1
|
Melo LMA, Souza KAO, Lopes JEB, Muñoz RAA, Costa JL, Dos Santos WTP. Electrochemical methods for the determination of acetaminophen in biological matrices: A critical review in the clinical field. Anal Chim Acta 2025; 1333:343243. [PMID: 39615920 DOI: 10.1016/j.aca.2024.343243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Paracetamol or acetaminophen (APAP), or acetaminophen, is a widely used medication for pain relief and fever reduction due to its analgesic and antipyretic properties. However, excessive APAP consumption can lead to severe hepatotoxicity and nephrotoxicity, posing overdose risks. Consequently, the development of analytical methods for an accurate and rapid detection of APAP in biological matrices is of great interest in the health-related fields. Electrochemical methods have emerged as efficient, cost-effective, and sensitive tools for APAP detection in biological samples. In the light of the reported insights, this review examines critically diverse electrochemical methods for PAR detection in different biological matrices, including serum, urine, oral fluid, and sweat. RESULTS The claimed benefits of chemically-modified electrodes towards the selective determination of paracetamol in such complex sample matrices are discussed. On the other hand, the possible use of unmodified carbon-based electrodes combined with flow methods is highlighted as an alternative that can find relevance in the analysis of biological fluids suspected of PAR overdose occurring in the forensic scenario. Furthermore, the details regarding the distinct techniques and working electrodes for APAP determination are presented, compared and discussed in separate sections for each biological sample (serum, urine, and oral fluid). Another aspect herein debated is the selective determination of APAP in the presence of electroactive drugs naturally found in biological samples, as uric acid, and ascorbic acid, are evaluated. In addition, we have discussed and emphasized the significance of matrix selection to ensure precise results, especially in potential overdose scenarios. SIGNIFICANCE This review article provides a critical discussion on the development of electroanalytical methods for biological fluids, with relevance to the fields of clinical analysis and forensics.
Collapse
Affiliation(s)
- Larissa M A Melo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Karla A O Souza
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil; Centro de Informação e Assistência Toxicológica de Campinas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil
| | - Jéssica E B Lopes
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Rodrigo A A Muñoz
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | - Jose L Costa
- Centro de Informação e Assistência Toxicológica de Campinas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil
| | - Wallans T P Dos Santos
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Wei M, Yuan Y, Chen D, Pan L, Tong W, Lu W. A systematic review on electrochemical sensors for the detection of acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6134-6155. [PMID: 39207184 DOI: 10.1039/d4ay01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the electrochemical determination of acetaminophen (AP) over the past few decades. Nanomaterials or enzymes as electrode modifiers greatly improve the performance of AP electrochemical sensors. This review focuses on the development potential, detection principles and techniques for the electrochemical analysis of AP. In particular, the design and construction of AP electrochemical sensors are discussed from the perspective of non-enzyme materials (such as nanomaterials, including precious metals, transition metals and non-metals) and enzyme substances (such as aryl acylamidase, polyphenol oxidase and horseradish peroxidase). Moreover, the influencing factors for AP electrochemical sensors and the simultaneous detection of AP and other targets are summarized, and the future prospective of AP electrochemical sensors is outlined. This review provides a reference and guidance for the development and application of electrochemical sensors for AP detection.
Collapse
Affiliation(s)
- Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Yikai Yuan
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Dongsheng Chen
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Lin Pan
- Department of Laboratory Medicine, Tianjin Peace District Obstetrics and Gynecology Hospital, Tianjin, 300020, China
| | - Wenting Tong
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
3
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum. Mikrochim Acta 2023; 190:235. [PMID: 37219635 DOI: 10.1007/s00604-023-05813-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
A sensitive, simple, and reliable immunosensor was constructed to detect the lowest alteration of a fragment of cytokeratin subunit 19 (CYFRA 21-1), a protein lung carcinoma biomarker. The proposed immunosensor was manufactured with a carbon black C45/polythiophene polymer-containing amino terminal groups (C45-PTNH2) conductive nanocomposite, resulting in an excellent, biocompatible, low-cost, and electrically conductive electrode surface. Anti-CYFRA 21-1 biorecognition molecules were attached to the electrode thanks to the amino terminal groups of the used PTNH2 polymer with a relatively simple procedure. All electrode surfaces after modifications were characterized by electrochemical, chemical, and microscopic techniques. Electrochemical impedance spectroscopy (EIS) was also utilized for the evaluation of the analytical feature of the immunosensor. The charge transfer resistance of the immunosensor signal was correlated with the CYFRA 21-1 concentration in the concentration range 0.03 to 90 pg/mL. The limit of detection (LOD) and the limit of quantification (LOQ) of the suggested system were 4.7 fg/mL and 14.1 fg/mL, respectively. The proposed biosensor had favorable repeatability and reproducibility, long storage stability, excellent selectivity, and low cost. Furthermore, it was applied to determine CYFRA 21-1 in commercial serum samples, and satisfactory recovery results (98.63-106.18%) were obtained. Thus, this immunosensor can be offered for clinical purposes as a rapid, stable, low-cost, selective, reproducible, and reusable tool.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
5
|
