1
|
Athulya KR, Chandran A, Bantu TR, Kumar AC. A Spectroscopic Investigation into the Stability of Carbon Dots Derived from Polyethylene Glycol. J Fluoresc 2025:10.1007/s10895-025-04169-2. [PMID: 39992324 DOI: 10.1007/s10895-025-04169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Carbon dots (CDs) are nanomaterials that have gained worldwide attention due to their unique properties. This study investigated the stability of polyethylene glycol (PEG) CDs over a period of 60 days. To our knowledge, the stability of microwave-synthesized PEG CDs has not been extensively investigated by previous research groups. Comprehensive characterization was conducted using spectroscopic techniques, including UV-Vis, and fluorescence and additional techniques like DLS and TEM. UV-Vis, fluorescence, and DLS analysis were performed at regular intervals (days 1, 15, 30, and 60) to monitor changes in optical properties, particle size, and dispersion. Quantum yield (QY) and lifetime measurements were conducted on day 1 and day 60 to assess the luminescence efficiency. The results demonstrated exceptional stability of the PEG CDs, evident from the consistent UV-Vis, fluorescence spectra, unchanged particle size, and preserved morphology. Moreover, the QY and lifetime values showed small changes, indicating the robustness of the CDs.
Collapse
Affiliation(s)
- K R Athulya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Arathy Chandran
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Tirupati Rao Bantu
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh, 522510, India
- Department of Chemistry, Aditya University, Surampalem, Andhra Pradesh, 533437, India
| | - Anitha C Kumar
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
2
|
Li X, Lv H, Luo W, Yang W, Kong L, Zhu Q, Zeng L. Recent advances in detection techniques for vitamin analysis: A comprehensive review. Food Chem X 2025; 26:102226. [PMID: 39995404 PMCID: PMC11848456 DOI: 10.1016/j.fochx.2025.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Vitamins are vital micronutrients that play critical roles in human growth and development. However, vitamins are highly susceptible to degradation by light, heat, oxygen, and interactions with other food components during processing and storage. Additionally, insufficient intake or malabsorption can lead to vitamin deficiencies, resulting in various diseases. Since the human body cannot synthesize most vitamins, they must be sourced through diet or supplementation. Therefore, vitamin analysis is critical for meeting human nutritional needs and ensuring quality control. In recent years, significant advancements have been made in vitamin analysis. Here, we propose a comprehensive and critical evaluation of detection methods for water- and fat-soluble vitamins that have been studied over the past five years, including microbiology-, spectroscopy-, liquid chromatography-mass spectrometry-, electrochemistry-, sensor-, and immunoassay-based analysis techniques. Notably, immunoassays are highlighted for their simplicity, affordability, and high sensitivity. Finally, the current challenges and prospects of vitamin analysis are discussed.
Collapse
Affiliation(s)
- Xiangrui Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Huan Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wencan Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - WenJia Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Linghong Kong
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qiujin Zhu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lu Zeng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhao X, Du Q, Qiu H, Zhao Y, Wang S, Li J, Dong C. Synthesis of Yellow Fluorescence Carbon Dots for the Applications of Vitamin B 12 Detection and Cell Imaging. J Fluoresc 2025; 35:693-700. [PMID: 38157082 DOI: 10.1007/s10895-023-03558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In this work, bright yellow fluorescent and multifunctional carbon dots (N-CDs) were prepared by hydrothermal method from O-phenylenediamine and 4-aminobenzoic acid. The fluorescence characterization showed that the N-CDs possessed good optical properties (QY = 32%) and excitation dependent multi-color emission. By exciting with 390 nm, the strong selective interaction of VB12 with N-CDs could result in a sharp decrease in the luminescence of N-CDs at 567 nm. An efficient fluorescence sensor in aqueous solution was constructed which could linearly respond VB12 in wide concentration ranges of 0-90 μM and 140-250 μM. The linear correlation coefficients of N-CDs and VB12 were 0.9950 and 0.9968, respectively, and the detection limit was 0.119 μM. N-CDs were performed for sensitive determination of VB12 in real samples. Moreover, the N-CDs were exploited to image cell. This N-CDs was a sensitive fluorescence probe to monitor VB12 and presented prospective potential in living cells imaging.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Qian Du
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Huiying Qiu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yaqin Zhao
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Junfen Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
4
|
Guo Y, Li Y, Xiang Y. Advances in Fluorescent Nanosensors for Detection of Vitamin B 12. Crit Rev Anal Chem 2024:1-11. [PMID: 38498177 DOI: 10.1080/10408347.2024.2328104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Vitamin B12 plays a significant role in maintaining human health. Deficiency or excess intake of vitamin B12 may cause some diseases. Therefore, it is significant to fabricate sensors for sensitive assay of vitamin B12. In the past few years, a variety of nanomaterials have been developed for the fluorescence detection of vitamin B12 in tablets, injection, human serum and food. In the review, the assay mechanisms of fluorescent nanomaterials for sensing vitamin B12 were first briefly discussed. And the progress of various nanomaterials for fluorescence detection of vitamin B12 were systematically summarized. Furthermore, the sensing performance of fluorescent nanosensors was compared with fluorescent probes. Lastly, the challenges and perspectives about the topic were presented.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yubin Xiang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
5
|
Kolekar AG, Pawar SP, Gunjal DB, Nille OS, Anbhule PV, Koparde SV, Nguyen NQ, Sohn D, Kolekar GB, Gokavi GS, More VR. Facile synthesis of sulphur-doped carbon dots (S-CDs) using a hydrothermal method for the selective sensing of Cr 6+ and Fe 3+ ions: application to environmental water sample analysis. RSC Adv 2024; 14:3473-3479. [PMID: 38260000 PMCID: PMC10801354 DOI: 10.1039/d3ra07545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
In this work, we used a one-step hydrothermal method to synthesize blue-emission sulfur-doped carbon dots (S-CDs) using jaggery as a carbon precursor. The synthesized carbon quantum dots showed low toxicity, good water solubility, anti-interference properties, and stable fluorescence. When excited at 310 nm, the S-CDs produced bright emission with a quantum yield of 7.15% at 397 nm. The S-CDs exhibited selective and sensitive quenching responses with limits of detection (LODs) of 4.25 μg mL-1 and 3.15 μg mL-1 for variable concentrations of Cr6+ and Fe3+, respectively, accompanied by a consistent linear relationship between fluorescence intensity and these concentrations. Fluorescence lifetime measurements were used to investigate the fluorescence quenching mechanism, which supports the static type of quenching. Outstanding benefits of the developed S-CD based fluorescence probe include its low cost, excellent sensitivity and selectivity, and ease of use for the detection of Cr6+ and Fe3+ ions. The developed carbon dot based fluorescent probe was successfully used to detect Cr6+ and Fe3+ ions in real water samples with an excellent recovery ratio.
