1
|
Yadav PK, Kumar A, Upadhyay S, Kumar A, Srivastava A, Srivastava M, Srivastava SK. 2D material-based surface plasmon resonance biosensors for applications in different domains: an insight. Mikrochim Acta 2024; 191:373. [PMID: 38842697 DOI: 10.1007/s00604-024-06442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.
Collapse
Affiliation(s)
- Prateek Kumar Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Awadhesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Ali A, Khan S, Li Z. Electrochemiluminescent resonance energy transfer between amino-modified g-C 3N 4/Bi 2MoO 6 composite and carboxyl CoS 2 nanoboxes for sensitive detection of alpha fetoprotein. Talanta 2024; 271:125709. [PMID: 38290268 DOI: 10.1016/j.talanta.2024.125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
This work demonstrates an effective quenching electrochemiluminescent (ECL) immunosensor based on resonance energy transfer for the sensitive detection of alpha fetoprotein (AFP). In this strategy, graphitic carbon nitride (g-C3N4) was coupled with bismuth molybdenum oxide (Bi2MoO6) to form a g-C3N4/Bi2MoO6 nanocomposite as a novel type of ECL immunosensor. The as-synthesized amino-modified g-C3N4/Bi2MoO6 nanocomposite presents strong and stable cathodic ECL activity compared to pristine g-C3N4. One plausible reason is that the synergistic effect between the g-C3N4 and Bi2MoO6 could facilitate charge transfer process and thereby enhancing the separation efficiency of electron-hole pairs. The other functional part of the immunosensor, carboxyl CoS2 nanoboxes with a broad absorption range, was rationally designed and introduced. The evidence that the absorption spectra of carboxyl CoS2 NBs overlap with ECL spectra of g-C3N4/Bi2MoO6 nanocomposite holds accountable for exceptionally weakened ECL signal. This sandwich-type immunosensor was setup based on quenching mechanism concerning amino-modified g-C3N4/Bi2MoO6 as an ECL donor and carboxyl CoS2 NBs as an ECL accepter. The strategy was optimized to achieve a convincible and sensitive detection goal for AFP with a wide quantifiable range of 0.5 pg/mL-10 ng/mL whilst a sufficiently low detection limit of 0.04 pg/mL (S/N = 3). This immunosensor shows great potential for real sample analysis with reasonable recoveries ranging from 95.5 to 99.0 %, demonstrating its high precision for AFP determination.
Collapse
Affiliation(s)
- Asghar Ali
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Sonia Khan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Kumar A, Majumder S. Silver induced chirality controlled spin filtration observed in ss-DNA functionalized with MoS2. J Chem Phys 2024; 160:124702. [PMID: 38516978 DOI: 10.1063/5.0192066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Chiral molecules can exhibit strong spin-orbit coupling, which can result in a large spin polarization. This is due to the fact that the energy levels of the electrons in a chiral molecule are strongly influenced by the chiral structure of the molecule, which can result in the separation of the energy levels for electrons with different spin orientations. We report a controlled spin-selective transmission of electrons through 20 base-paired poly-cytosine molecules functionalized with MoS2 flakes on ITO glass via the quantum mechanical tunneling effect. A reversion in spin polarization was observed after the silver ions interact with poly-cytosine due to the strong coordination of Ag(I) with cytosine-cytosine (C-C) mismatches, indicating the formation of duplex structural motifs, as confirmed by the circular dichroism spectroscopy at room temperature. Manipulating the spin of an electron through such a small molecule merely controlled by special cations could pave the way for major advances in spin-independent charge transport, advanced bioanalytical system design, and related applications.
