1
|
Miller SA, Forero AR, Tose LV, Krechmer JE, Muntean F, Fernandez-Lima F. High-throughput screening of fentanyl analogs. Talanta 2025; 283:127191. [PMID: 39546835 DOI: 10.1016/j.talanta.2024.127191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
This study presents an analytical approach coupling novel ambient ionization sources with trapped ion mobility spectrometry (TIMS) and tandem mass spectrometry (MS/MS) for the rapid characterization of fentanyl analogs. Two ambient ionization sources were illustrated for minimal sample preparation and rapid analysis: electrospray ionization (nESI) and direct analysis in real time (DART). Fentanyl analogs can be separated using nESI-TIMS-MS/MS based on differences in their mobility and/or fragmentation pattern; reference mobility spectra are reported for 234 single standards. In contrast, DART-TIMS-MS/MS allowed for the characterization of 201 compounds due to differences in the protonation pattern and efficiency when compared to nESI. The TIMS high resolving power (R > 80) allowed baseline separation for most isomers and mobility trends were established for methylated and fluorinated isomers, with the more compact ortho-substituted analogs showing distinct separation from para- and meta-substituted species. This multi-dimensional strategy offers a comprehensive characterization of fentanyl analogs and other synthetic opioids with minimal sample preparation. This analysis shows significant potential for high-throughput screening (<5 min) and high sensitivity detection (
Collapse
Affiliation(s)
- Samuel A Miller
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Andrew R Forero
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Lilian Valadares Tose
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | | | | | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
2
|
Choucair I, Shang E, Tran MN, Cassella-McLane G, El-Khoury JM. Direct analysis in real time mass spectrometry (DART-MS/MS) for rapid urine opioid detection in a clinical setting. Clin Chim Acta 2025; 564:119939. [PMID: 39197698 DOI: 10.1016/j.cca.2024.119939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND AND AIMS Current laboratory methods for opioid detection involve an initial screening with immunoassays which offers efficient but non-specific results and a subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmation which offers accurate results but requires extensive sample preparation and turnaround time. Direct Analysis in Real Time (DART) tandem mass spectrometry is evaluated as an alternative approach for accurate opioid detection with efficient sample preparation and turnaround time. MATERIALS AND METHODS DART-MS/MS was optimized by testing the method with varying temperatures, operation modes, extraction methods, hydrolysis times, and vortex times. The method was evaluated for 12 opioids by testing the analytical measurement range, percent carryover, precision studies, stability, and method-to-method comparison with LC-MS/MS. RESULTS DART-MS/MS shows high sensitivity and specificity for the detection of 6-acetylmorphine, codeine, hydromorphone, oxymorphone, hydrocodone, naloxone, buprenorphine, norfentanyl, and fentanyl in urine samples. However, its performance was suboptimal for norbuprenorphine, morphine and oxycodone. CONCLUSION In this proof-of-concept study, DART-MS/MS is evaluated for its rapid quantitative definitive testing of opioids drugs in urine. Further research is needed to expand its application to other areas of drug testing.
Collapse
Affiliation(s)
- Ibrahim Choucair
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Emily Shang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Minh Nguyet Tran
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Joe M El-Khoury
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Miller SA, Jeanne Dit Fouque K, Mebel AM, Chandler KB, Fernandez-Lima F. Gas-Phase Structures of Fucosylated Oligosaccharides: Alkali Metal and Halogen Influences. J Phys Chem B 2024; 128:8869-8877. [PMID: 39226480 PMCID: PMC11421426 DOI: 10.1021/acs.jpcb.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fucosylated carbohydrate antigens play critical roles in physiology and pathology with function linked to their structural details. However, the separation and structural characterization of isomeric fucosylated epitopes remain challenging analytically. Here, we report for the first time the influence of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) and halogen anions (Cl-, Br-, and I-) on the gas-phase conformational landscapes of common fucosylated trisaccharides (Lewis A, X, and H types 1 and 2) and tetrasaccharides (Lewis B and Y) using trapped ion mobility spectrometry coupled to mass spectrometry and theoretical calculations. Inspection of the mobility profiles of individual standards showed a dependence on the number of mobility bands with the oligosaccharide and the alkali metal and halogen; collision cross sections are reported for all of the observed species. Results showed that trisaccharides (Lewis A, X, and H types 1 and 2) can be best mobility resolved in the positive mode using the [M + Li]+ molecular ion form (baseline resolution r ≈ 2.88 between Lewis X and A); tetrasaccharides can be best mobility resolved in the negative mode using the [M + I]- molecular ion form (baseline separation r ≈ 1.35 between Lewis B and Y). The correlation between the number of oligosaccharide conformers as a function of the molecular ion adduct was studied using density functional theory. Theoretical calculations revealed that smaller cations can form more stable structures based on the number of coordinations, while larger cations induced greater oligosaccharide reorganizations; candidate structures are proposed to better understand the gas-phase oligosaccharide rearrangement trends. Inspection of the candidate structures suggests that the interplay between ion size/charge density and molecular structure dictated the conformational preferences and, consequently, the number of mobility bands and the mobility separation across isomers. This work provides a fundamental understanding of the gas-phase structural dynamics of fucosylated oligosaccharides and their interaction with alkali metals and halogens.