Collapse
Affiliation(s)
- Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemistry, The New College Kolhapur 416012 Maharashtra India
| | - Samadhan P Pawar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemistry, Rajarshi Chhatrapati Shahu College Kolhapur 416003 Maharashtra India
| | - Dattatray B Gunjal
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemistry, Rajarshi Chhatrapati Shahu College Kolhapur 416003 Maharashtra India
| | - Ngoc Quang Nguyen
- Department of Chemistry and Research Institute for Convergence of Basic Science, Department of Chemistry 222 Wangsimni-ro Seoul 04763 South Korea
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Department of Chemistry 222 Wangsimni-ro Seoul 04763 South Korea
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | | | - Vishalkumar R More
- Department of Chemistry, The New College Kolhapur 416012 Maharashtra India
| |
Collapse
|
6
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
7
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
8
|
Lacivita V, Tarantino F, Molaei R, Moradi M, Conte A, Alessandro Del Nobile M. Carbon dots from sour whey to develop a novel antimicrobial packaging for fiordilatte cheese. Food Res Int 2023; 172:113159. [PMID: 37689912 DOI: 10.1016/j.foodres.2023.113159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
In this study, monodispersed and quasi-spherical C-Dots with an average size of 7.2 nm were successfully synthesized from sour whey solution by a hydrothermal method (200 °C for 9 h) for fiordilatte cheese packaging. C-Dots (2500 and 5000 mgL-1) were added to the cheese through an alginate-based coating or directly to the cheese brine. No significant changes in TM4 cell viability were observed at concentrations lower than 10,000 mgL-1. Microbiological and sensory properties of cheese coated and uncoated with C-Dots indicate a substantial preserving effect of the C-Dots. The uncoated control fiordilatte exhibited unacceptable levels of microbial proliferation within 3.5 days. Conversely, the coated cheese remained within acceptable limits, effectively doubling its shelf life compared to the control, primarily due to the coating protection rather than the addition of C-Dots. When compared to the control fiordilatte, the addition of C-Dots in the brine at 5000 mgL-1 resulted in an extension of over 10 days in cheese shelf life. Considering the significance of the sustainable approach in C-Dots synthesis and the exceptional use of C-Dots in the food industry, these findings hold great potential in terms of research and industrial applications.
Collapse
Affiliation(s)
- Valentina Lacivita
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy
| | - Francesca Tarantino
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy.
| | - Matteo Alessandro Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy
| |
Collapse
|
9
|
Rajendran S, Bhunia SK. Bright red fluorescent amphiphilic carbon dots as dualphase and visual sensor for selective detection of As3+ in aqueous environment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Rajendran S, UshaVipinachandran V, Badagoppam Haroon KH, Ashokan I, Bhunia SK. A comprehensive review on multi-colored emissive carbon dots as fluorescent probes for the detection of pharmaceutical drugs in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4263-4291. [PMID: 36278849 DOI: 10.1039/d2ay01288j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to constituent hazardous chemicals in medical products has become a threat to environmental health across the globe. Excessive medication and the mishandling of pharmaceutical drugs can lead to the increased presence of chemicals in the aquatic environment, causing water pollution. Only a few nanomaterials exist for the detection of these chemicals and they are limited in use due to their adverse toxicity, instability, cost, and low aqueous solubility. In contrast, carbon dots (C-dots), a member of the family of carbon-based nanomaterials, have various beneficial properties including excellent biocompatibility, strong photoluminescence, low photobleaching, tunable fluorescence, and easy surface modification. Herein, we summarize recent advancements in various synthetic strategies for high-quality tunable fluorescent C-dots. The root of fluorescence has been briefly explained via the quantum confinement effect, surface defects, and molecular fluorescence. The surface functional moieties of C-dots have been investigated in depth to recognize the various types of pharmaceutical drugs that are used for the treatment of patients. The modulation of C-dot fluorescence in the course of their interactions with these drugs has been carefully explained. Different types of interaction mechanisms behind the C-dot fluorescence alteration have been discussed. Finally, the challenges and future perspectives of C-dots have been proposed for the vibrant field development of C-dot-based drug sensors.