Bas SZ, Cetiner R, Teke D, Ozmen M. A lab-made screen-printed sensing strip for sensitive and selective electrochemical detection of butylated hydroxyanisole. LAB ON A CHIP 2023; 23:1664-1673. [PMID: 36752530 DOI: 10.1039/d3lc00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study describes the fabrication of a lab-made screen-printed electrode (LabSPE) and its sensing ability for the detection of butylated hydroxyanisole (BHA) which is a synthetic antioxidant utilized widely in food industries. The lab-made screen-printed electrodes were printed on a polycarbonate substrate stepwise via a screen-printing technique using various inks suitable for electrode templates and then modified for the detection of BHA. As for the design of the sensor, firstly, graphitic carbon nitride (g-C3N4) was synthesized electrochemically through the one-pot synthesis method. After the synthesis of Fe3O4 nanoparticles (Fe3O4 NPs), the surface of SPE was modified with the dual composite consisting of g-C3N4 and Fe3O4 NPs. Lastly, platinum nanoparticles (Pt NPs) were deposited electrochemically on the modified electrode in 0.5 M HCl solution containing 2 mM H2PtCl6 at a constant potential of 0.25 V for 45 s. After optimization of varied parameters such as pH of the electrolyte solution, deposition time, and deposition potential, the current responses of the sensor (Pt/g-C3N4-Fe3O4/LabSPE) toward BHA displayed linearity in the wide concentration range of 0.25 μM to 90 μM with a low detection limit of 0.053 μM. The selectivity of Pt/g-C3N4-Fe3O4/SPE was tested successfully in the presence of other antioxidants (BHT, TBHQ, GA, and PG). Moreover, the applicability of the proposed sensor for practical tests was verified by the detection of BHA in commercial samples.
Collapse
Affiliation(s)
- Salih Zeki Bas
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Rumeysa Cetiner
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Deniz Teke
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mustafa Ozmen
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
6
|
Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Synergistic effect of gold nanoparticles anchored on conductive carbon black as an efficient electrochemical sensor for sensitive detection of anti-COVID-19 drug Favipiravir in absence and presence of co-administered drug Paracetamol. Microchem J 2023; 190:108696. [PMID: 37034437 PMCID: PMC10065810 DOI: 10.1016/j.microc.2023.108696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Favipiravir (FVP) is introduced as a promising newly developed antiviral drug against the coronavirus disease 2019 (COVID-19). Therefore, the accurate determination of FVP is of great significance for quality assessment and clinical diagnosis. Herein, a novel electrochemical sensing platform for FVP based on gold nanoparticles anchored conductive carbon black (Au@CCB) modified graphite nanopowder flakes paste electrode (GNFPE) was constructed. Morphological and nanostructure properties of Au@CCB have been investigated by TEM, HRTEM, and EDX methods. The morphology and electrochemical properties of Au@CCB/GNFPE were characterized by SEM, cyclic voltammetry (CV), and EIS. The Au@CCB nanostructured modified GNFPE exhibited strong electro-catalytic ability towards the oxidation of FVP. The performance of the fabricated Au@CCB/GNFPE was examined by monitoring FVP concentrations in the absence and presence of co-administered drug paracetamol (PCT) by AdS-SWV. It was demonstrated that the proposed sensor exhibited superior sensitivity, stability, and anti-interference capability for the detection of FVP. The simultaneous determination of a binary mixture containing FVP and the co-administered drug PCT using Au@CCB/GNFPE sensor is reported for the first time. Under optimized conditions, the developed sensor exhibited sensitive voltammetric responses to FVP and PCT with low detection limits of 7.5 nM and 4.3 nM, respectively. The sensing electrode was successfully used to determine FVP and PCT simultaneously in spiked human plasma and pharmaceutical preparations, and the findings were satisfactory. Finally, the fabricated sensor exhibited high sensitivity for simultaneous detection of FVP and PCT in the presence of ascorbic acid in a real sample.
Collapse
Affiliation(s)
- Rasha M K Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Sabrein H Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Aml M Asran
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
7
|
de Freitas Araújo KC, de Araújo Costa ECT, de Araújo DM, Santos EV, Martínez-Huitle CA, Castro PS. Probing the Use of Homemade Carbon Fiber Microsensor for Quantifying Caffeine in Soft Beverages. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1928. [PMID: 36903043 PMCID: PMC10004175 DOI: 10.3390/ma16051928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In the development of electrochemical sensors, carbon micro-structured or micro-materials have been widely used as supports/modifiers to improve the performance of bare electrodes. In the case of carbon fibers (CFs), these carbonaceous materials have received extensive attention and their use has been proposed in a variety of fields. However, to the best of our knowledge, no attempts for electroanalytical determination of caffeine with CF microelectrode (µE) have been reported in the literature. Therefore, a homemade CF-µE was fabricated, characterized, and used to determine caffeine in soft beverage samples. From the electrochemical characterization of the CF-µE in K3Fe(CN)6 10 mmol L-1 plus KCl 100 mmol L-1, a radius of about 6 µm was estimated, registering a sigmoidal voltammetric profile that distinguishes a µE indicating that the mass-transport conditions were improved. Voltammetric analysis of the electrochemical response of caffeine at the CF-µE clearly showed that no effects were attained due to the mass transport in solution. Differential pulse voltammetric analysis using the CF-µE was able to determine the detection sensitivity, concentration range (0.3 to 4.5 µmol L-1), limit of detection (0.13 μmol L-1) and linear relationship (I (µA) = (11.6 ± 0.09) × 10-3 [caffeine, μmol L-1] - (0.37 ± 0.24) × 10-3), aiming at the quantification applicability in concentration quality-control for the beverages industry. When the homemade CF-µE was used to quantify the caffeine concentration in the soft beverage samples, the values obtained were satisfactory in comparison with the concentrations reported in the literature. Additionally, the concentrations were analytically determined by high-performance liquid chromatography (HPLC). These results show that these electrodes may be an alternative to the development of new and portable reliable analytical tools at low cost with high efficiency.