Collapse
Affiliation(s)
- Samuel A Miller
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Brown Chandler
- Translational Glycobiology Institute, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
4
|
Johnson CR, Sabatini HM, Aderorho R, Chouinard CD. Dependency of fentanyl analogue protomer ratios on solvent conditions as measured by ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5070. [PMID: 38989742 DOI: 10.1002/jms.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Recently, our group has shown that fentanyl and many of its analogues form prototropic isomers ("protomers") during electrospray ionization. These different protomers can be resolved using ion mobility spectrometry and annotated using mobility-aligned tandem mass spectrometry fragmentation. However, their formation and the extent to which experimental variables contribute to their relative ratio remain poorly understood. In the present study, we systematically investigated the effects of mixtures of common chromatographic solvents (water, methanol, and acetonitrile) and pH on the ratio of previously observed protomers for 23 fentanyl analogues. Interestingly, these ratios (N-piperidine protonation vs. secondary amine/O = protonation) decreased significantly for many analogues (e.g., despropionyl ortho-, meta-, and para-methyl fentanyl), increased significantly for others (e.g., cis-isofentanyl), and remained relatively constant for the others as solvent conditions changed from 100% organic solvent (methanol or acetonitrile) to 100% water. Interestingly, pH also had significant effects on this ratio, causing the change in ratio to switch in many cases. Lastly, increasing conditions to pH ≥ 4.0 also prompted the appearance of new mobility peaks for ortho- and para-methyl acetyl fentanyl, where all previous studies had only showed one single distribution. Because these ratios have promise to be used qualitatively for identification of these (and emerging) fentanyl analogues, understanding how various conditions (i.e., mobile phase selection and/or chromatographic gradient) affect their ratios is critically important to the development of advanced ion mobility and mass spectrometry methodologies to identify fentanyl analogues.
Collapse
Affiliation(s)
| | - Heidi M Sabatini
- Department of Chemistry, Clemson University, Clemson, SC, USA, 29634
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA, 29634
| | | |
Collapse
|
5
|
Aderorho R, Lucas SW, Chouinard CD. Rapid differentiation of xylazine metabolites using SLIM IM-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4041-4044. [PMID: 38869241 DOI: 10.1039/d4ay00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Xylazine represents an increased threat to the recreational drug market. In this study, we present a rapid strategy for identifying xylazine and differentiating its common isomeric metabolites using Structures for Lossless Ion Manipulations (SLIM) ion mobility coupled to high-resolution/tandem mass spectrometry (IM-HRMS/MS). Chemical derivatization using dansyl chloride also assisted with separations and led to identification of resolvable reaction product atropisomers.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, 211 S Palmetto Blvd, Clemson, SC 29634, USA.
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, 211 S Palmetto Blvd, Clemson, SC 29634, USA.
| | | |
Collapse
|
6
|
Aderorho R, Chouinard CD. Improved separation of fentanyl isomers using metal cation adducts and high-resolution ion mobility-mass spectrometry. Drug Test Anal 2024; 16:369-379. [PMID: 37491787 DOI: 10.1002/dta.3550] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Fentanyl is a potent synthetic opioid that has attracted significant attention due to its illegal production and distribution, resulting in misuse, overdose, and fatalities. Because numerous fentanyl analogs, including structural isomers, with different potency have been discovered in the field, there is a critical need to continue developing analytical methodologies capable of accurate identification in forensic and clinical laboratories. This study aimed to develop a rapid method for detecting and separating fentanyl isomers based on ion mobility-mass spectrometry (IM-MS), where IM separates gas-phase ions based on differences in their size, shape, and charge. Several strategies for improved differentiation were implemented, including using unconventional cation adducts (e.g., alkali and transition metals) and data post-processing by high-resolution demultiplexing. A collection of collision cross section (CCS) values for the various metal ion adducts was gathered, which can be used to improve confidence of identification in future samples. Notable examples, such as [M + Cu]+ and [M + Ag]+ adducts, contributed to significant improvement of resolution between isomers. Furthermore, the addition of high-resolution post-processing provided resolving power of >150, which constitutes a significant increase in comparison with the normal 50-60 obtained with low-resolution drift tube instruments. Collectively, these improved separation strategies allowed for confident detection and subsequent quantitative analysis. The optimized IM-MS method resulted in quantification of fentanyl in human urine with limits of detection and quantification of 13 pg/mL and 40 pg/mL, respectively.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
7
|
Usman M, Baig Y, Nardiello D, Quinto M. How new nanotechnologies are changing the opioid analysis scenery? A comparison with classical analytical methods. Forensic Sci Res 2024; 9:owae001. [PMID: 38560581 PMCID: PMC10981550 DOI: 10.1093/fsr/owae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Opioids such as heroin, fentanyl, raw opium, and morphine have become a serious threat to the world population in the recent past, due to their increasing use and abuse. The detection of these drugs in biological samples is usually carried out by spectroscopic and/or chromatographic techniques, but the need for quick, sensitive, selective, and low-cost new analytical tools has pushed the development of new methods based on selective nanosensors, able to meet these requirements. Modern sensors, which utilize "next-generation" technologies like nanotechnology, have revolutionized drug detection methods, due to easiness of use, their low cost, and their high sensitivity and reliability, allowing the detection of opioids at trace levels in raw, pharmaceutical, and biological samples (e.g. blood, urine, saliva, and other biological fluids). The peculiar characteristics of these sensors not only have allowed on-site analyses (in the field, at the crime scene, etc.) but also they are nowadays replacing the gold standard analytical methods in the laboratory, even if a proper method validation is still required. This paper reviews advances in the field of nanotechnology and nanosensors for the detection of commonly abused opioids both prescribed (i.e. codeine and morphine) and illegal narcotics (i.e. heroin and fentanyl analogues).
Collapse
Affiliation(s)
- Muhammad Usman
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Yawar Baig
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
| | - Donatella Nardiello
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
8
|
Muller HB, Scholl G, Far J, De Pauw E, Eppe G. Sliding Windows in Ion Mobility (SWIM): A New Approach to Increase the Resolving Power in Trapped Ion Mobility-Mass Spectrometry Hyphenated with Chromatography. Anal Chem 2023; 95:17586-17594. [PMID: 37976440 DOI: 10.1021/acs.analchem.3c03039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.