Collapse
Affiliation(s)
- Abhinandan Kumar
- Department of Physics, National Institute of Technology, Patna 800005, India
| | - Subrata Majumder
- Department of Physics, National Institute of Technology, Patna 800005, India
| |
Collapse
|
4
|
Yin Z, Jing X. Visible-NIR surface plasmon resonance sensing technology for high precision refractive index detection. OPTICS LETTERS 2024; 49:1477-1480. [PMID: 38489429 DOI: 10.1364/ol.520025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Molybdenum disulfide (MoS2), as a representative transition metal disulfide material, has contributed significantly to the development of plasmonic technology toward the near-infrared (NIR). In this Letter, the physical mechanism of MoS2 excitation of surface plasmon resonance (SPR) in the NIR is investigated, and it is shown that the MoS2 film can induce the resonance dip to move toward the NIR and demonstrate a sensitivity higher than that in the visible band. A dual-channel SPR sensor capable of operating in the visible and NIR bands for refractive index (RI) detection was also prepared using the cascade method. The simulated and experimental results of the sensor show consistency. The experimental results show that the maximum sensitivity of the NIR detection channel is 14600 nm/RIU in the RI range of 1.333-1.420, which is 37% higher than the sensitivity of the visible channel. However, the visible channel has the advantage of a narrow FWHM. Therefore, the proposed cascaded dual-channel RI sensor combines high sensitivity and narrow FWHM. This dual-channel construction method improves the detection level of RI, promotes the development of SPR sensing technology to the NIR band and significantly improves the narrowband problem existing in the previous multi-channel sensing.
Collapse
|
5
|
Ghosh S, Yang CJ, Lai JY. Optically active two-dimensional MoS 2-based nanohybrids for various biosensing applications: A comprehensive review. Biosens Bioelectron 2024; 246:115861. [PMID: 38029711 DOI: 10.1016/j.bios.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Following the discovery of graphene, there has been a surge in exploring other two-dimensional (2D) nanocrystals, including MoS2. Over the past few decades, MoS2-based nanocrystals have shown great potential applications in biosensing, owing to their excellent physico-chemical properties. Unlike graphene, MoS2 shows layer-dependent finite band gaps (∼1.8 eV for a single layer and ∼1.2 for bulk) and relatively strong interaction with the electromagnetic spectrum. The tunability of the size, shape, and intrinsic properties, such as high optical absorption, electron mobility, mechanical strength and large surface area, of MoS2 nanocrystals, make them excellent alternative probe materials for preparing optical, photothermal, and electrical bio/immunosensors. In this review, we will provide insights into the rapid evolutions in bio/immunosensing applications based on MoS2 and its nanohybrids. We emphasized the various synthesis, characterization, and functionalization routes of 2D MoS2 nanosheets/nanoflakes. Finally, we discussed various fabrication techniques and the critical parameters, including the limit of detection (LOD), linear detection range, and sensitivity of the biosensors. In addition, the role of MoS2 in enhancing the performance of biosensors, the limitations associated with current biosensing technologies, future challenges, and clinical implications are addressed. The advantages/disadvantages of each biosensor technique are also summarized. Collectively, we believe that this review will encourage resolute researchers to follow up further with the state-of-the-art MoS2-based biosensing technology.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
6
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
7
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
8
|
Chen C, Wang K, Luo L. AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer ranks as a leading cause of death and a huge obstacle to rising life expectancy. If cancers are spotted early there's a high chance of survival. The conventional methods relying on the phenotypic features of the tumor are not powerful to the early screening of cancer. Cancer biomarkers are capable of indicating specific cancer states. Current biochemical assay suffers from time and reagents consuming and discontinuous monitoring. Surface plasmon resonance (SPR) technology, a refractive index-based optical biosensor, has significant promise in biomarker detection because of its outstanding features of label-free, sensitivity, and reliability. The nanomaterial features exotic physical and chemical property work on the process of transferring biorecognition event into SPR signal and hence is functioned as signal enhancer. In this review, we mainly discussed the mechanism of gold nanoparticles (AuNPs) and two-dimensional (2D) functional nanomaterial for improving the SPR signal. We also introduced AuNPs and 2D nanomaterial assisted SPR technology in determining cancer biomarker. Last but not least, we discussed the challenges and outlooks of the aforementioned reformative SPR technology for cancer biomarker determination in the clinical trial.