Collapse
Affiliation(s)
- Karla Caroline de Freitas Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Emily Cintia Tossi de Araújo Costa
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Danyelle Medeiros de Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Elisama V. Santos
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
- School of Science and Technology, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Carlos A. Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Pollyana Souza Castro
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| |
Collapse
|
8
|
Tasić ŽZ, Petrović Mihajlović MB, Simonović AT, Radovanović MB, Antonijević MM. Recent Advances in Electrochemical Sensors for Caffeine Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9185. [PMID: 36501886 PMCID: PMC9735645 DOI: 10.3390/s22239185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The determination of target analytes at very low concentrations is important for various fields such as the pharmaceutical industry, environmental protection, and the food industry. Caffeine, as a natural alkaloid, is widely consumed in various beverages and medicines. Apart from the beneficial effects for which it is used, caffeine also has negative effects, and for these reasons it is very important to determine its concentration in different mediums. Among numerous analytical techniques, electrochemical methods with appropriate sensors occupy a special place since they are efficient, fast, and entail relatively easy preparation and measurements. Electrochemical sensors based on carbon materials are very common in this type of research because they are cost-effective, have a wide potential range, and possess relative electrochemical inertness and electrocatalytic activity in various redox reactions. Additionally, these types of sensors could be modified to improve their analytical performances. The data available in the literature on the development and modification of electrochemical sensors for the determination of caffeine are summarized and discussed in this review.
Collapse
|
9
|
Venkata Prasad G, Vinothkumar V, Joo Jang S, Eun Oh D, Hyun Kim T. Multi-walled carbon nanotube/graphene oxide/poly(threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Wong A, Santos AM, Proença CA, Baldo TA, Feitosa MHA, Moraes FC, Sotomayor MDPT. Voltammetric Determination of 3-Methylmorphine Using Glassy Carbon Electrode Modified with rGO and Bismuth Film. BIOSENSORS 2022; 12:860. [PMID: 36290997 PMCID: PMC9599292 DOI: 10.3390/bios12100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This work reports the development and application of a simple, rapid and low-cost voltammetric method for the determination of 3-methylmorphine at nanomolar levels in clinical and environmental samples. The proposed method involves the combined application of a glassy carbon electrode modified with reduced graphene oxide, chitosan and bismuth film (Bi-rGO-CTS/GCE) via square-wave voltammetry using 0.04 mol L-1 Britton-Robinson buffer solution (pH 4.0). The application of the technique yielded low limit of detection of 24 × 10-9 mol L-1 and linear concentration range of 2.5 × 10-7 to 8.2 × 10-6 mol L-1. The Bi-rGO-CTS/GCE sensor was successfully applied for the detection of 3-methylmorphine in the presence of other compounds, including paracetamol and caffeine. The results obtained also showed that the application of the sensor for 3-methylmorphine detection did not experience any significant interference in the presence of silicon dioxide, povidone, cellulose, magnesium stearate, urea, ascorbic acid, humic acid and croscarmellose. The applicability of the Bi-rGO-CTS/GCE sensor for the detection of 3-methylmorphine was evaluated using synthetic urine, serum, and river water samples through addition and recovery tests, and the results obtained were found to be similar to those obtained for the high-performance liquid chromatography method (HPLC)-used as a reference method. The findings of this study show that the proposed voltammetric method is a simple, fast and highly efficient alternative technique for the detection of 3-methylmorphine in both biological and environmental samples.
Collapse
Affiliation(s)
- Ademar Wong
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, Brazil
| | - Anderson M. Santos
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
| | - Camila A. Proença
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
| | - Thaísa A. Baldo
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
| | - Maria H. A. Feitosa
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
| | - Fernando C. Moraes
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
| | | |
Collapse
|
11
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
12
|
Chiral Selectors in Voltammetric Sensors Based on Mixed Phenylalanine/Alanine Cu(II) and Zn(II) Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10080117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A practical application composite based on mixed chelate complexes [M(S-Ala)2(H2O)n]–[M(S-Phe)2(H2O)n] (M = Cu(II), Zn(II); n = 0–1) as chiral selectors in enantioselective voltammetric sensors was suggested. The structures of the resulting complexes were studied by XRD, ESI-MS, and IR- and NMR-spectroscopy methods. It was determined that enantioselectivity depends on the metal nature and on the structure of the mixed complex. The mixed complexes, which were suggested to be chiral selectors, were stable under the experimental conditions and provided greater enantioselectivity in the determination of chiral analytes, such as naproxen and propranolol, in comparison with the amino acids they comprise. The best results shown by the mixed copper complex [Cu(S-Ala)2]–[Cu(S-Phe)2] were: ipS/ipR = 1.27 and ΔEp = 30 mV for Nap; and ipS/ipR = 1.37 and ΔEp = 20 mV for Prp. The electrochemical and analytical characteristics of the sensors and conditions of voltammogram recordings were studied by differential pulse voltammetry. Linear relationships between the anodic current and the concentrations of Nap and Prp enantiomers were achieved in the range of 2.5 × 10−5 to 1.0 × 10−3 mol L−1 for GCE/PEC-[Cu(S-Ala)2]–[Cu(S-Phe)2] and 5.0 × 10−5 to 1.0 × 10−3 for GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)], with detection limits (3 s/m) of 0.30–1.24 μM. The suggested sensor was used to analyze Nap and Prp enantiomers in urine and plasma samples.