Collapse
Affiliation(s)
- Hugo B Muller
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| |
Collapse
|
9
|
Santos-Fernandez M, Jeanne Dit Fouque K, Fernandez-Lima F. Integration of Trapped Ion Mobility Spectrometry and Ultraviolet Photodissociation in a Quadrupolar Ion Trap Mass Spectrometer. Anal Chem 2023; 95:8417-8422. [PMID: 37220214 PMCID: PMC10877586 DOI: 10.1021/acs.analchem.3c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is a growing demand for lower-cost, benchtop analytical instruments with complementary separation capabilities for the screening and characterization of biological samples. In this study, we report on the custom integration of trapped ion mobility spectrometry and ultraviolet photodissociation capabilities in a commercial Paul quadrupolar ion trap multistage mass spectrometer (TIMS-QIT-MSn UVPD platform). A gated TIMS operation allowed for the accumulation of ion mobility separated ion in the QIT, followed by a mass analysis (MS1 scan) or m/z isolation, followed by selected collision induced dissociation (CID) or ultraviolet photodissociation (UVPD) and a mass analysis (MS2 scan). The analytical potential of this platform for the analysis of complex and labile biological samples is illustrated for the case of positional isomers with varying PTM location of the histone H4 tryptic peptide 4-17 singly and doubly acetylated and the histone H3.1 tail (1-50) singly trimethylated. For all cases, a baseline ion mobility precursor molecular ion preseparation was obtained. The tandem CID and UVPD MS2 allowed for effective sequence confirmation as well as the identification of reporter fragment ions associated with the PTM location; a higher sequence coverage was obtained using UVPD when compared to CID. Different from previous IMS-MS implementation, the novel TIMS-QIT-MSn UVPD platform offers a lower-cost alternative for the structural characterization of biological molecules that can be widely disseminated in clinical laboratories.
Collapse
Affiliation(s)
- Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
10
|
Falconer TM, Schneider B, Baessmann C, Wendt K, Filipenko A. Combining trapped ion mobility spectrometry with liquid chromatography and tandem mass spectrometry for analysis of isomeric PDE-5 inhibitor analogs. J Pharm Biomed Anal 2023; 225:115210. [PMID: 36586385 DOI: 10.1016/j.jpba.2022.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The detection and identification of phosphodiesterase type 5 enzyme (PDE-5) inhibitors in dietary supplements poses an analytical challenge due to the large number of analogs and isomers currently available and the continued introduction of novel analogs. The use of trapped ion mobility spectrometry (TIMS) in conjunction with liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (MS/MS) was explored for the analysis of two groups of isomeric PDE-5 inhibitor analogs using a 5-minute method. Of the eight compounds studied, six were resolved by a combination of LC and TIMS; the two remaining isomers were distinguished by one or more unique product ions in the MS/MS spectrum. The results revealed that separation by LC corresponded to differences in substitution on the piperazine moiety of the PDE-5 inhibitors, while separation by TIMS corresponded to the position of a nitrogen atom in the fused ring region of the molecules. Samples prepared by spiking mixtures of varying amounts of the Group 2 isomers into a representative dietary supplement matrix were analyzed and concentrations determined from the mobility-adjusted extracted ion chromatograms exhibited relative standard deviations of 6.0 % or less for 17 of 20 measurements and recoveries between 80 % and 120 % for all measurements. Quantitative measurements from a short LC gradient were possible due to the reduced chemical background associated with the TIMS separation of co-eluting matrix compounds, which enabled acquisition of rapid and qualitatively relevant broadband collision induced dissociation spectra that didn't require precursor ion isolation; the reduced chemical background permits non-targeted detection of novel analogs and eliminates the need for a separate method for quantitative measurement.
Collapse
Affiliation(s)
- Travis M Falconer
- US Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, Cincinnati, OH, USA.
| | - Birgit Schneider
- Bruker Daltonics & Co. KG, Solutions Development, Applied Markets & Characterization, Bremen, Germany
| | - Carsten Baessmann
- Bruker Daltonics & Co. KG, Solutions Development, Applied Markets & Characterization, Bremen, Germany
| | - Karin Wendt
- Bruker Daltonics & Co. KG, Solutions Development, Applied Markets & Characterization, Bremen, Germany
| | | |
Collapse
|
11
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
12
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Butler KE, Baker ES. A High-Throughput Ion Mobility Spectrometry-Mass Spectrometry Screening Method for Opioid Profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1904-1913. [PMID: 36136315 PMCID: PMC9616473 DOI: 10.1021/jasms.2c00186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2017, the United States Department of Health and Human Services declared the widespread misuse and abuse of prescription and illicit opioids an epidemic. However, this epidemic dates back to the 1990s when opioids were extensively prescribed for pain management. Currently, opioids are still recommended for pain management, and given their abuse potential, rapid screening is imperative for patient treatment. Of particular importance is assessing pain management patient compliance, where evaluating drug use is crucial for preventing opioid abuse and potential overdoses. In this work, we utilized drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) to develop a rapid screening method for 33 target opioids and opioid urinary metabolites. Collision cross section values were determined for all target molecules using a flow-injection DTIMS-MS method, and clear differentiation of 27 out of the 33 opioids without prior chromatographic separation was observed when utilizing a high resolution demultiplexing screening approach. An automated solid phase extraction (SPE) platform was then coupled to DTIMS-MS for 10 s sample-to-sample analyses. This SPE-IMS-MS approach enabled the rapid screening of urine samples for opioids and presents a major improvement in sample throughput compared to traditional chromatographic analyses coupled with MS, which routinely take several minutes per sample. Overall, this vast reduction in analysis time facilitates a faster turn-around for patient samples, providing great benefits to clinical applications.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Izquierdo-Sandoval D, Fabregat-Safont D, Lacalle-Bergeron L, Sancho JV, Hernández F, Portoles T. Benefits of Ion Mobility Separation in GC-APCI-HRMS Screening: From the Construction of a CCS Library to the Application to Real-World Samples. Anal Chem 2022; 94:9040-9047. [PMID: 35696365 PMCID: PMC9974067 DOI: 10.1021/acs.analchem.2c01118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The performance of gas chromatography (GC) combined with the improved identification properties of ion mobility separation coupled to high-resolution mass spectrometry (IMS-HRMS) is presented as a promising approach for the monitoring of (semi)volatile compounds in complex matrices. The soft ionization promoted by an atmospheric pressure chemical ionization (APCI) source designed for GC preserves the molecular and/or quasi-molecular ion information enabling a rapid, sensitive, and efficient wide-scope screening. Additionally, ion mobility separation (IMS) separates species of interest from coeluting matrix interferences and/or resolves isomers based on their charge, shape, and size, making IMS-derived collision cross section (CCS) a robust and matrix-independent parameter comparable between instruments. In this way, GC-APCI-IMS-HRMS becomes a powerful approach for both target and suspect screening due to the improvements in (tentative) identifications. In this work, mobility data for 264 relevant multiclass organic pollutants in environmental and food-safety fields were collected by coupling GC-APCI with IMS-HRMS, generating CCS information for molecular ion and/or protonated molecules and some in-source fragments. The identification power of GC-APCI-IMS-HRMS for the studied compounds was assessed in complex-matrix samples, including fish feed extracts, surface waters, and different fruit and vegetable samples.