Collapse
Affiliation(s)
- Sathish Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Varsha UshaVipinachandran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | | | - Indhumathi Ashokan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
11
|
Liu J, Chen Q, Zhang Z, Wang Z, Gong Z. Nitrogen and copper (Ⅱ) co-doped carbon dots as multi-functional fluorescent probes for Fe3+ ions and tetracycline. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
13
|
Kwee Y, Zhou Y, Fahmi MZ, Sharon M, Kristanti AN. Progress on Applying Carbon Dots for Inhibition of RNA Virus Infection. Nanotheranostics 2022; 6:436-450. [PMID: 36051856 PMCID: PMC9428922 DOI: 10.7150/ntno.73918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Viral infection is a globally leading health issue. Annually, new lethal RNA viruses unexpectedly emerged and mutated threatening health and safety. Meanwhile, it is urgent to explore novel antiviral agents, which, however, takes years to be clinically available. Nonetheless, the development of carbon dots (CDs) in the past 20 years has exhibited their vast application potentials and revealed their promising capacity as future antiviral agents considering their versatile properties and significant antiviral responses. Thus, CDs have been widely investigated as an alternative of traditional chemotherapy for inhibiting viral infection and replication in vitro. Meanwhile, attempts to apply CDs to in vivo systems are in high demand. In this review, recent developments of CDs-based antiviral therapies are systematically summarized. Furthermore, the role of CDs in photodynamic inactivation to kill viruses or bacteria is briefly discussed.
Collapse
Affiliation(s)
- Yaung Kwee
- Department of Chemistry, Pakokku University, Myaing Road, Pakokku 90401, Myanmar
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.,Supramodification Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Madhuri Sharon
- Research Director at Walchand Center for Research in Nanotechnology and Bionanotechnology, Walchand College of Arts and Science, W. H. Road, Ashok Chowk, Solapur 413006, India
| | | |
Collapse
|
14
|
Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. CHEMOSPHERE 2022; 302:134815. [PMID: 35526688 DOI: 10.1016/j.chemosphere.2022.134815] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CQDs), the intensifying nanostructured form of carbon material, have exhibited incredible impetus in several research fields such as bio-imaging, bio-sensing, drug delivery systems, optoelectronics, photovoltaics, and photocatalysis, thanks to their exceptional properties. The CQDs show extensive photonic and electronic properties, as well as their light-collecting, tunable photoluminescence, remarkable up-converted photoluminescence, and photo-induced transfer of electrons were widely studied. These properties have great advantages in a variety of visible-light-induced catalytic applications for the purpose of fully utilizing the energy from the solar spectrum. The major purpose of this review is to validate current improvements in the fabrication of CQDs, characteristics, and visible-light-induced catalytic applications, with a focus on CQDs multiple functions in photo-redox processes. We also examine the problems and future directions of CQD-based nanostructured materials in this growing research field, with an eye toward establishing a decisive role for CQDs in photocatalysis, bio-imaging, and bio-sensing applications that are enormously effective and stable over time. In the end, a look forward to future developments is presented, with a view to overcoming challenges and encouraging further research into this promising field.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Saudi Arabia.
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
15
|
Zhang D, Qu W, Zhang S. Selective Detection of Nitrofurantoin by Carbon Dots with Blue‐Emissive Fluorescence. ChemistrySelect 2022. [DOI: 10.1002/slct.202201160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dianlong Zhang
- Department of Chemistry Shanxi Datong University Datong Shanxi 037000 P. R. China
| | - Wenshan Qu
- Department of Chemistry Shanxi Datong University Datong Shanxi 037000 P. R. China
| | - Shen Zhang
- Department of Chemistry Taiyuan Normal University Jinzhong 030619 Shanxi China
| |
Collapse
|
16
|
Huang Y, Wang X, Wu S, Shen J, Ma W, Yang S, Fa H, Yang M, Hou C. Novel nitrogen-doped carbon dots for "turn-on" sensing of ATP based on aggregation induced emission enhancement effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121044. [PMID: 35220051 DOI: 10.1016/j.saa.2022.121044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this work, a nitrogen-doped carbon dots (CDs) was successfully synthesized by hydrothermal synthesis of polyethylenimine (PEI) and citric acid. The as-prepared CDs suffered from aggregation-caused quenching (ACQ) with a high concentration, but after adding adenosine triphosphate (ATP), the CDs aggregated. The generation of aggregates caused the rotation of the surface groups on CDs and reduced the non-radiation decay. The QY of CDs in water was 9.25 %, and increased to 16.60 % and 63.38% in the addition of 100 and 1000 μM ATP. And then, the enhancement of the radiation rate led to the aggregation induced enhancement effect (AIEE). Moreover, we also found that the proportion of precursors for CDs synthesis was a key factor in the occurrence of AIEE. Therefore, such CDs would be excellent candidates as fluorescent probes for the label-free detection of ATP. Our proposed method exhibited simple and easy preparation of nanoprobe, quick response (3 min), wide range of linear rage (1-2000 μM) and eco-friendly. In addition, the method performed successfully as a "turn-on" sensor for detection of ATP in the tablet with a recovery of 100.1~106.9% and RSD below 3.5%.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Shangming Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jinhui Shen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Wenhao Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
17
|
Kilic B, Dogan V, Kilic V, Kahyaoglu LN. Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. Int J Biol Macromol 2022; 209:1562-1572. [PMID: 35469948 DOI: 10.1016/j.ijbiomac.2022.04.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
The objective of this study was to develop novel colorimetric films for food freshness monitoring. UV light irradiation (365 nm) and carbon dots (CDs) were tested as the potential crosslinkers in the fabrication of anthocyanins doped fish gelatin (FG) films. The effect of crosslinkers on the optical, surface, structural, barrier and mechanical properties of FG films was investigated. The incorporation of CD under UV irradiation improved the tested properties of FG films. The kinetic colorimetric responses of FG films against ammonia vaporwere studied to simulate the food spoilage and determine the ammonia sensitivity of the films. Among the tested films, UV-treated FG films containing 100 mg/l (FG-UV-CD100) indicated the best properties. Later, the color difference of FG-UV-CD100 films was observed to correlate well with microbial growth and TVB-N release in skinless chicken breast samples. At the same time, a custom-designed smartphone application (SmartFood) was also developed to be used with the FG-UV-CD100 film for quantitative estimation of food freshness in real-time. The proposed food freshness monitoring platform reveals a great potential to minimize global food waste and the outbreak of foodborne illness.