Collapse
|
9
|
Fabrication of ssDNA functionalized MoS 2 nanoflakes based label-free electrochemical biosensor for explicit silver ion detection at sub-pico molar level. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Huang TX, Yang M, Giang H, Dong B, Fang N. Resolving the Heterogeneous Adsorption of Antibody Fragment on a 2D Layered Molybdenum Disulfide by Super-Resolution Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7455-7461. [PMID: 35676767 DOI: 10.1021/acs.langmuir.2c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials such as two-dimensional (2D) layered materials advanced applications in many fields, including biosensors format based on field-effect transistors. The unique physical and chemical properties of 2D layered materials enable the detection limit of biomolecules as low as ∼1 pg/mL. The majority of 2D layered materials contain different structural features and defects introduced in chemical synthesis and fabrication processing. These structural features have different physicochemical properties, causing heterogeneous adsorption of bioreceptors like antibodies, enzymes, etc. Understanding the correlation between the adsorption of bioreceptors and properties of structural features is essential for building highly efficient, sensitive biosensors based on 2D layered materials. Here, we utilize a single-molecule localization-based super-resolved fluorescence imaging method to unveil the inhomogeneous adsorption of antibody fragments on 2D layered molybdenum disulfide (MoS2). The surface coverage of antibody fragments on MoS2 thin flakes is quantitatively measured and compared at different structural features and different layer thicknesses. The methodology in the current work can be extended to study bioreceptor adsorption on other types of 2D layered materials and pave a way to improve biosensors' sensitivity based on defect engineering 2D layered materials.
Collapse
Affiliation(s)
- Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hannah Giang
- Department of Chemistry, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United Stated
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ning Fang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Gong L, Feng L, Zheng Y, Luo Y, Zhu D, Chao J, Su S, Wang L. Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. BIOSENSORS 2022; 12:bios12020087. [PMID: 35200348 PMCID: PMC8869503 DOI: 10.3390/bios12020087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 05/08/2023]
Abstract
The use of nanoprobes in sensors is a popular way to amplify their analytical performance. Coupled with two-dimensional nanomaterials, nanoprobes have been widely used to construct fluorescence, electrochemical, electrochemiluminescence (ECL), colorimetric, surface enhanced Raman scattering (SERS) and surface plasmon resonance (SPR) sensors for target molecules' detection due to their extraordinary signal amplification effect. The MoS2 nanosheet is an emerging layered nanomaterial with excellent chemical and physical properties, which has been considered as an ideal supporting substrate to design nanoprobes for the construction of sensors. Herein, the development and application of molybdenum disulfide (MoS2)-based nanoprobes is reviewed. First, the preparation principle of MoS2-based nanoprobes was introduced. Second, the sensing application of MoS2-based nanoprobes was summarized. Finally, the prospect and challenge of MoS2-based nanoprobes in future were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shao Su
- Correspondence: (S.S.); (L.W.)