Collapse
|
16
|
Le T, Jeanne Dit Fouque K, Santos-Fernandez M, Navo CD, Jiménez-Osés G, Sarksian R, Fernandez-Lima FA, van der Donk WA. Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM. J Am Chem Soc 2021; 143:18733-18743. [PMID: 34724611 DOI: 10.1021/jacs.1c09370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The (methyl)lanthionine cross-links characteristic to lanthipeptides are essential for their stability and bioactivities. In most bacteria, lanthipeptides are maturated from single precursor peptides encoded in the corresponding biosynthetic gene clusters. However, cyanobacteria engage in combinatorial biosynthesis and encode as many as 80 substrate peptides with highly diverse sequences that are modified by a single lanthionine synthetase into lanthipeptides of different lengths and ring patterns. It is puzzling how a single enzyme could exert control over the cyclization processes of such a wide range of substrates. Here, we used a library of ProcA3.3 precursor peptide variants and show that it is not the enzyme ProcM but rather its substrate sequences that determine the regioselectivity of lanthionine formation. We also demonstrate the utility of trapped ion mobility spectrometry-tandem mass spectrometry (TIMS-MS/MS) as a fast and convenient method to efficiently separate lanthipeptide constitutional isomers, particularly in cases where the isomers cannot be resolved by conventional liquid chromatography. Our data allowed identification of factors that are important for the cyclization outcome, but also showed that there are no easily identifiable predictive rules for all sequences. Our findings provide a platform for future deep learning approaches to allow such prediction of ring patterns of products of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Francisco Alberto Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Lee SY, Lee ST, Suh S, Ko BJ, Oh HB. Revealing Unknown Controlled Substances and New Psychoactive Substances Using High-Resolution LC-MS/MS Machine Learning Models and the Hybrid Similarity Search Algorithm. J Anal Toxicol 2021; 46:732-742. [PMID: 34498039 DOI: 10.1093/jat/bkab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 09/08/2021] [Indexed: 11/12/2022] Open
Abstract
High-resolution LC-MS/MS tandem mass spectra-based machine learning models are constructed to address the analytical challenge of identifying unknown controlled substances and new psychoactive substances (NPS's). Using a training set comprised of 770 LC-MS/MS barcode spectra (with binary entries 0 or 1) obtained generally by high-resolution mass spectrometers, three classification machine learning models were generated and evaluated. The three models are artificial neural network (ANN), support vector machine (SVM), and k-nearest neighbor (k-NN) models. In these models, controlled substances and NPS's were classified into 13 subgroups (benzylpiperazine, opiate, benzodiazepine, amphetamine, cocaine, methcathinone, classical cannabinoid, fentanyl, 2C series, indazole carbonyl compound, indole carbonyl compound, phencyclidine, and others). Using 193 LC-MS/MS barcode spectra as an external test set, accuracy of the ANN, SVM, and k-NN models were evaluated as 72.5%, 90.0%, and 94.3%, respectively. Also, the hybrid similarity search (HSS) algorithm was evaluated to examine whether this algorithm can successfully identify unknown controlled substances and NPS's whose data are unavailable in the database. When only 24 representative LC-MS/MS spectra of controlled substances and NPS's were selectively included in the database, it was found that HSS can successfully identify compounds with high reliability. The machine learning models and HSS algorithms are incorporated into our home-coded AI-SNPS (artificial intelligence screener for narcotic drugs and psychotropic substances) standalone software that is equipped with a graphic user interface. The use of this software allows unknown controlled substances and NPS's to be identified in a convenient manner.
Collapse
Affiliation(s)
- So Yeon Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Sang Tak Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Sungill Suh
- Forensic genetics & chemistry division, Supreme prosecutors' office, Seoul 06590, Republic of Korea
| | - Bum Jun Ko
- Forensic genetics & chemistry division, Supreme prosecutors' office, Seoul 06590, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
18
|
Lee LA, McGee AC, Sitasuwan P, Tomashek JJ, Riley C, Muñoz-Muñoz AC, Andrade L. Factors Compromising Glucuronidase Performance in Urine Drug Testing Potentially Resulting in False Negatives. J Anal Toxicol 2021; 46:689-696. [PMID: 34401904 PMCID: PMC9282255 DOI: 10.1093/jat/bkab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Next generation β-glucuronidases can effectively cleave glucuronides in urine at room temperature. However, during the discovery studies, additional challenges were identified for urine drug testing across biologically relevant pH extremes and patient urine specimens. Different enzymes were evaluated across clinical urine specimens and commercially available urine control matrices. Each enzyme shows distinct substrate preferences, pH optima, and variability across clinical specimens. These results demonstrate how reliance on a single glucuronidated substrate as the internal hydrolysis control cannot ensure performance across a broader panel of analytes. Moreover, sample specific urine properties compromise β-glucuronidases to varying levels, more pronounced for some enzymes, and thereby lower the recovery of some drug analytes in an enzyme-specific manner. A minimum of 3-fold dilution of urine with buffer yields measurable improvements in achieving target pH and reducing the impact of endogenous compounds on enzyme performance. After subjecting the enzymes to pH extremes and compromising chemicals, one particular β-glucuronidase was identified that addressed many of these challenges and greatly lower the risk of failed hydrolyses. In summary, we present strategies to evaluate glucuronidases that aid in higher accuracy urine drug tests with lower potential for false negatives.