Collapse
Affiliation(s)
- Beyza Kilic
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Vakkas Dogan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Volkan Kilic
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | | |
Collapse
|
18
|
Mao Z, Li H, Gan N, Suo Z, Zhang H, Zhao Q. Contribution of nicotinamide as an intracyclic N dopant to the structure and properties of carbon dots synthesized using three α-hydroxy acids as C sources. NANOTECHNOLOGY 2022; 33:215705. [PMID: 35168216 DOI: 10.1088/1361-6528/ac553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Fixed carbon source and different dopants are mainly used to study the effect of heteroatoms on the structure and properties of carbon dots (CDs). As reactants, some dopants with conjugated structure and high nitrogen content may have important contributions to the structure and properties of doped CDs in addition to providing heteroatoms. Herein, to study the effect of fixed dopant on the structure and properties of CDs, three different CDs were synthesized using nicotinamide (NAA) and three commonα-hydroxy acids (4-5 carbon atoms), and the optimal conditions were determined by orthogonal experimentation. Transmission electron microscopic micrographs showed that the average size of CDs based on nicotinamide are relatively large, up to 19.40 nm. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy demonstrated that these CDs have graphite nitrogen and several functional group structures. Ultraviolet-visible absorption spectra, fluorescence emission spectra, and fluorescence lifetime illustrated that these CDs have similar emission centers (460-470 nm) and fluorescence processes. The influence of carbon source on the surface structure of CDs was determined by systematically analyzing the response of these CDs in different pH ranges. DFT calculations revealed the distribution characteristics of the electrons in the excited state at the HOMO and LUMO energy levels of CDs. All the above characterizations and calculations proved that NAA is a desirable dopant with an important contribution to the structure and properties of CDs.
Collapse
Affiliation(s)
- Zhen Mao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Na Gan
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zili Suo
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huan Zhang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Naik VM, Bhosale SV, Kolekar GB. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:877-891. [PMID: 35174374 DOI: 10.1039/d1ay02105b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Since their discovery in 2004, fluorescent carbon nanoparticles have been tremendously studied due to their tunable optical properties. Recent studies on the synthesis and application of doped carbon dots highlight the effortless doping strategy with high quantum yields and applications in diverse fields. Among these, nitrogen doped carbon dots (NCDs) have been extensively investigated for their potential analytical and biological applications. This review features the synthetic methods and important characterisation studies required to verify successful synthesis of nitrogen doped carbon dots. Analytical applications of NCDs in metal ion, biomolecule, temperature, pH and gas sensing along with cell imaging and drug delivery applications are also discussed.
Collapse
Affiliation(s)
- Vaibhav M Naik
- P. E. S's. Ravi S. Naik College of Arts and Science, Farmagudi, Ponda, Goa, India
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| |
Collapse
|
20
|
Zhang W, Zhong H, Zhao P, Shen A, Li H, Liu X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Dadkhah S, Mehdinia A, Jabbari A, Manbohi A. Nicotinamide-Functionalized Carbon Quantum Dot as New Sensing Platform for Portable Quantification of Vitamin B12 in Fluorescence, UV-Vis and Smartphone Triple Mode. J Fluoresc 2022; 32:681-689. [PMID: 35040028 DOI: 10.1007/s10895-021-02863-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Development of an efficient, portable and simple nanosensor-based systems with reliable analytical performance for on-site monitoring of vitamin B12 (VB12) are still major problems and a challenging work for quality control of manufacturers. Herein, a new fluorescence, UV-Vis and smartphone triple mode nanosensors were designed for the simultaneous detection of VB12 with high sensitivity and accuracy. A novel nanosensor was synthesized through nicotinamide-functionalizing of carbon quantum dot (NA-CQDs) by an one-step microwave-assisted method with green approach. The NA-CQDs sensor showed excellent fluorescence properties and wide linear ranges from 0.1-60 µM with the detection limits of 31.7 nM. Moreover, color changes of NA-CQDs induced by the VB12 could also be detected by UV-Vis spectrophotometer and inhouse-developed application installed on smartphone as a signal reader, simultanusly. The Red, Green and Blue (RGB) intensities of the colorimetric images of NA-CQDs/VB12 system which taken by smartphone's camera converted into quantitative values by the application. A smartphone-integrated with NA-CQDs as colorimetric sensing platform displays good linear ranges (4.16 to 66.6 μM) for on-site determination of VB12 with detection limit of 1.40 μM. The method was successfully applied in the determination of VB12 in complex pharmaceutical supplement formulations without any sample pre-treatment and matrix interfering effects. The recovery results (96.52% to 105.10%) which were in agreement with the reference methods, demonstrating the capability of the smartphone-assisted colorimetric sensing platform in many on-site practical applications of quality controls.