| | | |
Collapse
|
12
|
Wang W, Zhai W, Chen Y, He Q, Zhang H. Two-dimensional material-based virus detection. Sci China Chem 2022; 65:497-513. [PMID: 35035391 PMCID: PMC8742882 DOI: 10.1007/s11426-021-1150-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
Cost-effective, rapid, and accurate virus detection technologies play key roles in reducing viral transmission. Prompt and accurate virus detection enables timely treatment and effective quarantine of virus carrier, and therefore effectively reduces the possibility of large-scale spread. However, conventional virus detection techniques often suffer from slow response, high cost or sophisticated procedures. Recently, two-dimensional (2D) materials have been used as promising sensing platforms for the high-performance detection of a variety of chemical and biological substances. The unique properties of 2D materials, such as large specific area, active surface interaction with biomolecules and facile surface functionalization, provide advantages in developing novel virus detection technologies with fast response and high sensitivity. Furthermore, 2D materials possess versatile and tunable electronic, electrochemical and optical properties, making them ideal platforms to demonstrate conceptual sensing techniques and explore complex sensing mechanisms in next-generation biosensors. In this review, we first briefly summarize the virus detection techniques with an emphasis on the current efforts in fighting again COVID-19. Then, we introduce the preparation methods and properties of 2D materials utilized in biosensors, including graphene, transition metal dichalcogenides (TMDs) and other 2D materials. Furthermore, we discuss the working principles of various virus detection technologies based on emerging 2D materials, such as field-effect transistor-based virus detection, electrochemical virus detection, optical virus detection and other virus detection techniques. Then, we elaborate on the essential works in 2D material-based high-performance virus detection. Finally, our perspective on the challenges and future research direction in this field is discussed.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057 China
| |
Collapse
|
13
|
Pal C, Suzuki TT, Majumder S. Electrochemical growth of two-dimensional MoS2 nanosheets for development of femtomolar Hg(II) ion label-free biosensor. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Karami K, Bayat P, Javadian S, Saraji M. A novel TMD/MOF (Transition Metal Dichalcogenide/Metalorganic frameworks) composite for highly and selective adsorption of methylene blue dye from aqueous mixture of MB and MO. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
16
|
Chiu NF, Tai MJ, Nurrohman DT, Lin TL, Wang YH, Chen CY. Immunoassay-Amplified Responses Using a Functionalized MoS 2-Based SPR Biosensor to Detect PAPP-A2 in Maternal Serum Samples to Screen for Fetal Down's Syndrome. Int J Nanomedicine 2021; 16:2715-2733. [PMID: 33859474 PMCID: PMC8043798 DOI: 10.2147/ijn.s296406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Due to educational, social and economic reasons, more and more women are delaying childbirth. However, advanced maternal age is associated with several adverse pregnancy outcomes, and in particular a high risk of Down’s syndrome (DS). Hence, it is increasingly important to be able to detect fetal Down’s syndrome (FDS). Methods We developed an effective, highly sensitive, surface plasmon resonance (SPR) biosensor with biochemically amplified responses using carboxyl-molybdenum disulfide (MoS2) film. The use of carboxylic acid as a surface modifier of MoS2 promoted dispersion and formed specific three-dimensional coordination sites. The carboxylic acid immobilized unmodified antibodies in a way that enhanced the bioaffinity of MoS2 and preserved biorecognition properties of the SPR sensor surface. Complete antigen pregnancy-associated plasma protein-A2 (PAPP-A2) conjugated with the carboxyl-MoS2-modified gold chip to amplify the signal and improve detection sensitivity. This heterostructure interface had a high work function, and thus improved the efficiency of the electric field energy of the surface plasmon. These results provide evidence that the interface electric field improved performance of the SPR biosensor. Results The carboxyl-MoS2-based SPR biosensor was used successfully to evaluate PAPP-A2 level for fetal Down’s syndrome screening in maternal serum samples. The detection limit was 0.05 pg/mL, and the linear working range was 0.1 to 1100 pg/mL. The women with an SPR angle >46.57 m° were more closely associated with fetal Down’s syndrome. Once optimized for serum Down’s syndrome screening, an average recovery of 95.2% and relative standard deviation of 8.5% were obtained. Our findings suggest that carboxyl-MoS2-based SPR technology may have advantages over conventional ELISA in certain situations. Conclusion Carboxyl-MoS2-based SPR biosensors can be used as a new diagnostic technology to respond to the increasing need for fetal Down’s syndrome screening in maternal serum samples. Our results demonstrated that the carboxyl-MoS2-based SPR biosensor was capable of determining PAPP-A2 levels with acceptable accuracy and recovery. We hope that this technology will be investigated in diverse clinical trials and in real case applications for screening and early diagnosis in the future.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Ming-Jung Tai
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan.,Department of Electronics Engineering, State Polytechnic of Cilacap, Cilacap, Indonesia