Collapse
|
13
|
Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs. Anal Bioanal Chem 2022; 414:6791-6800. [PMID: 35931786 DOI: 10.1007/s00216-022-04242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022]
Abstract
Folic acid (FA) is essential for human health, particularly for pregnant women and infants. In this work, a glassy carbon electrode (GCE) was modified by a bimetallic layer of Cu/Co nanoparticles (CuNPs/CoNPs) as a synergistic amplification element by simple step-by-step electrodeposition, and was used for sensitive detection of FA. The proposed CuNPs/CoNPs/GCE sensor was characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). Then, under optimal conditions, a linear relationship was obtained in the wide range of 110.00-1750.00 μM for the detection of FA with a limit of detection (LOD) of 34.79 μM (S/N = 3). The sensitivity was calculated as 0.096 μA μM-1 cm-2. Some interfering compounds including glucose (Glc), biotin, dopamine (DA), and glutamic acid (Glu) showed little effect on the detection of FA by amperometry (i-t). Finally, the average recovery obtained was in a range of 91.77-110.06%, with a relative standard deviation (RSD) less than 8.00% in FA tablets, indicating that the proposed sensor can accurately and effectively detect the FA content in FA tablets.
Collapse
|
14
|
Rezapasand S, Abbasi S, Rahmati Z, Hosseini H, Roushani M. Metal-organic frameworks-derived Zn-Ni-P nanostructures as high performance electrode materials for electrochemical sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Folic Acid Determination in Food Samples Using Green Synthesized Copper Oxide Nanoparticles and Electro-Poly (Methyl Orange) Sensor. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractCopper (II) oxide nanoparticles (CuONPs) were green synthesized using Ocimum basilicum leaves aqueous extract in which polyphenols act as reducing and stabilizing agents. The synthesized CuONPs were characterized using X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, and Brunauer–Emmett–Teller (BET) surface area analysis. The analyses indicated the formation of crystalline rod-like monoclinic pure CuONPs with a mean grain size of 15 nm, a surface area of 396 m2 g−1, and a total pore volume of 0.71 cm3 g−1. A glassy carbon electrode (GCE) was modified using the synthesized CuONPs and electropolymerized poly(methyl orange) (PMO). The modified PMO/CuONPs/GCE electrode was electrochemically characterized and applied for the estimation of folic acid (FA) by cyclic voltammetry, chronoamperometry, linear sweep voltammetry, and differential pulse voltammetry techniques. The influence of pH (7), scan rate (50 mV/s), supporting electrolyte (0.1 M KCl) and FA concentration has been optimized. FA is precisely determined in the range from 0.01 to 1.5 µΜ with a low detection limit (0.002 µΜ), a low quantitation limit (0.068 µΜ), high reproducibility (RSD 0.37, 10 measurements), and high stability (98% activity after 50 days). FA in food samples was determined by the new sensor with high recoveries from 93 to 108.8%.
Graphical Abstract
Collapse
|
16
|
Hediyeh Bagheri Ladmakhi, Fathi S, Chekin F, Raoof JB. Determination of Propranolol at a Carbon Paste Electrode Modified with Magnetite–Graphene Oxide in Combination with Presence of Sodium Dodecyl Sulfate. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
One step construction of crystal rod like Bi2O3/ZnO nanocomposite for voltammetry determination of isoprenaline in pharmaceutical and urine sample. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
19
|
Sarvestani MRJ, Madrakian T, Afkhami A. Developed electrochemical sensors for the determination of beta-blockers: A comprehensive review. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Hofstetter RK, Schulig L, Bethmann J, Grimm M, Sager M, Aude P, Keßler R, Kim S, Weitschies W, Link A. Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies †. J Sep Sci 2021; 44:3700-3716. [PMID: 34355502 DOI: 10.1002/jssc.202100443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13 C- and 32 S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2 -based extraction and separation techniques for potentially infective biomatrices.