Collapse
Affiliation(s)
- L Andrew Lee
- Integrated Micro-Chromatography Systems, Inc, Irmo, SC 29063, USA
| | - Amanda C McGee
- Integrated Micro-Chromatography Systems, Inc, Irmo, SC 29063, USA
| | | | - John J Tomashek
- Integrated Micro-Chromatography Systems, Inc, Irmo, SC 29063, USA
| | - Chris Riley
- Dominion Diagnostics, LLC, North Kingstown, RI 02852, USA
| | | | | |
Collapse
|
19
|
Davis DE, Leaptrot KL, Koomen DC, May JC, Cavalcanti GDA, Padilha MC, Pereira HMG, McLean JA. Multidimensional Separations of Intact Phase II Steroid Metabolites Utilizing LC-Ion Mobility-HRMS. Anal Chem 2021; 93:10990-10998. [PMID: 34319704 DOI: 10.1021/acs.analchem.1c02163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The detection and unambiguous identification of anabolic-androgenic steroid metabolites are essential in clinical, forensic, and antidoping analyses. Recently, sulfate phase II steroid metabolites have received increased attention in steroid metabolism and drug testing. In large part, this is because phase II steroid metabolites are excreted for an extended time, making them a potential long-term chemical marker of choice for tracking steroid misuse in sports. Comprehensive analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), have been used to detect and identify glucuronide and sulfate steroids in human urine with high sensitivity and reliability. However, LC-MS/MS identification strategies can be hindered by the fact that phase II steroid metabolites generate nonselective ion fragments across the different metabolite markers, limiting the confidence in metabolite identifications that rely on exact mass measurement and MS/MS information. Additionally, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is sometimes insufficient at fully resolving the analyte peaks from the sample matrix (commonly urine) chemical noise, further complicating accurate identification efforts. Therefore, we developed a liquid chromatography-ion mobility-high resolution mass spectrometry (LC-IM-HRMS) method to increase the peak capacity and utilize the IM-derived collision cross section (CCS) values as an additional molecular descriptor for increased selectivity and to improve identifications of intact steroid analyses at low concentrations.
Collapse
Affiliation(s)
- Don E Davis
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Katrina L Leaptrot
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David C Koomen
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gustavo de A Cavalcanti
- Brazilian Doping Control Laboratory (LBCD), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Monica C Padilha
- Brazilian Doping Control Laboratory (LBCD), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Henrique M G Pereira
- Brazilian Doping Control Laboratory (LBCD), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
20
|
Zhang Y, Han Y, Dong C, Li C, Liang T, Ling G, Nie H. Rapid characterization and pharmacokinetic study of aristolochic acid analogues using ion mobility mass spectrometry. Anal Bioanal Chem 2021; 413:4247-4253. [PMID: 33950274 DOI: 10.1007/s00216-021-03371-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Aristolochic acid analogues (AAAs), naturally existing in herbal Aristolochia and Asarum genera, were once widely used in traditional pharmacopeias because of their anti-inflammatory properties, but lately they were identified as potential nephrotoxins and mutagens. A method for rapid characterization of AAAs in serum was developed using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). Five AAAs, containing four aristolochic acids and one aristolactam, were separated and identified within milliseconds. AAAs were separated in gas phase based on the difference of their ion mobility (K0), and then identified based on their K0 values, m/z, and product ions from MS/MS. Quantitative analysis of AAAs was performed using an internal standard with a satisfactory sensitivity. Limits of detection (signal-to-noise = 3) and quantification (signal-to-noise = 10) were 1-5 ng/mL and 3-8 ng/mL, respectively. The method was validated and successfully applied to the pharmacokinetics study of AAAs in rats, offering a promising way for fast screening and evaluation of AAAs in biological samples.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, China
| | - Tuo Liang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 10050, China
| | - Guannan Ling
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Olanrewaju CA, Ramirez CE, Fernandez-Lima F. Comprehensive Screening of Polycyclic Aromatic Hydrocarbons and Similar Compounds Using GC-APLI-TIMS-TOFMS/GC-EI-MS. Anal Chem 2021; 93:6080-6087. [PMID: 33835784 DOI: 10.1021/acs.analchem.0c04525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, a novel workflow based on complementary gas-phase separations for the identification of isomeric PAHs from complex mixtures is described. This is the first report on the coupling of gas chromatography (GC), atmospheric pressure laser ionization (APLI), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) for the characterization of polycyclic aromatic hydrocarbons. Over a hundred known unknowns are uniquely identified based on the molecular ion retention indices I (5%), mobility (RSD < 0.6% and R = 50-90 with Sr = 0.18 V/ms), mobility-based theoretical candidate assignment (<3%), accurate mass chemical formula assignment (<2 ppm), and electron impact fragmentation pattern and database search. The advantages of theoretical modeling of PAHs and similar compounds were evaluated using candidate structures ranked by retention indices and fragmentation pattern from GC-EI-MS data sets. Over 20 PAH isomeric and deuterated standards were utilized for the GC-APLI-TIMS-TOF MS workflow validation. Noteworthy is the analytical capability for untargeted screening of isomeric and isobaric compounds with additional characterization metrics not available in traditional GC-EI-MSn workflows.