Collapse
Affiliation(s)
- Sahar Dadkhah
- Department of Chemistry, Faculty of Science, K. N, Toosi University of Technology, Tehran, Iran
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
| | - Ali Jabbari
- Department of Chemistry, Faculty of Science, K. N, Toosi University of Technology, Tehran, Iran
| | - Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
22
|
Moradi M, Molaei R, Kousheh SA, T Guimarães J, McClements DJ. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Crit Rev Food Sci Nutr 2021; 63:1943-1959. [PMID: 34898337 DOI: 10.1080/10408398.2021.2015283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanotechnology is rapidly becoming a commercial reality for application in food packaging. In particular, the incorporation of nanoparticles into packaging materials is being used to increase the shelf life and safety of foods. Carbon dots (C-dots) have a diverse range of potential applications in food packaging. They can be synthesized from environmentally friendly sources such as microorganisms, food by-products, and waste streams, or they may be generated in foods during normal processing operations, such as cooking. These processes often produce nitrogen- and sulfur-rich heteroatom-doped C-dots, which are beneficial for certain applications. The incorporation of C-dots into food packaging materials can improve their mechanical, barrier, and preservative properties. Indeed, C-dots have been used as antioxidant, antimicrobial, photoluminescent, and UV-light blocker additives in food packaging materials to reduce the chemical deterioration and inhibit the growth of pathogenic and spoilage microorganisms in foods. This article reviews recent progress on the synthesis of C-dots from microorganisms and food by-products of animal origin. It then highlights their potential application for the development of active and intelligent food packaging materials. Finally, a discussion of current challenges and future trends is given.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
23
|
Singh B, Bahadur R, Rangara M, Gandhi MN, Srivastava R. Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS APPLIED BIO MATERIALS 2021; 4:4641-4651. [DOI: 10.1021/acsabm.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Misah Rangara
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Maharashtra 400614, India
| | - Mayuri N. Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Huang Q, Bao Q, Wu C, Hu M, Chen Y, Wang L, Chen W. Carbon dots derived from Poria cocos polysaccharide as an effective “on-off” fluorescence sensor for chromium (VI) detection. J Pharm Anal 2021; 12:104-112. [PMID: 35573881 PMCID: PMC9073324 DOI: 10.1016/j.jpha.2021.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Chromium is a harmful contaminant showing mutagenicity and carcinogenicity. Therefore, detection of chromium requires the development of low-cost and high-sensitivity sensors. Herein, blue-fluorescent carbon quantum dots were synthesized by one-step hydrothermal method from alkali-soluble Poria cocos polysaccharide, which is green source, cheap and easy to obtain, and has no pharmacological activity due to low water solubility. These carbon quantum dots exhibit good fluorescence stability, water solubility, anti-interference and low cytotoxicity, and can be specifically combined with the detection of Cr(VI) to form a non-fluorescent complex that causes fluorescence quenching, so they can be used as a label-free nanosensor. High-sensitivity detection of Cr(VI) was achieved through internal filtering and static quenching effects. The fluorescence quenching degree of carbon dots fluorescent probe showed a good linear relationship with Cr(VI) concentration in the range of 1–100 μM. The linear equation was F0/F = 0.9942 + 0.01472 [Cr(VI)] (R2 = 0.9922), and the detection limit can be as low as 0.25 μM (S/N = 3), which has been successfully applied to Cr(VI) detection in actual water samples herein. Carbon dots was synthesized from alkaloid-soluble Poria cocos polysaccharide, which used for Cr (VI) detection. High sensitivity and selectivity detection of Cr(VI) based on internal filtering effect and static quenching mechanism. The method analysis speed is quick, sensitive, raw materials for convenient, inexpensive. The method has been applied to the determination of Cr(VI) in actual samples with satisfactory recovery.
Collapse
|
25
|
Meng Y, Jiao Y, Zhang Y, Lu W, Wang X, Shuang S, Dong C. Facile synthesis of orange fluorescence multifunctional carbon dots for label-free detection of vitamin B 12 and endogenous/exogenous peroxynitrite. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124422. [PMID: 33183837 DOI: 10.1016/j.jhazmat.2020.124422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, orange emission fluorescent multifunctional carbon dots (O-CDs) were designed for the label-free detection of vitamin B12 (VB12),endogenous/exogenous peroxynitrite (ONOO-) sensing, cell imaging, and fluorescent flexible film preparation. The O-CDs with excitation-independent were prepared using safranine T and ethanol as precursors via one-step hydrothermal process. VB12 was utilized as a quencher to quench the fluorescence of O-CDs due to the internal filtration effect (IFE). Two-segment linear ranges are 1-65 μM and 70-140 μM, and the detection limit was calculated as 0.62 μM. Besides, ONOO- can reduce the fluorescence intensity of O-CDs based on static quenching (SQ). The linear ranges are 0.3-9 μM and 9-48 μM, and the detection limit was 0.06 μM. Moreover, the O-CDs were exploited as a cellular imaging reagent for intracellular VB12 and endogenous/exogenous ONOO- imaging owing to its great biocompatibility, low toxicity and strong photostability. These results indicate that O-CDs have the potential to be used as a sensitive fluorescence probe to rapidly monitor VB12 and endogenous/exogenous ONOO- with high selectivity in living cells. Also, the as-proposed O-CDs can be employed to fabricate O-CDs/PVA composites as fluorescent flexible films. All of the above prove that the O-CDs present great prospect in multiple applications such as biosensing, cellular labeling, biomedical optical imaging, and fluorescent films.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Wang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
26
|
Wang T, Luo H, Jing X, Yang J, Huo M, Wang Y. Synthesis of Fluorescent Carbon Dots and Their Application in Ascorbic Acid Detection. Molecules 2021; 26:1246. [PMID: 33669142 PMCID: PMC7956759 DOI: 10.3390/molecules26051246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Water-soluble fluorescent carbon dots (CDs) were synthesized by a hydrothermal method using citric acid as the carbon source and ethylenediamine as the nitrogen source. The repeated and scale-up synthetic experiments were carried out to explore the feasibility of macroscopic preparation of CDs. The CDs/Fe3+ composite was prepared by the interaction of the CDs solution and Fe3+ solution. The optical properties, pH dependence and stability behavior of CDs or the CDs/Fe3+ composite were studied by ultraviolet spectroscopy and fluorescence spectroscopy. Following the principles of fluorescence quenching after the addition of Fe3+ and then the fluorescence recovery after the addition of asorbic acid, the fluorescence intensity of the carbon dots was measured at λex = 360 nm, λem = 460 nm. The content of ascorbic acid was calculated by quantitative analysis of the changing fluorescence intensity. The CDs/Fe3+ composite was applied to the determination of different active molecules, and it was found that the composite had specific recognition of ascorbic acid and showed an excellent linear relationship in 5.0-350.0 μmol·L-1. Moreover, the detection limit was 3.11 μmol·L-1. Satisfactory results were achieved when the method was applied to the ascorbic acid determination in jujube fruit. The fluorescent carbon dots composites prepared in this study may have broad application prospects in a rapid, sensitive and trace determination of ascorbic acid content during food processing.
