1
|
Chao S, Valsecchi C, Sun J, Shao H, Li X, Tang C, Fan M. Highly Sensitive Surface-Enhanced Raman Scattering Detection of Hydroxyl Radicals in Water Microdroplets Using Phthalhydrazide/Ag Nanoparticles Nanosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16497-16506. [PMID: 39114886 DOI: 10.1021/acs.est.4c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The spontaneous generation of hydrogen peroxide (H2O2) within atmospheric microdroplets, such as raindrops and aerosols, plays a crucial role in various environmental processes including pollutant degradation and oxidative stress. However, quantifying hydroxyl radicals (•OH), essential for H2O2 formation, remains challenging due to their short lifespan and low concentration. This study addresses this gap by presenting a highly sensitive and selective surface-enhanced Raman scattering (SERS) nanosensor specifically designed for quantifying •OH within water microdroplets. Utilizing a phthalhydrazide (Phth) probe, the SERS technique enables rapid, interference-free detection of •OH at nanomolar concentrations. It achieves a linear detection range from 2 nM to 2 μM and a limit of detection as low as 0.34 nM. Importantly, the SERS sensor demonstrates robustness and accuracy within water microdroplets, paving the way for comprehensive mechanistic studies of H2O2 generation in the atmosphere. This innovative approach not only offers a powerful tool for environmental research but also holds potential for advancing our understanding of atmospheric H2O2 formation and its impact on air quality and pollutant degradation.
Collapse
Affiliation(s)
- Shengmao Chao
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Chiara Valsecchi
- Federal University of Pampa, Campus Alegrete, 97542-160 Alegrete, Rio Grande do Sul, Brazil
| | - Ji Sun
- Department of Student Affairs, Henan University of Technology, 450001 Zhengzhou, China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Xinxia Li
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Hussain M, Hafeez A, Rizwan M, Rasheed R, Seleiman MF, Ashraf MA, Ali S, Farooq U, Nafees M. Pervasive influence of heavy metals on metabolic pathways is potentially relieved by hesperidin to enhance the phytoremediation efficiency of Bassia scoparia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34526-34549. [PMID: 38709411 DOI: 10.1007/s11356-024-33530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 μM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| |
Collapse
|
3
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
4
|
López-Blanch R, Salvador-Palmer R, Oriol-Caballo M, Moreno-Murciano P, Dellinger RW, Estrela JM, Obrador E. Nicotinamide riboside, pterostilbene and ibudilast protect motor neurons and extend survival in ALS mice. Neurotherapeutics 2024; 21:e00301. [PMID: 38241160 PMCID: PMC10903100 DOI: 10.1016/j.neurot.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 01/21/2024] Open
Abstract
Oxidative stress and neuroinflammation are major contributors to the pathophysiology of ALS. Nicotinamide riboside (a NAD+ precursor) and pterostilbene (a natural antioxidant) were efficacious in a human pilot study of ALS patients and in ALS SOD1G93A transgenic mice. Ibudilast targets different phosphodiesterases and the macrophage migration inhibitory factor, reduces neuroinflammation, and in early-phase studies improved survival and slowed progression in ALS patients. Using two ALS murine models (SOD1G93A, FUSR521C) the effects of nicotinamide riboside, pterostilbene, and ibudilast on disease onset, progression and survival were studied. In both models ibudilast enhanced the effects of nicotinamide riboside and pterostilbene on survival and neuromotor functions. The triple combination reduced microgliosis and astrogliosis, and the levels of different proinflammatory cytokines in the CSF. TNFα, IFNγ and IL1β increased H2O2 and NO generation by motor neurons, astrocytes, microglia and endothelial cells isolated from ALS mice. Nicotinamide riboside and pterostilbene decreased H2O2 and NO generation in all these cells. Ibudilast specifically decreased TNFα levels and H2O2 generation by microglia and endothelial cells. Unexpectedly, pathophysiological concentrations of H2O2 or NO caused minimal motor neuron cytotoxicity. H2O2-induced cytotoxicity was increased by NO via a trace metal-dependent formation of potent oxidants (i.e. OH and -OONO radicals). In conclusion, our results show that the combination of nicotinamide riboside, pterostilbene and ibudilast improve neuromotor functions and survival in ALS murine models. Studies on the underlying mechanisms show that motor neuron protection involves the decrease of oxidative and nitrosative stress, the combination of which is highly damaging to motor neurons.
Collapse
Affiliation(s)
- Rafael López-Blanch
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain
| | | | | | - José M Estrela
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain.