Collapse
Affiliation(s)
- Clement A Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
22
|
Zhang Y, Han Y, Wu J, Wang Y, Li J, Shi Q, Xu C, Hsu CS. Comprehensive Composition, Structure, and Size Characterization for Thiophene Compounds in Petroleum Using Ultrahigh-Resolution Mass Spectrometry and Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:5089-5097. [PMID: 33734689 DOI: 10.1021/acs.analchem.0c04667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thiophene compounds are the main concern of petroleum desulfurization, and their chemical composition and molecular configuration have critical impacts on thermodynamic and kinetic processes. In this work, atmospheric pressure chemical ionization (APCI) was employed for effective ionization of thiophene compounds in petroleum with complex matrix, in which carbon disulfide was used for generating predominant [M]+• ions without the need of derivatization as for electrospray ionization. APCI coupled with ultrahigh-resolution mass spectrometry (UHRMS) was successfully applied to the composition characterization of thiophene compounds in both a low boiling petroleum fraction and a whole crude oil. APCI coupled with trapped ion mobility spectrometry (TIMS) was developed to determine the shape and size of thiophene compounds, providing configuration information that affects the steric hindrance and diffusion behavior of reactants in the desulfurization reaction, which has not been previously reported. Moreover, the comprehensive experimental structural data, expressed as the collision cross section (CCS) of the ions as surrogates of molecules, provided clues to the factors affecting the desulfurization reactivity of thiophene compounds. Further exploration showed that not only qualitative analysis of thiophene compounds can be achieved from the correlation between m/z and CCS, but also molecular size was found to be correlated with CCS that can be used as structural analysis. Overall, the molecular composition and dimension analysis together can provide substantial information for the desulfurization activity of thiophene compounds, facilitating the desulfurization process studies and catalyst design.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Jianxun Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Chang Samuel Hsu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China.,Department of Chemical and Biomedical Engineering, Florida A&M University/Florida State University, Tallahassee, Florida 32310, United States.,Petro Bio Oil Consulting, Tallahassee, Florida 32312, United States
| |
Collapse
|
23
|
Abstract
This paper aims to cover the main strategies based on ion mobility spectrometry (IMS) for the analysis of biological samples. The determination of endogenous and exogenous compounds in such samples is important for the understanding of the health status of individuals. For this reason, the development of new approaches that can be complementary to the ones already established (mainly based on liquid chromatography coupled to mass spectrometry) is welcomed. In this regard, ion mobility spectrometry has appeared in the analytical scenario as a powerful technique for the separation and characterization of compounds based on their mobility. IMS has been used in several areas taking advantage of its orthogonality with other analytical separation techniques, such as liquid chromatography, gas chromatography, capillary electrophoresis, or supercritical fluid chromatography. Bioanalysis is not one of the areas where IMS has been more extensively applied. However, over the last years, the interest in using this approach for the analysis of biological samples has clearly increased. This paper introduces the reader to the principles controlling the separation in IMS and reviews recent applications using this technique in the field of bioanalysis.
Collapse
|
24
|
Wu F, Yang S, Dai X, Gu L, Xu F, Fang X, Yu S, Ding CF. Discrimination of Aminobiphenyl Isomers in the Gas Phase and Investigation of Their Complex Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:716-724. [PMID: 33527834 DOI: 10.1021/jasms.0c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The analysis of positional isomers is of great significance because their different chemical properties but similar structures make separation difficult. In this work, a simple method for simultaneously discriminating three positional isomers of 2-aminobiphenyl (2-ABP), 3-ABP, and 4-ABP was studied by ion mobility spectrometry (IMS) and quantum mechanical calculations at the molecular level. In the experiments, three ABP isomers were mixed with α-, β-, and γ-cyclodextrins (CD), and the IMS results show that the three ABP isomers were clearly recognized by the formed complex of [α-CD + ABP + H]+ via measuring their IMS, in which the different ion mobilities of 1.515, 1.544, 1.585 V·s·com-2 with the collision cross sections (CCS) of 307.3, 312.5, 320.8 Å2 were obtained for [α-CD + 2-ABP + H]+, [α-CD + 3-ABP + H]+, and [α-CD + 4-ABP + H]+, respectively. Collision induced dissociation analysis of the three [α-CD + ABP + H]+ isomer complexes were further studied, indicating that the same fragmentation process required different collisional energies, and the greater the CCS for the [α-CD + ABP + H]+ with looser structure and the smaller energy required. Besides, the favorable conformation and the CCS value of the different [CD + ABP + H]+ isomer complexes were measured via quantum mechanical calculations to detail their intermolecular interactions. It revealed that the intermolecular binding between 2-ABP and α-CD is different from that of 3- and 4-ABP, resulting in different molecular conformations and CCS, and the interaction modes of ABP with β-CD are similar to that with γ-CD, which are very consistent with the experimental observations. Finally, relative quantification of the method was performed, and satisfactory linearity with correlation coefficients (R2) greater than 0.99 was obtained. This method for isomer discrimination and conformation analysis possesses the advantages of simplicity, sensitivity, cost-effectiveness, and as such it may be widely applied in chemistry and pharmaceutical sciences.