Collapse
Affiliation(s)
- Robert K Hofstetter
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Jonas Bethmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maximilian Sager
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Philipp Aude
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rebecca Keßler
- Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Greifswald, Germany
| | - Simon Kim
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Azeredo NFB, Gonçalves JM, Lima IS, Araki K, Wang J, Angnes L. Screen‐printed Nickel‐Cerium Hydroxide Sensor for Acetaminophen Determination in Body Fluids. ChemElectroChem 2021. [DOI: 10.1002/celc.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nathália F. B. Azeredo
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
- Department of Nanoengineering University of California San Diego La Jolla USA
| | - Josué M. Gonçalves
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Irlan S. Lima
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Joseph Wang
- Department of Nanoengineering University of California San Diego La Jolla USA
| | - Lúcio Angnes
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| |
Collapse
|
22
|
Farzad Hosseini, Bahmaei M, Davallo M. Electrochemical Determination of Propranolol, Acetaminophen and Folic Acid in Urine, and Human Plasma Using Cu2O–CuO/rGO/CPE. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521040054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Reanpang P, Mool-Am-Kha P, Upan J, Jakmunee J. A novel flow injection amperometric sensor based on carbon black and graphene oxide modified screen-printed carbon electrode for highly sensitive determination of uric acid. Talanta 2021; 232:122493. [PMID: 34074450 DOI: 10.1016/j.talanta.2021.122493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023]
Abstract
A simple, rapid, and cost-effective flow injection amperometric (FI-Amp) sensor for sensitive determination of uric acid (UA) was developed based on a new combination of carbon black (CB) and graphene oxide (GO) modified screen-printed carbon electrode (SPCE). The CB-GO nanocomposites were simply synthesized and modified on the working electrode surface to increase electrode conductivity and enhance the sensitivity of UA determination via the electrocatalytic activity toward UA oxidation. The morphologies and electrochemical properties of the synthesized nanomaterials were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The modified electrode was incorporated with FI-Amp to improve UA detection's sensitivity, stability, and automation. Some parameters affecting sensitivity were optimized, including pH of the electrolyte solution, applied potential, amount of CB-GO suspension, flow rate, injection volume, and reaction coil length. Using an applied potential of +0.35 V (vs Ag/AgCl), the anodic current was linearly proportional to UA concentration over the range of 0.05-2000 μM with a detection limit of 0.01 μM (3 S/N). Besides, the developed method provides a sample throughput of 25 injections h-1, excellent sensitivity (0.0191 μA/μM), selectivity, repeatability (RSD 3.1%, n = 7), and stability (RSD 1.08%, n = 50). The proposed system can tolerate potential interferences commonly found in human urine. Furthermore, a good correlation coefficient between the results obtained from the FI-Amp sensor and a hospital laboratory implies that the proposed system is accurate and can be utilized for UA detection in urine samples.
Collapse
Affiliation(s)
- Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand
| | - Pijika Mool-Am-Kha
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jantima Upan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
24
|
Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040079] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is a highly important and attractive conducting polymer as well as commercially available in organic electronics, including electrochemical and electronic chemosensors, due to its unique features such as excellent solution-fabrication capability and miscibility, high and controllable conductivity, excellent chemical and electrochemical stability, good optical transparency and biocompatibility. In this review, we present a comprehensive overview of the recent research progress of PEDOT:PSS and its composites, and the application in electrochemical and electronic sensors for detecting liquid-phase or gaseous chemical analytes, including inorganic or organic ions, pH, humidity, hydrogen peroxide (H2O2), ammonia (NH3), CO, CO2, NO2, and organic solvent vapors like methanol, acetone, etc. We will discuss in detail the structural, architectural and morphological optimization of PEDOT:PSS and its composites with other additives, as well as the fabrication technology of diverse sensor systems in response to a wide range of analytes in varying environments. At the end of the review will be given a perspective summary covering both the key challenges and potential solutions in the future research of PEDOT:PSS-based chemosensors, especially those in a flexible or wearable format.
Collapse
|
25
|
Ghuglot R, Titus W, Agnihotri AS, Krishnakumar V, Krishnamoorthy G, Marimuthu N. Stable copper nanoparticles as potential antibacterial agent against aquaculture pathogens and human fibroblast cell viability. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Topal BD, Sener CE, Kaya B, Ozkan SA. Nano-sized Metal and Metal Oxide Modified Electrodes for Pharmaceuticals Analysis. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200513110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:
The electrochemical analysis offers a number of important advantages such as providing
information on pharmaceuticals analysis and their in vivo redox processes and pharmacological activity.
The interest in developing electrochemical sensing devices for use in clinical assays is growing rapidly.
Metallic nanoparticles can be synthesized and modified with various chemical functional groups,
which allow them to be conjugated with antibodies, ligands, and drugs of interest.
:
In this article, the novel developments to enhance the performance of sensor modified with metal nanoparticles
of pharmaceuticals were reviewed. A discussion of the properties of metal nanostructures
and their application in drug analysis is presented. Their application as a modifier agent in determining
low levels of drugs in pharmaceutical dosage forms and biological samples is discussed. It has been
found that the electrocatalytic effect of the electrode, sensitivity and selectivity were increased using
various working electrodes modified with nano-sized metal, metal oxide and metal/metal oxide
particles.
Collapse
Affiliation(s)
- Burcu Dogan Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Ceren Elif Sener
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Basak Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Sibel Aysıl Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| |
Collapse
|
27
|
Electrochemical vitamin sensors: A critical review. Talanta 2021; 222:121645. [DOI: 10.1016/j.talanta.2020.121645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
|
28
|
Applicability of Cork as Novel Modifiers to Develop Electrochemical Sensor for Caffeine Determination. MATERIALS 2020; 14:ma14010037. [PMID: 33374209 PMCID: PMC7794975 DOI: 10.3390/ma14010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5-1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.