| | - Ting-Li Lin
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Ying-Hao Wang
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, Taipei City, Taiwan
| |
Collapse
|
17
|
Nguyen EP, de Carvalho Castro Silva C, Merkoçi A. Recent advancement in biomedical applications on the surface of two-dimensional materials: from biosensing to tissue engineering. NANOSCALE 2020; 12:19043-19067. [PMID: 32960195 DOI: 10.1039/d0nr05287f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As biosensors and biomedical devices have become increasingly important to everyday diagnostics and monitoring, there are tremendous, and constant efforts towards developing and improving the reliability and versatility of such technology. As they offer high surface area-to-volume ratios and a diverse range of properties, from electronic to optical, two dimensional (2D) materials have proven to be very promising candidates for biological applications and technologies. Due to the dimensionality, 2D materials facilitate many interfacial phenomena that have shown to significantly improve the performance of biosensors, while recent advances in synthesis techniques and surface engineering methods also enable the realization of future biomedical devices. This short review aims to highlight the influence of 2D material surfaces and the properties that arise due to their 2D structure. Using recent (within the last few years) examples of biosensors and biomedical applications, we emphasize the important role of 2D materials in advancing developments and research for biosensing and healthcare.
Collapse
Affiliation(s)
- Emily P Nguyen
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Cecilia de Carvalho Castro Silva
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain. and MackGraphe - Graphene and Nanomaterials Research Center, Mackenzie Presbyterian University, 01302-907, São Paulo, Brazil
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain. and ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| |
Collapse
|
18
|
Nurrohman DT, Wang YH, Chiu NF. Exploring Graphene and MoS 2 Chips Based Surface Plasmon Resonance Biosensors for Diagnostic Applications. Front Chem 2020; 8:728. [PMID: 33005604 PMCID: PMC7479841 DOI: 10.3389/fchem.2020.00728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023] Open
Abstract
Until now, two-dimensional (2D) nanomaterials have been widely studied and applied in the biosensor field. Some of the advantages offered by these 2D materials include large specific surface area, high conductivity, and easy surface modification. This review discusses the use of 2D material in surface plasmon resonance (SPR) biosensor for diagnostic applications. Two-dimensional material reviewed includes graphene and molybdenum disulfide (MoS2). The discussion begins with a brief introduction to the general principles of the SPR biosensor. The discussion continues by explaining the properties and characteristics of each material and its effect on the performance of the SPR biosensor, in particular its sensitivity. This review concludes with some recent applications of graphene- and MoS2-based SPR biosensor in diagnostic applications.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
- Department of Electronics Engineering, State Polytechnic of Cilacap, Cilacap, Indonesia
| | - Ying-Hao Wang
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
19
|
Nalwa HS. A review of molybdenum disulfide (MoS 2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv 2020; 10:30529-30602. [PMID: 35516069 PMCID: PMC9056353 DOI: 10.1039/d0ra03183f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures (vdWHs) with other materials. Molybdenum disulfide (MoS2) atomic layers which exhibit high carrier mobility and optical transparency are very suitable for developing ultra-broadband photodetectors to be used from surveillance and healthcare to optical communication. This review provides a brief introduction to TMD-based photodetectors, exclusively focused on MoS2-based photodetectors. The current research advances show that the photoresponse of atomic layered MoS2 can be significantly improved by boosting its charge carrier mobility and incident light absorption via forming MoS2 based plasmonic nanostructures, halide perovskites-MoS2 heterostructures, 2D-0D MoS2/quantum dots (QDs) and 2D-2D MoS2 hybrid vdWHs, chemical doping, and surface functionalization of MoS2 atomic layers. By utilizing these different integration strategies, MoS2 hybrid heterostructure-based photodetectors exhibited remarkably high photoresponsivity raging from mA W-1 up to 1010 A W-1, detectivity from 107 to 1015 Jones and a photoresponse time from seconds (s) to nanoseconds (10-9 s), varying by several orders of magnitude from deep-ultraviolet (DUV) to the long-wavelength infrared (LWIR) region. The flexible photodetectors developed from MoS2-based hybrid heterostructures with graphene, carbon nanotubes (CNTs), TMDs, and ZnO are also discussed. In addition, strain-induced and self-powered MoS2 based photodetectors have also been summarized. The factors affecting the figure of merit of a very wide range of MoS2-based photodetectors have been analyzed in terms of their photoresponsivity, detectivity, response speed, and quantum efficiency along with their measurement wavelengths and incident laser power densities. Conclusions and the future direction are also outlined on the development of MoS2 and other 2D TMD-based photodetectors.