Collapse
Affiliation(s)
- Tengfei Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; (T.W.); (H.L.); (X.J.); (J.Y.)
| | - Hui Luo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; (T.W.); (H.L.); (X.J.); (J.Y.)
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; (T.W.); (H.L.); (X.J.); (J.Y.)
| | - Jiali Yang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; (T.W.); (H.L.); (X.J.); (J.Y.)
| | - Meijun Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; (T.W.); (H.L.); (X.J.); (J.Y.)
| |
Collapse
|
27
|
Ma K, Liang L, Zhou X, Tan W, Hu O, Chen Z. A Redox-induced Dual-mode Colorimetric and Fluorometric Method based on N-CDs and MnO 2 for Determination of Isoniazid in Tablets and Plasma Samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119097. [PMID: 33161268 DOI: 10.1016/j.saa.2020.119097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
We develop a simple hydrothermal method to prepare a novel nitrogen-doped carbon dots (N-CDs) originated from green carbon source Liu-bao tea and ethylene diamine. The N-CDs emits strong and stable blue fluorescence (Em = 440 nm) under the excitation wavelength of 350 nm with a quantum yield of 35%. And it is used as an excellent fluorescent output for the sensitive and visual dual-mode determination of isoniazid. The fluorescence of N-CDs is "turned off" first by manganese dioxide (MnO2) nanosheets due to inner filter effect, MnO2 nanosheets can also oxidize TMB (3,3',5,5'- tetramethylbenzidine) to blue oxTMB. Isoniazid, however, can reduce MnO2 nanosheets to Mn2+, turning on the fluorescence again. The color of the solution fades from blue to colorless because less TMB can be oxidized. Under the optimal conditions, the dual-mode method has a satisfying linear relationship ranging from 2.0 to 120.0 μM with a limit of detection of 0.7 μM (S/N = 3). And it has been applied successfully to colorimetric and fluorescent determination of isoniazid in tablets and clinical plasma samples, with recoveries ranging from 94.0% to 102.4%. The properties of N-CDs and MnO2 nanosheets were thoroughly characterized using TEM, FT-IR, XPS, AFM and fluorescence spectrophotometer, the quenching mechanism was also discussed.
Collapse
Affiliation(s)
- Kuanxia Ma
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Lushan Liang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Xie Zhou
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiguo Tan
- Shenzhen Center for Chronic Disease Control, Shenzhen 518000, China
| | - Ou Hu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Shi L, Bao Y, Zhang Y, Zhang C, Zhang G, Dong C, Shuang S. Orange emissive carbon nanodots for fluorescent and colorimetric bimodal discrimination of Cu2+ and pH. Analyst 2021; 146:1907-1914. [DOI: 10.1039/d0an02243h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have facilely synthesized orange emissive carbon nanodots (O-CDs) via a hydrothermal method using citric acid and 5-aminosalicylic acid.
Collapse
Affiliation(s)
- Lihong Shi
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yuejing Bao
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Caihong Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Guomei Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
29
|
Lakshmi BA, Sangubotla R, Kim J, Ha HT, Kim S. Lanthanum mediated rutin yellow-fluorescent carbon dots as multifaceted sensing probes for the detection of calcium ions in melanoma and plant cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111644. [DOI: 10.1016/j.msec.2020.111644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022]
|
30
|
Abstract
Early diagnosis of diseases is of great importance because it increases the chance of a cure and significantly reduces treatment costs. Thus, development of rapid, sensitive, and reliable biosensing techniques is essential for the benefits of human life and health. As such, various nanomaterials have been explored to improve performance of biosensors, among which, carbon dots (CDs) have received enormous attention due to their excellent performance. In this Review, the recent advancements of CD-based biosensors have been carefully summarized. First, biosensors are classified according to their sensing strategies, and the role of CDs in these sensors is elaborated in detail. Next, several typical CD-based biosensors (including CD-only, enzymatic, antigen-antibody, and nucleic acid biosensors) and their applications are fully discussed. Last, advantages, challenges, and perspectives on the future trends of CD-based biosensors are highlighted.
