1
|
Zabala I, Merino S, Eletxigerra U, Ramiro J, Burguera M, Aranzabe E. Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels. Foods 2024; 13:1765. [PMID: 38890993 PMCID: PMC11171493 DOI: 10.3390/foods13111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
The electrical impedance of dilute aqueous solutions containing extracts from five brands of canned tuna is analyzed using impedance spectroscopy in order to analyze their salt content and detect the potential presence of other salts beyond the well-stated NaCl. A complex electrical impedance is modeled with an equivalent electrical circuit, demonstrating good agreement with experimental data. This circuit accounts for the contribution of ions in the bulk solution, as well as those contributing to electrode polarization. The parameters describing the equivalent circuits, obtained through fitting data to the electrical impedance, are discussed in terms of the various ion contributions to both the electrical double layer at the electrode interface and the electrical conductivity of each solution. The ionic contribution to the electrical impedance is compared with that of a pure NaCl solution at the same concentration range. This comparison, when extended to real samples, allows for the development of a model to estimate the electrical conductivity of canned tuna samples, thereby determining the salt concentration in tuna. The model enables differentiation among the various samples of tuna studied. Subsequently, the potential presence of other ions besides Na+ and Cl- and their contribution to the electrical properties of each canned tuna extract is considered, especially for samples with a higher ratio of the sum of K+ and phosphates to Na+ concentration. This analysis shows the potential of impedance spectroscopy for on-site and rapid analysis of salt content and/or detection of additives in canned tuna fish.
Collapse
Affiliation(s)
- Inés Zabala
- Tekniker, Basque Research Alliance (BRTA), 20600 Eibar, Spain; (I.Z.); (J.R.); (M.B.); (E.A.)
| | - Santos Merino
- Tekniker, Basque Research Alliance (BRTA), 20600 Eibar, Spain; (I.Z.); (J.R.); (M.B.); (E.A.)
- Departamento de Electricidad y Electrónica, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Unai Eletxigerra
- Tekniker, Basque Research Alliance (BRTA), 20600 Eibar, Spain; (I.Z.); (J.R.); (M.B.); (E.A.)
| | - Jorge Ramiro
- Tekniker, Basque Research Alliance (BRTA), 20600 Eibar, Spain; (I.Z.); (J.R.); (M.B.); (E.A.)
| | - Miren Burguera
- Tekniker, Basque Research Alliance (BRTA), 20600 Eibar, Spain; (I.Z.); (J.R.); (M.B.); (E.A.)
| | - Estibaliz Aranzabe
- Tekniker, Basque Research Alliance (BRTA), 20600 Eibar, Spain; (I.Z.); (J.R.); (M.B.); (E.A.)
| |
Collapse
|
2
|
Szydlowska BM, Pola CC, Cai Z, Chaney LE, Hui J, Sheets R, Carpenter J, Dean D, Claussen JC, Gomes CL, Hersam MC. Biolayer-Interferometry-Guided Functionalization of Screen-Printed Graphene for Label-Free Electrochemical Virus Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25169-25180. [PMID: 38695741 DOI: 10.1021/acsami.4c05264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.
Collapse
Affiliation(s)
- Beata M Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zizhen Cai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Janan Hui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert Sheets
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jeremiah Carpenter
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Sanhueza L, Garrido K, Celis F, García M, Cáceres C, Moczko E, Díaz R, J. Aguirre M, García C. Tailoring the electroactive area of carbon screen-printed electrodes by simple activation steps towards rutin determination. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Li M, Niu H, Shang K, Gao Y, Li B, Jiang L, Zhao Z, Li X, Wang S, Feng Y, Li S. Surprising Hydrophobic Polymer Surface with a High Content of Hydrophilic Polar Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15353-15360. [PMID: 36454949 DOI: 10.1021/acs.langmuir.2c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The wetting property of a solid surface has been a hotspot for centuries, and many studies suggest that the hydrophobicity is highly related to the polar components. However, the underlying mechanism of polar moieties on the hydrophobicity remains unclear. Here, we tailor the surface polar moieties of epoxy resin (EP) by ozone modification and assess their wetting properties. Our results show that, for the modified EP with more (60.54%) polar moieties, the polar effect on hydrophobicity cannot be empirically observed. To reveal the underlying mechanism, the absorption parameters, including equilibrium distance, adsorption radius, and effective adsorption sites for water on EP before and after ozone treatment, are calculated on the basis of molecular simulations. After ozone modification, the equilibrium distance (from 1.95 to 1.70 Å), adsorption radius (from 3.80 to 4.50 Å), and effective adsorption sites (from 1 to 2) change slightly and the EP surface remains hydrophobic, although the polar groups significantly increase. Therefore, it is concluded that the wetting properties of solid surfaces are dominated by the equilibrium distance, adsorption radius, and effective adsorption sites for water on solids, and the nonlinear relationship between polar groups and hydrophilicity is clarified.