Collapse
Affiliation(s)
- Hari Singh Nalwa
- Advanced Technology Research 26650 The Old Road Valencia California 91381 USA
| |
Collapse
|
20
|
Li K, Li L, Xu N, Peng X, Zhou Y, Yuan Y, Song J, Qu J. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus-Graphene Architecture. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3326. [PMID: 32545230 PMCID: PMC7308865 DOI: 10.3390/s20113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023]
Abstract
This study theoretically proposed a novel surface plasmon resonance biosensor by incorporating emerging two dimensional material blue phosphorus and graphene layers with plasmonic gold film. The excellent performances employed for biosensing can be realized by accurately tuning the thickness of gold film and the number of blue phosphorus interlayer. Our proposed plasmonic biosensor architecture designed by phase modulation is much superior to angular modulation, providing 4 orders of magnitude sensitivity enhancement. In addition, the optimized stacked configuration is 42 nm Au film/2-layer blue phosphorus /4-layer graphene, which can produce the sharpest differential phase of 176.7661 degrees and darkest minimum reflectivity as low as 5.3787 × 10-6. For a tiny variation in local refractive index of 0.0012 RIU (RIU, refractive index unit) due to the binding interactions of aromatic biomolecules, our proposed biosensor can provide an ultrahigh detection sensitivity up to 1.4731 × 105 °/RIU, highly promising for performing ultrasensitive biosensing application.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufeng Yuan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (K.L.); (L.L.); (N.X.); (X.P.); (Y.Z.); (J.S.); (J.Q.)
| | | | | |
Collapse
|
21
|
Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213218] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Chiu NF, Yang HT. High-Sensitivity Detection of the Lung Cancer Biomarker CYFRA21-1 in Serum Samples Using a Carboxyl-MoS 2 Functional Film for SPR-Based Immunosensors. Front Bioeng Biotechnol 2020; 8:234. [PMID: 32274382 PMCID: PMC7113369 DOI: 10.3389/fbioe.2020.00234] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/06/2020] [Indexed: 01/22/2023] Open
Abstract
We constructed a novel surface plasmon resonance (SPR) detection assay using carboxyl-functionalized molybdenum disulfide (carboxyl-MoS2) nanocomposites as a signal amplification sensing film for the ultrasensitive detection of the lung cancer-associated biomarker cytokeratin 19 fragment (CYFRA21-1). The experiment succeeded in MoS2 reacted with chloroacetic acid giving carboxyl-MoS2 as the reaction product. The additional shoulder in the C 1s and O 1s peaks of carboxyl-MoS2, which were increased in X-ray photoelectron spectroscopy, confirmed the presence of O-C=O groups on the surface of the carboxyl-MoS2. Compared to MoS2, the experimental results confirmed that carboxyl-modified MoS2 had improved low impedance and low refractive index. The carboxyl-MoS2-based chip had a high affinity, with an SPR angle shift enhanced by 2.6-fold and affinity binding K A enhanced by 15-fold compared to a traditional SPR sensor. The results revealed that the carboxyl-MoS2-based chip had high sensitivity, specificity, and SPR signal affinity, while the CYFRA21-1 assay in spiked clinical serum showed a lower detection limit of 0.05 pg/mL and a wider quantitation range (0.05 pg/mL to 100 ng/mL). The carboxyl-MoS2-based chip detection value was about 104 times more sensitive than the limit of detection of an enzyme-linked immunosorbent assay (ELISA) (0.60 ng/mL). The results showed that the carboxyl-MoS2-based chip had the potential to rapidly assay complex samples including bodily fluids, whole blood, serum, plasma, urine, and saliva in SPR-based immunosensors to diagnose diseases including cancer.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Hao-Tang Yang
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| |
Collapse
|
23
|
Souri Z, Adeli M, Mehdipour E. Two-dimensional MoS2: a platform for constructing three-dimensional structures using RAFT polymerization. NEW J CHEM 2020. [DOI: 10.1039/d0nj03285a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Controlled and straightforward functionalization are relevant strategies to obtain MoS2 platforms with defined functionality and improved processability.
