noninvasive biofluids requiring minimal sample processing and posing fewer biohazard risks. METHODS A lateral flow immunoassay was developed for an established mobile-based platform to quantify AGP in human serum, urine, and saliva. Assay performance was assessed with purified AGP in buffer, diluted human serum samples (n = 16) banked from a trial in people living with HIV, and saliva and urine (n = 15 each) from healthy participants. Reference methods were conventional clinical chemistry analyzer or commercial ELISA. Bootstrap analysis was used to train and validate sample calibration. FINDINGS The correlation between the assay and reference method for serum was 0.97 (P < 0.001). Mean (95% CI) best fit line slope was 1.0 (0.88, 1.15) and intercept was -0.003 (-0.08, 0.09). The correlation for urine was 0.93, and for saliva was 0.97 (both P < 0.001). The median CV for the LFIA for AGP in buffer was 13.2% and for all samples was 28.7%. INTERPRETATION The performance of the assay indicated potential use as a rapid, low sample volume input, and easy method to quantify AGP that can be licensed and adopted by commercial manufacturers for regulatory approvals and production. This has future applications for determining inflammatory status either alone or in conjunction with other inflammatory proteins such as C-reactive protein for prognostic, monitoring, or nutritional status applications, including large-scale country level surveys conducted by the DHS and those recommended by the WHO.
Collapse
Affiliation(s)
- Bryan M Gannon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Marshall J Glesby
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Tony Raj
- Division of Nutrition, St. John’s Research Institute, Bangalore, India
| | - David Erickson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Distinguishing the glycan isomers 2,3-sialyllactose and 2,6-sialyllactose by voltammetry after modification with osmium(VI) complexes. Anal Chim Acta 2019; 1067:56-62. [PMID: 31047149 DOI: 10.1016/j.aca.2019.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
Altered glycosylation is a universal feature of cancer cells and certain glycans are well-known markers of tumor progression. In this work we studied two glycan isomers, 2,3-sialyllactose (3-SL) and 2,6-sialyllactose (6-SL), frequently appearing in glycoproteins connected with cancer. A combination of square wave voltammetry and glycan modification with osmium(VI) N,N,N',N'-tetramethylethylenediamine (Os(VI)tem) allowed to distinguish between these regioisomers, since the 6-SL molecule can bind three Os(VI), while the 3-SL only two Os(VI) moieties, as experiments using capillary electrophoresis, inductively coupled plasma mass spectrometry and thin layer chromatography showed. A similar pattern of Os(VI)-modification was found for isomers of sialyl-N-acetyllactosamine and sialylgalactose. Covalent adducts of Os(VI)tem with glycans yielded three reduction voltammetric peaks. The ratio of peak I/peak II heights depends on the content of individual regioisomer in the sample. Our proposed approach allows the determination of isomer percentage representation in the mixture after one voltammogram recording. These results show a new appropriate method for the discrimination of glycan isomers containing terminal sialic acid important for distinguishing between cancerous and non-cancerous origin of biomarkers.
Collapse
|
10
|
Sierra T, Crevillen AG, Escarpa A. Determination of Glycoproteins by Microchip Electrophoresis Using Os(VI)-Based Selective Electrochemical Tag. Anal Chem 2019; 91:10245-10250. [DOI: 10.1021/acs.analchem.9b02375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcala de Henares, Madrid E-28871, Spain
| | - Agustín G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid E-28040, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcala de Henares, Madrid E-28871, Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR), University of Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| |
Collapse
|
11
|
Ozcelikay G, Karadurmus L, Kaya SI, Bakirhan NK, Ozkan SA. A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Crit Rev Anal Chem 2019; 50:212-225. [PMID: 31107105 DOI: 10.1080/10408347.2019.1615406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug and biomolecule analysis with high precision, fast response, not expensive, and user-friendly methods have been very important for developing technology and clinical applications. Electrochemical methods are highly capable for assaying the concentration of electroactive drug or biomolecule and supply excellent knowledge concerning its physical and chemical properties such as electron transfer rates, diffusion coefficients, electron transfer number, and oxidation potential. Electrochemical methods have been widely applied because of their accuracy, sensitivity, cheapness, and can applied on-site determinations of various substances. The progress on electronics has allowed developing reliable, more sensitive and less expensive instrumentations, which have significant contribution in the area of drug development, drug and biomolecule analysis. The developing new sensors for electrochemical analysis of these compounds have growing interest in recent years. Screen-printed based electrodes have a great interest in electrochemical analysis of various drugs and biomolecules due to their easy manufacturing procedure of the electrode allow the transfer of electrochemical laboratory experiments for disposable on-site analysis of some compounds. Paper based electrodes are also fabricated by new technology. They can be preferred due to their easy, cheap, portable, disposable, and offering high sensitivity properties for many application field such as environmental monitoring, food quality control, clinical diagnosis, drug, and biomolecules analysis. In this review, the recent electrochemical drug and biomolecule (DNA, RNA, µRNA, Biomarkers, etc.) studies will be presented that involve new trend disposable electrodes.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Chemistry, Arts & Sciences Faculty, Hitit University, Corum, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Sierra T, Dortez S, González MC, Javier Palomares F, Crevillen AG, Escarpa A. Disposable carbon nanotube scaffold films for fast and reliable assessment of total α1-acid glycoprotein in human serum using adsorptive transfer stripping square wave voltammetry. Anal Bioanal Chem 2018; 411:1887-1894. [DOI: 10.1007/s00216-018-1419-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
|