Collapse
|
29
|
Venkadesh A, Mathiyarasu J, Radhakrishnan S. Voltammetric Sensing of Caffeine in Food Sample Using Cu‐MOF and Graphene. ELECTROANAL 2020. [DOI: 10.1002/elan.202060488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A. Venkadesh
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201 002 Uttar Pradesh India
| | - J. Mathiyarasu
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201 002 Uttar Pradesh India
| | - S. Radhakrishnan
- Electrodics and Electrocatalysis Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201 002 Uttar Pradesh India
| |
Collapse
|
30
|
A new electrochemical sensing platform based on HgS/graphene composite deposited on the glassy carbon electrode for selective and sensitive determination of propranolol. J Pharm Biomed Anal 2020; 194:113653. [PMID: 33303269 DOI: 10.1016/j.jpba.2020.113653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022]
Abstract
Fabrication of selective, sensitive and reliable sensing platform for detection of propranolol (PRO) is still a great challenge. In this study, a new sensitive and selective electrochemical sensor was fabricated for the electrochemical determination of PRO using HgS/graphene composite. The incorporation of HgS microstructures on graphene sheets was done via a facile one-step method, where the simultaneous reduction of GO and the in-situ generation of HgS happened. Owing to the large surface area, excellent electronic conductivity and more electro-active sites provided by graphene, the HgS/graphene composite exhibited better electrochemical ability through the detection of PRO compared to the bare HgS. The HgS/graphene sensor revealed superb selectivity, good repeatability and superior stability of about 96.0 % of its original response after five weeks. Moreover, the sensor displayed excellent analytical parameters such as linear range of 0.5-50.0 μM with low detection limit of 0.05 μM (S/N = 3) and good sensitivity (0.1851 μA/μM). Furthermore, the constructed sensor was applied for detection of PRO in real and pharmaceutical samples, with good recoveries, ranging from 96.0 to 102.0%. The HgS/graphene composite provided here displayed satisfactory electrochemical features may hold great potential to the improvement of electrochemical sensors and electronic devices.
Collapse
|
31
|
Horst C, Silwana B, Gil E, Iwuoha E, Somerset V. Simultaneous Detection of Paracetamol, Ascorbic Acid, and Caffeine Using a Bismuth–Silver Nanosensor. ELECTROANAL 2020. [DOI: 10.1002/elan.202060389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Charlton Horst
- Dep Faculdade de Farmácia Universidade Federal de Goiás Praça Universitára Campus Colemar Natal e Silva, CEP 74605-220 Goiâs
- Brazilartment of Chemistry Faculty of Applied Sciences Cape Peninsula University of Technology Bellville South Africa
| | - Bongiwe Silwana
- Dep Faculdade de Farmácia Universidade Federal de Goiás Praça Universitára Campus Colemar Natal e Silva, CEP 74605-220 Goiâs
- Brazilartment of Chemistry Faculty of Applied Sciences Cape Peninsula University of Technology Bellville South Africa
| | - Eric Gil
- Faculdade de Farmácia Universidade Federal de Goiás, Campus Colemar Natal e Silva Praça Universitára CEP 74605-220 Goiâs Brazil
| | - Emmanuel Iwuoha
- SensorLab Department of Chemistry University of the Western Cape Cape Town, Bellville 7535 South Africa
| | - Vernon Somerset
- Dep Faculdade de Farmácia Universidade Federal de Goiás Praça Universitára Campus Colemar Natal e Silva, CEP 74605-220 Goiâs
- Brazilartment of Chemistry Faculty of Applied Sciences Cape Peninsula University of Technology Bellville South Africa
| |
Collapse
|
32
|
Henrique JM, Monteiro MK, Cardozo JC, Martínez-Huitle CA, da Silva DR, dos Santos EV. Integrated-electrochemical approaches powered by photovoltaic energy for detecting and treating paracetamol in water. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Wong A, Santos AM, Fatibello‐Filho O, Sotomayor MDPT. Amperometric Tyrosinase Biosensor Based on Carbon Black Paste Electrode for Sensitive Detection of Catechol in Environmental Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.202060084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ademar Wong
- Department of Analytical Chemistry Institute of Chemistry State University of São Paulo (UNESP)
- National Institute for Alternative Technologies of Detection Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) 14801-970 Araraquara SP Brazil
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 São Carlos SP Brazil
| | - Anderson M. Santos
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 São Carlos SP Brazil
| | - Orlando Fatibello‐Filho
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 São Carlos SP Brazil
| | - Maria D. P. T. Sotomayor
- Department of Analytical Chemistry Institute of Chemistry State University of São Paulo (UNESP)
- National Institute for Alternative Technologies of Detection Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) 14801-970 Araraquara SP Brazil
| |
Collapse
|
34
|
Dehnavi A, Soleymanpour A. Titanium Dioxide/Multi‐walled Carbon Nanotubes Composite Modified Pencil Graphite Sensor for Sensitive Voltammetric Determination of Propranolol in Real Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.202060132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Azar Dehnavi
- School of Chemistry Damghan University Damghan 3671641167 Iran
| | | |
Collapse
|
35
|
Olmo F, Garoz-Ruiz J, Carazo J, Colina A, Heras A. Spectroelectrochemical Determination of Isoprenaline in a Pharmaceutical Sample. SENSORS 2020; 20:s20185179. [PMID: 32932772 PMCID: PMC7571179 DOI: 10.3390/s20185179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023]
Abstract
UV/Vis absorption spectroelectrochemistry (SEC) is a multi-response technique that has been commonly used for the characterization of materials and the study of reaction mechanisms. However, it has been scarcely used for quantitative purposes. SEC allows us to obtain two analytical signals simultaneously, yielding a dual sensor in just one experiment. In the last years, our group has developed new devices useful for analysis. In this work, a SEC device in parallel configuration, based on optical fibers fixed on screen-printed electrodes, was used to determine isoprenaline in a commercial drug, using both, the electrochemical and the spectroscopic signals. In this commercial drug, isoprenaline is accompanied in solution by other compounds. Among them is sodium metabisulfite, an antioxidant that strongly interferes in the isoprenaline determination. A simple pretreatment of the drug sample by bubbling wet-air allows us to avoid the interference of metabisulfite. Here, we demonstrate again the capabilities of UV/Vis absorption SEC as double sensor for analysis and we propose a simple pretreatment to remove interfering compounds.