Collapse
Affiliation(s)
- Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Shutong Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Xinhua Dai
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Liancheng Gu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Fuxing Xu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Xiang Fang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
25
|
Delvaux A, Rathahao-Paris E, Alves S. An emerging powerful technique for distinguishing isomers: Trapped ion mobility spectrometry time-of-flight mass spectrometry for rapid characterization of estrogen isomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8928. [PMID: 32833266 DOI: 10.1002/rcm.8928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Isomer metabolites are involved in metabolic pathways, and their characterization is essential but remains challenging even using high-performance analytical platforms. The addition of ion mobility prior to mass analysis can help to separate isomers. Here, the ability of a recently developed trapped ion mobility spectrometry system to separate metabolite isomers was examined. METHODS Three pairs of estrogen isomers were studied as a model of isomeric metabolites under both negative and positive electrospray ionization (ESI) modes using a commercial trapped ion mobility spectrometry-TOF mass spectrometer. The standard metabolites were also spiked into human urine to evaluate the efficiency of trapped ion mobility spectrometry to separate isomers in complex mixtures. RESULTS The estradiol glucuronide isomers (E2 β-3G and E2 β-17G) could be distinguished as deprotonated species, while the estradiol epimers (E2 β and E2 α) and the methoxyestradiol isomers (2-MeO-E2 β and 4-MeO-E2 β) were separated as lithiated adducts in positive ionization mode. When performing analyses in the urine matrix, no alteration in the ion mobility resolving power was observed and the measured collision cross section (CCS) values varied by less than 1.0%. CONCLUSIONS The trapped ion mobility spectrometry-TOF mass spectrometer enabled the separation of the metabolite isomers with very small differences in CCS values (ΔCCS% = 2%). It is shown to be an effective tool for the rapid characterization of isomers in complex matrices.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et de l'Ingénierie, Sorbonne Université, Paris, F-75005, France
| | - Estelle Rathahao-Paris
- Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et de l'Ingénierie, Sorbonne Université, Paris, F-75005, France
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Sandra Alves
- Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et de l'Ingénierie, Sorbonne Université, Paris, F-75005, France
| |
Collapse
|
26
|
Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4614. [PMID: 32955134 PMCID: PMC8211109 DOI: 10.1002/jms.4614] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Imaging mass spectrometry (IMS) technologies are capable of mapping a wide array of biomolecules in diverse cellular and tissue environments. IMS has emerged as an essential tool for providing spatially targeted molecular information due to its high sensitivity, wide molecular coverage, and chemical specificity. One of the major challenges for mapping the complex cellular milieu is the presence of many isomers and isobars in these samples. This challenge is traditionally addressed using orthogonal liquid chromatography (LC)-based analysis, though, common approaches such as chromatography and electrophoresis are not able to be performed at timescales that are compatible with most imaging applications. Ion mobility offers rapid, gas-phase separations that are readily integrated with IMS workflows in order to provide additional data dimensionality that can improve signal-to-noise, dynamic range, and specificity. Here, we highlight recent examples of ion mobility coupled to IMS and highlight their importance to the field.
Collapse
Key Words
- IMS
- desorption electrospray ionization, DESI
- drift tube ion mobility spectrometry, DTIMS
- high-field asymmetric waveform ion mobility, FAIMS
- imaging mass spectrometry
- infrared matrix-assisted laser desorption electrospray ionization, IR-MALDESI
- ion mobility
- laser ablation electrospray ionization, LAESI
- lipids
- liquid extraction surface analysis, LESA
- liquid microjunction, (LMJ)
- matrix-assisted laser desorption electrospray ionization, MALDI
- metabolites
- proteins
- tissue analysis
- trapped ion mobility spectrometry, TIMS
- travelling wave ion mobility spectrometry, TWIMS
Collapse
Affiliation(s)
- Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| |
Collapse
|
27
|
Cintron-Diaz YL, Acanda de la Rocha AM, Castellanos A, Chambers JM, Fernandez-Lima F. Mapping chemotherapeutic drug distribution in cancer cell spheroids using 2D-TOF-SIMS and LESA-TIMS-MS. Analyst 2020; 145:7056-7062. [PMID: 32966375 DOI: 10.1039/c9an02245g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional (3D) cancer cell cultures grown in the form of spheroids are effective models for the study of in vivo-like processes simulating cancer tumor pharmacological dynamics and morphology. In this study, we show the advantages of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) combined with in situ Liquid Extraction Surface Analysis coupled to trapped Ion Mobility Spectrometry Mass Spectrometry (LESA-TIMS-TOF MS) for high spatial resolution mapping and quantitation of ABT-737, a chemotherapeutic drug, at the level of single human colon carcinoma cell spheroids (HCT 116 MCS). 2D-TOF-SIMS studies of consecutive sections (∼16 μm thick slices) showed that ABT-737 is homogenously distributed in the outer layers of the HCT 116 MCS. Complementary in situ LESA-TIMS-TOF MS/MS measurements confirmed the presence of the ABT-737 drug in the MCS slides by the observation of the molecular ion [M + H]+m/z and mobility, and the charateristic fragmentation pattern. LESA-TIMS-TOF MS allowed a quantitative assessment of the ABT-737 drug of the control MCS slice spiked with ABT-737 standard over the 0.4-4.1 ng range and MCS treated starting at 10 μM for 24 h. These experiments showcase an effective protocol for unambigous characterization and 3D mapping of chemotherapeutic drug distribution at the single MCS level.