Collapse
Affiliation(s)
- Mingru Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Huan Niu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Kai Shang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yafang Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Bingnan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Liuhao Jiang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Zhonghua Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Xinyu Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Shihang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yang Feng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
5
|
Ghalkhani M, Sohouli E, Khaloo SS, Vaziri MH. Architecting of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer/Ag-Cs-Gr QDs/NTiO 2. CHEMOSPHERE 2022; 293:133597. [PMID: 35031253 DOI: 10.1016/j.chemosphere.2022.133597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Given the many issues bacterial infections cause to humans and the necessity for their detection, in this work we developed a robust aptasensor for prompt, ultrasensitive, and selective analysis of staphylococcus aureus bacterium (S. aureus). A nanocomposite of Ag nanoparticles, chitosan, graphene quantum dots, and nitrogen-doped TiO2 nanoparticles (Ag-Cs-Gr QDs/NTiO2) was synthesized, and thoroughly characterized by XRD, FT-IR, and FE-SEM spectroscopic methods. The surface of screen-printed carbon electrodes modified with Ag-Cs-Gr QDs/NTiO2 nanocomposite was utilized as a compatible platform for aptamer attachment. The aptasensor accurately determined S. aureus in the dynamic range of 10-5 × 108 CFU/mL with detection limit of 3.3 CFU/mL. The monitoring of the practical performance of aptasensor in human serum samples revealed its superiority over the conventional methods (relative recovery of 96.25-103.33%). The Ag-Cs-Gr QDs/NTiO2-based aptasensor offers facile, biocompatibility, good repeatability, reproducibility (RSD = 3.66%), label free and stabile strategy for sensitive S. aureus analysis free from biomolecules interferences in actual specimens.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Esmail Sohouli
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ivanov R, Czibula C, Teichert C, Bojinov M, Tsakova V. Carbon screen-printed electrodes for substrate-assisted electroless deposition of palladium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Kava AA, Henry CS. Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. Talanta 2021; 221:121553. [PMID: 33076109 PMCID: PMC7575823 DOI: 10.1016/j.talanta.2020.121553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Stencil-printing conductive carbon inks has revolutionized the development of inexpensive, disposable and portable electrochemical sensors. However, stencil-printed carbon electrodes (SPCEs) typically suffer from poor electrochemical properties. While many surface pretreatments and modifications have been tested to improve the electrochemical activity of SPCEs, the bulk composition of the inks used for printing has been largely ignored. Recent studies of other carbon composite electrode materials show significant evidence that the conductive carbon particle component is strongly related to electrochemical performance. However, such a study has not been carried out with SPCEs. In this work, we perform a systematic characterization of SPCEs made with different carbon particle types including graphite particles, glassy carbon microparticles and carbon black. The relationship between carbon particle characteristics including particle size, particle purity, and particle morphology as well as particle mass loading on the fabrication and electrochemical properties of SPCEs is studied. SPCEs were plasma treated for surface activation and the electrochemical properties of both untreated and plasma treated SPCEs are also compared. SPCEs displayed distinct