Collapse
|
36
|
Yıldırım S, Erkmen C, Uslu B. Novel Trends in Analytical Methods for β-Blockers: An Overview of Applications in the Last Decade. Crit Rev Anal Chem 2020; 52:131-169. [DOI: 10.1080/10408347.2020.1791043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sercan Yıldırım
- Faculty of Pharmacy, Department of Analytical Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Cem Erkmen
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
37
|
Kuralay F, Çağlayan T, İlhan H, Dumangöz M, Sönmez Çelebi M. Fabrication of self‐functionalized polymeric surfaces and their application in electrochemical acetaminophen detection. J Appl Polym Sci 2020. [DOI: 10.1002/app.49572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Filiz Kuralay
- Department of Chemistry, Faculty of Science Hacettepe University Ankara Turkey
| | - Tahsin Çağlayan
- Composite and Polymeric Materials Division The Scientific and Technological Research Council of Turkey Ankara Turkey
| | - Hasan İlhan
- Department of Chemistry, Faculty of Arts and Sciences Ordu University Ordu Turkey
| | - Mehmet Dumangöz
- Department of Chemistry, Faculty of Arts and Sciences Ordu University Ordu Turkey
| | - Mutlu Sönmez Çelebi
- Department of Chemistry, Faculty of Arts and Sciences Ordu University Ordu Turkey
| |
Collapse
|
38
|
Ma B, Guo H, Wang M, Wang Q, Yang W, Wang Y, Yang W. Electrocatalysis and simultaneous determination of hydroquinone and acetaminophen using PN COF/graphene oxide modified electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Yuan MM, Zou J, Huang ZN, Peng DM, Yu JG. PtNPs-GNPs-MWCNTs-β-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid. Anal Bioanal Chem 2020; 412:2551-2564. [PMID: 32162086 DOI: 10.1007/s00216-020-02488-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
A novel electrochemical sensor, platinum nanoparticles/graphene nanoplatelets/multi-walled carbon nanotubes/β-cyclodextrin composite (PtNPs-GNPs-MWCNTs-β-CD) modified carbon glass electrode (GCE), was fabricated and used for the sensitive detection of folic acid (FA). The PtNPs-GNPs-MWCNTs-β-CD nanocomposite was easily prepared with an ultrasound-assisted assembly method, and it was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical behavior of FA at PtNPs-GNPs-MWCNTs-β-CD/GCE was investigated in detail. Some key experimental parameters such as pH, amount of PtNPs-GNPs-MWCNTs-β-CD composite, and scan rate were optimized. A good linear relationship (R2 = 0.9942) between peak current of cyclic voltammetry (CV) and FA concentration in the range 0.02-0.50 mmol L-1 was observed at PtNPs-GNPs-MWCNTs-β-CD/GCE. The detection limit was 0.48 μmol L-1 (signal-to-noise ratio = 3). A recovery of 97.55-102.96% was obtained for the determination of FA in FA pills (containing 0.4 mg FA per pill) at PtNPs-GNPs-MWCNTs-β-CD/GCE, indicating that the modified electrode possessed relatively high sensitivity and stability for the determination of FA in real samples.
Collapse
Affiliation(s)
- Meng-Meng Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Zhao-Ning Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Dong-Ming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
40
|
Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 2020; 156:112033. [PMID: 32174547 DOI: 10.1016/j.bios.2020.112033] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Advances in cutting-edge technologies including nanotechnology, microfluidics, electronic engineering, and material science have boosted a new era in the design of robust and sensitive biosensors. In recent years, carbon black has been re-discovered in the design of electrochemical (bio)sensors thanks to its interesting electroanalytical properties, absence of treatment requirement, cost-effectiveness (c.a. 1 €/Kg), and easiness in the preparation of stable dispersions. Herein, we present an overview of the literature on carbon black-based electrochemical (bio)sensors, highlighting current trends and possible challenges to this rapidly developing area, with a special focus on the fabrication of carbon black-based electrodes in the realisation of sensors and biosensors (e.g. enzymatic, immunosensors, and DNA-based).