Collapse
Affiliation(s)
- Yarixa L Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, FL 33199, USA.
| | | | | | | | | |
Collapse
|
28
|
Borden SA, Palaty J, Termopoli V, Famiglini G, Cappiello A, Gill CG, Palma P. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. MASS SPECTROMETRY REVIEWS 2020; 39:703-744. [PMID: 32048319 DOI: 10.1002/mas.21624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mass spectrometry has been the "gold standard" for drugs of abuse (DoA) analysis for many decades because of the selectivity and sensitivity it affords. Recent progress in all aspects of mass spectrometry has seen significant developments in the field of DoA analysis. Mass spectrometry is particularly well suited to address the rapidly proliferating number of very high potency, novel psychoactive substances that are causing an alarming number of fatalities worldwide. This review surveys advancements in the areas of sample preparation, gas and liquid chromatography-mass spectrometry, as well as the rapidly emerging field of ambient ionization mass spectrometry. We have predominantly targeted literature progress over the past ten years and present our outlook for the future. © 2020 Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Scott A Borden
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jan Palaty
- LifeLabs Medical Laboratories, Burnaby, BC, V3W 1H8, Canada
| | - Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Achille Cappiello
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195
| | - Pierangela Palma
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
29
|
de Castro JS, Rodrigues CHP, Bruni AT. In Silico Infrared Characterization of Synthetic Cannabinoids by Quantum Chemistry and Chemometrics. J Chem Inf Model 2020; 60:2100-2114. [PMID: 32118417 DOI: 10.1021/acs.jcim.9b00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of forensic sciences as mere trace analysis has been modified by the idea of forensic intelligence, which entails applying data to make decisions within the investigative process. Many countries are engaged in combating drug trafficking and drug use because they are related to public health and safety issues. Prohibiting the consumption of traditional drugs has led new psychoactive substances (NPSs) to emerge. NPSs consist of compounds that resemble the initially banned substance and which aim to mimic the traditional drug recreational effects while circumventing drug legislation. For example, synthetic cannabinoids are sprayed on herbal products to reproduce the cannabis recreational effects. According to the United Nations Office on Drugs and Crime (UNODC), the toxic effects of synthetic cannabis types are unknown, and harm and fatalities associated with the use of these drugs have been reported. Information on the characterization related to these species is lacking. The rate at which NPSs appear poses a significant challenge because employing conventional methods to understand the characteristics of these compounds may require time and be costly. This work uses in silico practices as an alternative to understand how NPSs related to cannabis behave. We apply quantum chemistry methods to evaluate several synthetic cannabinoids recognized in forensic samples. More specifically, we generate infrared spectra that can be employed as a benchmark for NPSs. We apply a multivariate classification to evaluate the results. We conclude that in silico methods are an alternative that provide information about the spectra of undetected substances. This information can help to identify new drugs, to increase knowledge about them, and to feed information procedures.
Collapse
Affiliation(s)
- Jade Simões de Castro
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense). Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901
| | - Caio Henrique Pinke Rodrigues
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense). Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901
| | - Aline Thaís Bruni
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense). Avenida Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-901
| |
Collapse
|
30
|
Fangmeyer J, Scheeren SG, Schmid R, Karst U. Fast Online Separation and Identification of Electrochemically Generated Isomeric Oxidation Products by Trapped Ion Mobility–Mass Spectrometry. Anal Chem 2019; 92:1205-1210. [DOI: 10.1021/acs.analchem.9b04337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Fangmeyer
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Simon G. Scheeren
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Robin Schmid
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|
31
|
Fundamentals and applications of incorporating chromatographic separations with ion mobility-mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Ridgeway ME, Bleiholder C, Mann M, Park MA. Trends in trapped ion mobility – Mass spectrometry instrumentation. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Jeanne Dit Fouque K, Fernandez-Lima F. Recent advances in biological separations using trapped ion mobility spectrometry – mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Jeanne Dit Fouque K, Hegemann JD, Zirah S, Rebuffat S, Lescop E, Fernandez-Lima F. Evidence of Cis/Trans-Isomerization at Pro7/Pro16 in the Lasso Peptide Microcin J25. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1038-1045. [PMID: 30834511 DOI: 10.1007/s13361-019-02134-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Microcin J25 is a ribosomal synthesized and post-translationally modified peptide (RiPP) characterized by a mechanically interlocked topology called the lasso fold. This structure provides microcin J25 a potent antimicrobial activity resulting from internalization via the siderophore receptor FhuA and further inhibition of the RNA polymerase. In the present work, nuclear magnetic resonance (NMR) and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate the lasso structure of microcin J25. NMR experiments showed that the lasso peptide microcin J25 can adopt conformational states where Pro16 can be found in the cis- and trans-orientations. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P7A], [P16A], and [P7A/P16A] variants), demonstrated that microcin J25 can adopt cis/cis-, cis/trans-, trans/cis-, and trans/trans-conformations at the Pro7 and Pro16 peptide bonds. It was also shown that interconversion between the conformers can occur as a function of the starting solvent conditions and ion heating (collision-induced activation, CIA) despite the lasso topology. Complementary to NMR findings, the cis-conformations at Pro7 were assigned using TIMS-MS. This study highlights the analytical power of TIMS-MS and site-directed mutagenesis for the study of biological systems with large micro-heterogeneity as a way to further increase our understanding of the receptor-binding dynamics and biological activity.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, FL, 33199, USA
| | - Julian D Hegemann
- M Department of Chemistry, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, National Museum of Natural History, CNRS UMR 7245, 75005, Paris, France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, National Museum of Natural History, CNRS UMR 7245, 75005, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198, Gif sur Yvette Cedex, France
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, FL, 33199, USA.
| |
Collapse
|
35
|
Oranzi NR, Kemperman RHJ, Wei MS, Petkovska VI, Granato SW, Rochon B, Kaszycki J, La Rotta A, Jeanne Dit Fouque K, Fernandez-Lima F, Yost RA. Measuring the Integrity of Gas-Phase Conformers of Sodiated 25-Hydroxyvitamin D3 by Drift Tube, Traveling Wave, Trapped, and High-Field Asymmetric Ion Mobility. Anal Chem 2019; 91:4092-4099. [DOI: 10.1021/acs.analchem.8b05723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicholas R. Oranzi
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | | | - Michael S. Wei
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | | | - Scott W. Granato
- Axalta Coating Systems, Philadelphia, Pennsylvania, United States
| | - Benjamin Rochon
- Axalta Coating Systems, Philadelphia, Pennsylvania, United States
| | - Julia Kaszycki
- Excellims Corporation, Acton, Massachusetts, United States
| | | | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| |
Collapse
|