analytical utilities characterized through solvent window and double layer capacitance. Cyclic voltammetry (CV) of several standard redox probes, FcTMA+, ferri/ferrocyanide, and pAP was used to establish the effects of carbon particle type and plasma treatment on electron transfer kinetics of SPCEs. CV of the biologically relevant molecules uric acid, NADH and dopamine was employed to further illustrate the differences in sensing and fouling characteristics of SPCEs fabricated with different carbon particle types. SEM imaging revealed significant differences in the SPCE surface microstructures. This systematic study demonstrates that the electrochemical properties of SPCEs can be tuned and significantly improved through careful selection of carbon particle type and plasma cleaning with a goal toward the development of better performing electrochemical point-of-need sensors.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
8
|
Silva RR, Raymundo-Pereira PA, Campos AM, Wilson D, Otoni CG, Barud HS, Costa CA, Domeneguetti RR, Balogh DT, Ribeiro SJ, Oliveira Jr. ON. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020; 218:121153. [DOI: 10.1016/j.talanta.2020.121153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/04/2023]
|
9
|
Šišoláková I, Hovancová J, Oriňaková R, Oriňak A, Trnková L, Třísková I, Farka Z, Pastucha M, Radoňák J. Electrochemical determination of insulin at CuNPs/chitosan-MWCNTs and CoNPs/chitosan-MWCNTs modified screen printed carbon electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Šišoláková I, Hovancová J, Oriňaková R, Oriňak A, Trnková L, García DR, Radoňak J. Influence of a polymer membrane on the electrochemical determination of insulin in nanomodified screen printed carbon electrodes. Bioelectrochemistry 2019; 130:107326. [DOI: 10.1016/j.bioelechem.2019.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/04/2023]
|
11
|
A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113630] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Chiticaru EA, Pilan L, Damian CM, Vasile E, Burns JS, Ioniţă M. Influence of Graphene Oxide Concentration when Fabricating an Electrochemical Biosensor for DNA Detection. BIOSENSORS 2019; 9:E113. [PMID: 31561443 PMCID: PMC6955971 DOI: 10.3390/bios9040113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022]
Abstract
We have investigated the influence exerted by the concentration of graphene oxide (GO) dispersion as a modifier for screen printed carbon electrodes (SPCEs) on the fabrication of an electrochemical biosensor to detect DNA hybridization. A new pretreatment protocol for SPCEs, involving two successive steps in order to achieve a reproducible deposition of GO, is also proposed. Aqueous GO dispersions of different concentrations (0.05, 0.1, 0.15, and 0.2 mg/mL) were first drop-cast on the SPCE substrates and then electrochemically reduced. The electrochemical properties of the modified electrodes were investigated after each modification step by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), while physicochemical characterization was performed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Finally, the sensing platform was obtained by the simple adsorption of the single-stranded DNA probe onto the electrochemically reduced GO (RGO)-modified SPCEs under optimized conditions. The hybridization was achieved by incubating the functionalized SPCEs with complementary DNA target and detected by measuring the change in the electrochemical response of [Fe(CN)6]3-/4- redox reporter in CV and EIS measurements induced by the release of the newly formed double-stranded DNA from the electrode surface. Our results showed that a higher GO concentration generated a more sensitive response towards DNA detection.
Collapse
Affiliation(s)
- Elena A Chiticaru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7, Polizu St., 011061 Bucharest, Romania.