Collapse
Affiliation(s)
- Chunyu Ji
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| |
Collapse
|
31
|
Yu Y, Song M, Chen C, Du Y, Li C, Han Y, Yan F, Shi Z, Feng S. Bortezomib-Encapsulated CuS/Carbon Dot Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway. ACS NANO 2020; 14:10688-10703. [PMID: 32790339 DOI: 10.1021/acsnano.0c05332] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photothermal therapy (PTT) is an emerging therapeutic strategy in the treatment of cancer; however, a critical challenge remains in the rational design of synergistic nanoparticles as a potential photothermal transduction agent that can effectively enhance the therapeutic outcome of PTT for tumor ablation. Herein, we rationally designed, developed, and characterized hollow-structured CuS nanoparticles composited with carbon dots (CuSCDs), which demonstrated excellent photothermal conversion efficiency under a 808 nm laser irradiation with enhanced biocompatibility and reduced toxicity. Following coating with a macrophage membrane hybridized with T7 peptide on the surface of the proteasome inhibitor loaded CuSCD, CuSCDB@MMT7 exhibited targeted specificity to cancer cells with the characteristics of immunity escaping and enhanced transferrin receptor-mediated endocytosis. Predominantly, CuSCDB@MMT7-triggered PTT exhibited the accumulation of the polyubiquitinated tumor suppressor protein that is heat stabilized under NIR induced hyperthermia, facilitating augmented tumor cell apoptosis and the attenuated metastasis. This study provides a proof-of-concept for the proteasome inhibitor-loaded CuS/carbon dot nanocomposite-PTT strategy and highlights a promising therapeutic strategy for realizing enhanced therapeutic outcomes for effective clinical cancer therapy.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Meiyu Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
32
|
Zhang Z, Yi G, Li P, Zhang X, Fan H, Zhang Y, Wang X, Zhang C. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. NANOSCALE 2020; 12:13899-13906. [PMID: 32597441 DOI: 10.1039/d0nr03163a] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To date, carbon dots (CDs) or carbon quantum dots (CQDs), considered as alternatives to conventional fluorescent materials such as organic dyes and semiconductor quantum dots (QDs), have drawn significant attention from relevant researchers due to their superior properties, including nontoxicity, biocompatibility, low cost and facile synthesis, and high photoluminescence. In particular, doping heteroatoms with CDs can not only dramatically enhance the fluorescence but also greatly improve the electronic structure and doped CDs have been successfully applied in various technological fields. Herein, this minireview summarizes recent advances on the synthesis and optical properties of doped CDs and their promising applications for photocatalysis and electrocatalysis. Finally, some challenging issues as well as future perspectives of this exciting material are discussed.
Collapse
Affiliation(s)
- Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Wu P, Wu X, Ma C, Luo S, Xu M, Li W, Liu S. Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta 2020; 210:120649. [DOI: 10.1016/j.talanta.2019.120649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/26/2023]
|
34
|
Zhang S, Ji X, Liu J, Wang Q, Jin L. One-step synthesis of yellow-emissive carbon dots with a large Stokes shift and their application in fluorimetric imaging of intracellular pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117677. [PMID: 31675656 DOI: 10.1016/j.saa.2019.117677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 05/23/2023]
Abstract
A new nanoprobe based on yellow-emissive carbon dots (Y-CDs) was developed for sensing full-range intracellular pH values. By using o-phenylenediamine as the raw material, Y-CDs with a quantum yield of 31% were prepared through a one-pot solvothermal carbonization method. The Y-CDs exhibited a distinctive fluorescence emission peak at 570 nm with excitation at 450 nm, showing a very large Stokes shift (120 nm). Notably, the nanoprobe revealed a linear relationship between fluorescence intensity and pH value within the range of pH 4.0 to 8.2, exhibiting the ability of this probe to monitor full-range intracellular pH variations. In addition, the nanosensor possessed excellent photostability and fluorescence reversibility in pH measurements and showed excellent selective detection of the influences of other biological species. The CD-based nanoprobe was successfully used to perform quantitative fluorescence imaging of intracellular pH variation, demonstrating its promise for application in cellular systems.
Collapse
Affiliation(s)
- Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| | - Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| | - Jin Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| | - Qin Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China.
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| |
Collapse
|
35
|
Rajbanshi B, Dutta A, Mahato B, Roy D, Maiti DK, Bhattacharyya S, Roy MN. Study to explore host guest inclusion complexes of vitamin B1 with CD molecules for enhancing stability and innovative application in biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Dhenadhayalan N, Lin KC, Saleh TA. Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905767. [PMID: 31769599 DOI: 10.1002/smll.201905767] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Indexed: 05/23/2023]
Abstract
Since the past decade, enormous research efforts have been devoted to the detection/degradation and quantification of environmental toxic pollutants and biologically important molecules due to their ubiquitous necessity in the fields of environmental protection and human health. These fields of sensor and catalysis are advanced to a new era after emerging of nanomaterials, especially, carbon nanomaterials including graphene, carbon nanotube, carbon dots (C-dots), etc. Among them, the C-dots in the carbon family are rapidly boosted in the aspect of synthesis and application due to their superior properties of chemical and photostability, highly fluorescent with tunable, non/low-toxicity, and biocompatibility. The C-dot-based functional materials have shown great potential in sensor and catalysis fields for the detection/degradation of environmental pollutants. The major advantage of C-dots is that they can be easily prepared from numerous biomass/waste materials which are inexpensive and environment-friendly and are suitable for a developing trend of sustainable materials. This review is devoted to the recent development (since 2017) in the synthesis of biomass- and chemical-derived C-dots as well as diverse functionalization of C-dots. Their capability as a sensor and catalyst and respective mechanism are summarized. The future perspectives of C-dots are also discussed.