Collapse
Affiliation(s)
- Zeinab Souri
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Mohsen Adeli
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Ebrahim Mehdipour
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
24
|
|
25
|
Wang C, Tan R, Li L, Liu D. Dual-modal Colorimetric and Fluorometric Method for Glucose Detection Using MnO2 Sheets and Carbon Quantum Dots. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9130-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Chiu NF, Kuo CT, Chen CY. High-affinity carboxyl-graphene oxide-based SPR aptasensor for the detection of hCG protein in clinical serum samples. Int J Nanomedicine 2019; 14:4833-4847. [PMID: 31308661 PMCID: PMC6613200 DOI: 10.2147/ijn.s208292] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The use of functionalized graphene oxide (fGO) has led to a new trend in the sensor field, owing to its high sensitivity with regards to sensing characteristics and easy synthesis procedures. METHODS In this study, we developed an ultra-sensitive carboxyl-graphene oxide (carboxyl-GO)-based surface plasmon resonance (SPR) aptasensor using peptides to detect human chorionic gonadotropin (hCG) in clinical serum samples. The carboxyl-GO based SPR aptasensor provided high affinity and stronger binding of peptides, which are great importance to allow for a non-immunological label-free mechanism. Also, it allows the detection of low concentrations of hCG, which are in turn considered to be important clinical parameters to diagnose ectopic pregnancies and paraneoplastic syndromes. RESULTS The high selectivity of the carboxyl-GO-based SPR aptasensor for hCG recombinant protein was verified by the addition of the interfering proteins bovine serum albumin (BSA) and human serum albumin (HSA), which did not affect the sensitivity of the sensor. The carboxyl-GO-based chip can enhance the assay efficacy of interactions between peptides and had a high affinity binding for a ka of 17×106 M-1S-1. The limit of detection for hCG in clinical serum samples was 1.15 pg/mL. CONCLUSION The results of this study demonstrated that the carboxyl-GO-based SPR aptasensor had excellent sensitivity, affinity and selectivity, and thus the potential to be used as disease-related biomarker assay to allow for an early diagnosis, and possibly a new area in the field of biochemical sensing technology.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei11677, Taiwan
| | - Chia-Tzu Kuo
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei11677, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City10449, Taiwan
- Department of Medicine, Mackay Medical College, Taipei252, Taiwan
| |
Collapse
|
27
|
Giang H, Pali M, Fan L, Suni II. Impedance Biosensing atop MoS
2
Thin Films with Mo−S Bond Formation to Antibody Fragments Created by Disulphide Bond Reduction. ELECTROANAL 2019. [DOI: 10.1002/elan.201800845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Giang
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Madhavi Pali
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Li Fan
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Ian I. Suni
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
- Department of Mechanical Engineering & Energy ProcessesSouthern Illinois University Carbondale IL 62901
| |
Collapse
|