Collapse
Affiliation(s)
- Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED via Renato Rascel 30, 00128, Rome, Italy.
| | - Stefano Cinti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Vincenzo Mazzaracchio
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
41
|
Kemmegne-Mbouguen JC, Tchoumi FP, Mouafo-Tchinda E, Langmi HW, Bambalaza SE, Musyoka NM, Kowenje C, Mokaya R. Simultaneous quantification of acetaminophen and tryptophan using a composite graphene foam/Zr-MOF film modified electrode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02374d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Derived synergistic effect of a composite results in high selectivity and sensitivity with low detection limits and wide concentration ranges.
Collapse
Affiliation(s)
| | - Firmin Parfait Tchoumi
- Laboratoire de Chimie Physique et Analytique Appliquée
- Faculté des Sciences
- Université de Yaoundé I
- Yaoundé
- Cameroon
| | - Edwige Mouafo-Tchinda
- Laboratoire de Chimie Physique et Analytique Appliquée
- Faculté des Sciences
- Université de Yaoundé I
- Yaoundé
- Cameroon
| | | | - Sonwabo E. Bambalaza
- Centre for Nanostructures and Advanced Materials (CeNAM)
- Chemicals Cluster
- Council for Scientific and Industrial Research (CSIR)
- Brummeria
- South Africa
| | - Nicholas M. Musyoka
- Centre for Nanostructures and Advanced Materials (CeNAM)
- Chemicals Cluster
- Council for Scientific and Industrial Research (CSIR)
- Brummeria
- South Africa
| | | | - Robert Mokaya
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
42
|
Determination of isotretinoin (13-cis-retinoic acid) using a sensor based on reduced graphene oxide modified with copper nanoparticles. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Petrucci R, Chiarotto I, Mattiello L, Passeri D, Rossi M, Zollo G, Feroci M. Graphene Oxide: A Smart (Starting) Material for Natural Methylxanthines Adsorption and Detection. Molecules 2019; 24:E4247. [PMID: 31766549 PMCID: PMC6930464 DOI: 10.3390/molecules24234247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to - interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10-10 mol L-1 and 1.8 × 10-9 mol L-1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.
Collapse
Affiliation(s)
- Rita Petrucci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| | | | | | | | | | | | - Marta Feroci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| |
Collapse
|
44
|
Nigović B, Mornar A, Brusač E, Jeličić ML. Selective sensor for simultaneous determination of mesalazine and folic acid using chitosan coated carbon nanotubes functionalized with amino groups. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Mazzaracchio V, Tomei MR, Cacciotti I, Chiodoni A, Novara C, Castellino M, Scordo G, Amine A, Moscone D, Arduini F. Inside the different types of carbon black as nanomodifiers for screen-printed electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Dhanalakshmi N, Priya T, Thennarasu S, Karthikeyan V, Thinakaran N. Effect of La doping level on structural and sensing properties of LZO/RGO nanohybrid: Highly selective sensing platform for isoprenaline determinations in the presence of ascorbic acid, uric acid and folic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Jiang S, Hu X, Qiu J, Guo H, Yang F. A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst 2019; 144:2662-2669. [PMID: 30843902 DOI: 10.1039/c9an00161a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregation-induced emission (AIE) provides a new strategy for preparing fluorescent sensors in aggregated state. In this paper, a series of crown ether-bridged bis-tetraphenylethylene compounds were synthesized in 78-84% yield by a simple procedure. The molecules exhibited excellent AIE properties in THF/H2O solutions and solid films. The investigation on sensing abilities for various biomolecules and metal ions suggested that Bis-TPE-1 possessed obvious response to folic acid, with fluorescence enhancement and blue shift of maximum emission wavelength from 380 nm to 365 nm. The detection limit for folic acid was 6.36 × 10-7 M, and the sensor's selectivity for folic acid was little interfered by the other species. The sensor mechanism was studied by FT-IR, 1H NMR, MS spectra and fluorescence Jobs' plot. The selective sensor for folic acid was applied in test paper and the analyses of real samples of mung bean and spinach. The superior bioimaging performance of Bis-TPE-1 for sensing folic acid was confirmed by the live cell imaging experiments, which indicated its good practical application potential for detecting folic acid.
Collapse
Affiliation(s)
- Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Deroco PB, Fatibello‐Filho O, Arduini F, Moscone D. Effect of Different Carbon Blacks on the Simultaneous Electroanalysis of Drugs as Water Contaminants Based on Screen‐printed Sensors. ELECTROANAL 2019. [DOI: 10.1002/elan.201900042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia Batista Deroco
- Department of ChemistryFederal University of São Carlos, C.P. 676 13560-970 São Carlos–SP Brazil
| | - Orlando Fatibello‐Filho
- Department of ChemistryFederal University of São Carlos, C.P. 676 13560-970 São Carlos–SP Brazil
| | - Fabiana Arduini
- Department of Chemical Science and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Danila Moscone
- Department of Chemical Science and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
49
|
Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Thangavelu L, Dua K. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111531. [PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
Collapse
Affiliation(s)
- S Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, TN, India.
| | - Soumya Menon
- School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - S Venkat Kumar
- School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, TN, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia.
| |
Collapse
|
50
|
Electrochemical Derivatization of Acetaminophen for Indirect Determination of Eflornithine Using β‐CD Modified Glassy Carbon Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|