Collapse
Affiliation(s)
- Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
37
|
Hong D, Deng X, Liang J, Li J, Tao Y, Tan K. One-step hydrothermal synthesis of down/up-conversion luminescence F-doped carbon quantum dots for label-free detection of Fe3+. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
A label-free "SEF-FRET" fluorescent sensing platform for ultrasensitive DNA detection based on AgNPs SAMs. Talanta 2019; 205:120072. [PMID: 31450467 DOI: 10.1016/j.talanta.2019.06.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
In this paper, deoxyribonucleic acid (DNA) with different lengths were used to control the distance between carbon dots (CDs) and silver nanoparticles (AgNPs) in self-assembled multilayers (SAMs). Surface-enhanced fluorescence and fluorescence resonance energy transfer (SEF-FRET) could be achieved based on changing DNA strands. The fluorescence intensity of CDs SAMs with 6-base DNA strands could be enhanced up to ca. 5.6 times by AgNPs. As-fabricated CDs SAMs with excellent luminescent properties, superior stability have been employed for the development of a label-free fluorescence sensing platform for DNA detection. Since DNA would hybridize with the complemented one which was attached on the surface of SAMs, resulting in a close distance between CDs and AgNPs, FRET could thus occur between AgNPs and CDs, resulting in quenching the fluorescence of CDs SAMs. This sensitive sensing platform could show excellent analytical performance for detecting DNA with a linear response ranging from 93.07 pM to 5.433 nM and a detection limit of 16.36 pM, which could be further employed to probe human blood samples. This could prove a promising method for the detection of DNA.
Collapse
|
39
|
Abstract
Carbon and graphene quantum dots (CQDs and GQDs), known as zero-dimensional (0D) nanomaterials, have been attracting increasing attention in sensing and bioimaging. Their unique electronic, fluorescent, photoluminescent, chemiluminescent, and electrochemiluminescent properties are what gives them potential in sensing. In this Review, we summarize the basic knowledge on CQDs and GQDs before focusing on their application to sensing thus far followed by a discussion of future directions for research into CQDs- and GQD-based nanomaterials in sensing. With regard to the latter, the authors suggest that with the potential of these nanomaterials in sensing more research is needed on understanding their optical properties and why the synthetic methods influence their properties so much, into methods of surface functionalization that provide greater selectivity in sensing and into new sensing concepts that utilize the virtues of these nanomaterials to give us new or better sensors that could not be achieved in other ways.
Collapse
Affiliation(s)
- Meixiu Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Tao Chen
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - J. Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| |
Collapse
|
40
|
Semeniuk M, Yi Z, Poursorkhabi V, Tjong J, Jaffer S, Lu ZH, Sain M. Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS NANO 2019; 13:6224-6255. [PMID: 31145587 DOI: 10.1021/acsnano.9b00688] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the span of the past decade, carbon dots (CDs) synthesized from renewable organic resources (organic CDs) have gathered a considerable amount of attention for their photoluminescent properties. This review will focus on organic CDs synthesized using clean chemistry and conventional synthetic chemistry from organic sources and their fluorescence mechanisms, such as quantum confinement effect and surface/edge defects, before outlining their performance in electronic applications, including organic photovoltaic devices, organic light-emitting devices, biosensors, supercapacitors, and batteries. The various organic resources and methods of organic CDs synthesis are briefly covered. Many challenges remain before the adoption of CDs can become widespread; their characterization, structure, functionality, and exact photoluminescent mechanism all require additional research. This review aims to summarize the current research outcomes and highlight the area where further research is needed to fully use these materials.
Collapse
Affiliation(s)
- Maria Semeniuk
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Zhihui Yi
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Vida Poursorkhabi
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Jimi Tjong
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Shaffiq Jaffer
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Zheng-Hong Lu
- Department of Material Science and Engineering , University of Toronto , 184 College Street , Toronto , Ontario M5S 3A1 , Canada
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
- Department of Mechanical and Industrial Engineering , University of Toronto , 5 King's College Road , Toronto , Ontario M5S 3G8 , Canada
- Department of Mechanical Engineering , Beijing University of Chemical Technology (BUCT) , 100029 Beijing , P.R. China
| |
Collapse
|
41
|
Zhuang Q, Si X, Li L, Zeng H, Ding Y. A self-adaptive multi-color fluorescent pH probe with the ability of whole cell imaging. Talanta 2019; 208:119780. [PMID: 31816740 DOI: 10.1016/j.talanta.2019.03.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 01/17/2023]
Abstract
Fluorescent pH probes are promising for both in vitro and in vivo pH detections in chemical and biochemical systems. Previously, the multi-color and whole cell pH sensing is a challenge for conventional fluorescent nanomaterials. In this work, we report an N, S co-doped carbon dots (N, S-CDs)-based fluorescent pH probe that can response to different incident light with tunable wavelength. The emission wavelength is tunable and correlated to the excitation wavelength, enabling self-adaptive multi-color sensing. The N, S-CDs was synthesized by a one-step hydrothermal method utilizing glucose, ammonium persulfate and ethylenediamine as precursors. The fluorescence of N, S-CDs shows a good linear relationship against pH values from 3.0 to 10.0 with a linear correlation coefficient of 0.996. The good biocompatibility and small size fulfill the demand of whole cell intracellular imaging. We have demonstrated that the N, S-CDs have successfully applied in HepG2 cells for the self-adaptive multi-color imaging.
Collapse
Affiliation(s)
- Qi Zhuang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaojing Si
- School of Public Health, Shanghai Aurora Vocation College, Shanghai 201908, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Hongyan Zeng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|