| | - Celina-Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania
| | - Jorge S Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Mariana Ioniţă
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
13
|
Wu MC, Lin CH, Lin TH, Chan SH, Chang YH, Lin TF, Zhou Z, Wang K, Lai CS. Ultrasensitive Detection of Volatile Organic Compounds by a Freestanding Aligned Ag/CdSe-CdS/PMMA Texture with Double-Side UV-Ozone Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34454-34462. [PMID: 31433155 DOI: 10.1021/acsami.9b12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) are organic chemicals having a high vapor pressure at room temperature. Chronic exposure to VOC vapor can be potentially dangerous to human health. In this study, we build a high-performance freestanding aligned Ag/CdSe-CdS/poly(methyl methacrylate) (PMMA) texture to detect VOC vapors. The insight of this new VOC-sensing material is based on electrospinning techniques, ultraviolet (UV)/ozone treatments, and nano-optics. The incorporation of CdSe-CdS core-shell quantum rods (QR) and silver nanocrystals in the PMMA nanofibers amplifies the polarization response of long rods in VOC detection, thus increasing the sensitivity of VOC-sensing materials. Further, the uniaxial aligned Ag/QR/PMMA sensing material was treated by UV-ozone etching to increase surface absorption. The advanced double-sided UV-ozone etching on the uniaxial aligned Ag/QR/PMMA efficiently enhanced the extinction changes of VOCs. Two categories of solvents, typical VOCs and alcoholic VOCs, were put into practical tests for the Ag/QR/PMMA VOC-sensing materials. The Ag/QR/PMMA reached the detection limit for 100 ppm butanol within 1 min. The freestanding aligned Ag/CdSe-CdS/PMMA texture is a newly designed nanocomposite device for environmental risk monitoring. It can be accepted by the market compared to the other highly sensitive commercial VOC-sensing materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Tz-Feng Lin
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Ziming Zhou
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Kai Wang
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Chao-Sung Lai
- Department of Materials Engineering , Ming Chi University of Technology , New Taipei City 24301 , Taiwan
| |
Collapse
|
14
|
Ogbu CI, Feng X, Dada SN, Bishop GW. Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen Peroxide. SENSORS 2019; 19:s19173741. [PMID: 31470610 PMCID: PMC6749274 DOI: 10.3390/s19173741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
Nitrogen-doped carbon materials have garnered much interest due to their electrocatalytic activity towards important reactions such as the reduction of hydrogen peroxide. N-doped carbon materials are typically prepared and deposited on solid conductive supports, which can sometimes involve time-consuming, complex, and/or costly procedures. Here, nitrogen-doped screen-printed carbon electrodes (N-SPCEs) were fabricated directly from a lab-formulated ink composed of graphite that was modified with surface nitrogen groups by a simple soft nitriding technique. N-SPCEs prepared from inexpensive starting materials (graphite powder and urea) demonstrated good electrocatalytic activity towards hydrogen peroxide reduction. Amperometric detection of H2O2 using N-SPCEs with an applied potential of −0.4 V (vs. Ag/AgCl) exhibited good reproducibility and stability as well as a reasonable limit of detection (2.5 µM) and wide linear range (0.020 to 5.3 mM).
Collapse
Affiliation(s)
- Chidiebere I Ogbu
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xu Feng
- Surface Analysis Laboratory, Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Samson N Dada
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA
| | - Gregory W Bishop
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
15
|
González‐Sánchez MI, Romero‐Llapa MI, Gómez‐Monedero B, Jiménez‐Pérez R, Iniesta J, Valero E. A Fast and Simple Ozone‐mediated Method towards Highly Activated Screen Printed Carbon Electrodes as Versatile Electroanalytical Tools. ELECTROANAL 2019. [DOI: 10.1002/elan.201900335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- María Isabel González‐Sánchez
- Department of Physical Chemistry, Higher Technical School of Industrial EngineeringUniversity of Castilla-La Mancha, Campus Universitario s/n 02071 Albacete Spain
| | - María Isabel Romero‐Llapa
- Department of Physical Chemistry, Higher Technical School of Industrial EngineeringUniversity of Castilla-La Mancha, Campus Universitario s/n 02071 Albacete Spain
| | - Beatriz Gómez‐Monedero
- Department of Physical Chemistry, Higher Technical School of Industrial EngineeringUniversity of Castilla-La Mancha, Campus Universitario s/n 02071 Albacete Spain
| | - Rebeca Jiménez‐Pérez
- Department of Physical Chemistry, Higher Technical School of Industrial EngineeringUniversity of Castilla-La Mancha, Campus Universitario s/n 02071 Albacete Spain
| | - Jesús Iniesta
- Department of Physical Chemistry and Institute of ElectrochemistryUniversity of Alicante 03690, San Vicente del Raspeig, Alicante Spain
| | - Edelmira Valero
- Department of Physical Chemistry, Higher Technical School of Industrial EngineeringUniversity of Castilla-La Mancha, Campus Universitario s/n 02071 Albacete Spain
| |
Collapse
|
16
|
González-Sánchez M, Gómez-Monedero B, Agrisuelas J, Iniesta J, Valero E. Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Silva RDO, da Silva ÉA, Fiorucci AR, Ferreira VS. Electrochemically activated multi-walled carbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|