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain.
| |
Collapse
|
5
|
Gao X, Liu X, He J, Huang H, Qi X, Hao J. Bactericidal Effect and Associated Properties of Non-Electrolytic Hypochlorite Water on Foodborne Pathogenic Bacteria. Foods 2022; 11:foods11244071. [PMID: 36553813 PMCID: PMC9778273 DOI: 10.3390/foods11244071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the broad-spectrum bactericidal activity of non-electrolytic hypochlorite water (NEHW) and detected its hydroxyl radical content compared with that of slightly acidic electrolytic water (SAEW). Based on the results of UV scanning and storage stability, higher hypochlorite content and stronger oxidation were found to be responsible for the stronger bactericidal effect of NEHW. NEHW can achieve 99% bacterial disinfection effect by treating with 10 mg/L available chlorine concentration for more than 5 minutes. At the same time, the storage stability of NEHW was higher than that of SAEW. After 20 days of storage under sealed and dark conditions, the pH value only increased by 7.9%, and the effective chlorine concentration remained nearly 80%. The results showed that NEHW had higher germicidal efficacy and storage stability than SAEW.
Collapse
|
6
|
Improvement of TNBC immune checkpoint blockade with a microwave-controlled ozone release nanosystem. J Control Release 2022; 351:954-969. [PMID: 36183970 DOI: 10.1016/j.jconrel.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
7
|
Manimegalai S, Rajeswari VD, Parameswari R, Nicoletti M, Alarifi S, Govindarajan M. Green synthesis, characterization and biological activity of Solanum trilobatum-mediated silver nanoparticles. Saudi J Biol Sci 2022; 29:2131-2137. [PMID: 35531226 PMCID: PMC9073036 DOI: 10.1016/j.sjbs.2021.11.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Biologically inspired synthesis of nanoparticles was found to be more attractive in metal nanoparticle synthesis. The present study reported an in-situ biogenic synthesis of silver nanoparticles (AgNPs) using Solanum trilobatum aqueous leaf extract. On this basis, the aqueous leaf extract of S. trilobatum acted as a reducing agent and stabilizing agent to synthesize highly stable AgNPs at ambient temperature. Eventually, the synthesized and stabilized AgNPs surface plasmon resonance was near 430 nm through a UV–visible (UV–vis) spectrophotometer. Here, the stability of the silver colloids monitored through zeta potential and mean particle size was evaluated through diffraction light scattering (DLF). Further, the average particle size was found to be 27.6 nm and spherical, confirmed with transmission electron microscopy (TEM). Also, colloidal AgNPs and aqueous extract are found to be rich sources of antioxidants and exhibit higher free radical scavenging ability. Thus, efficient inhibition with COX1 and COX2 enzymes and the protective effect with human red blood cell (HRBC) membrane stability showed significant results. These features are promising, suggesting the possibility of the AgNPs to be useful to disease-modifying for treating inflammatory disorders and associated complications.
Collapse
|
8
|
Liu J, Chen J, Zuo K, Li H, Peng F, Ran Q, Wang R, Jiang Z, Song H. Chemically induced oxidative stress improved bacterial laccase-mediated degradation and detoxification of the synthetic dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112823. [PMID: 34597843 DOI: 10.1016/j.ecoenv.2021.112823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
To alleviate the risk of textile effluent, the development of highly effective bioremediation strategies for synthetic dye removal is needed. Herein, we aimed to assess whether intensified bioactivity of Bacillus pumilus ZB1 by oxidative stress could improve the removal of textile dyes. Methyl methanesulfonate (MMS) induced oxidative stress significantly promoted laccase expression of B. pumilus ZB1. Both the level of hydrogen dioxide and superoxide anion showed a significant positive correlation with laccase activity (RSQ = 0.963 and 0.916, respectively) along with the change of MMS concentration. The regulation of laccase expression was closely related to oxidative stress. The overexpressed laccase in the supernatant improved the decolorization of synthetic dyes (16.43% for Congo Red, 54.05% for Crystal Violet, and 41.61% for Reactive Blue 4). Laccase was subsequently expressed in E. coli. Investigation of the potential of bacterial laccase in dye remediation using Congo Red showed that an effective degradation of azo dye could be achieved with laccase treatment. Laccase remediation alleviated the cytotoxicity of Congo Red to human hepatocytes. In silico study identified eight amino acid residues of laccase involved in binding with Congo Red. Overall, regulation of oxidative stress towards bacterium can be used as a promising approach for the improvement of bacterial bioactivity in synthetic dye remediation.
Collapse
Affiliation(s)
- Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jianhui Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Kangjia Zuo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Fang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Qiuping Ran
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Rui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huiting Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
9
|
Vargas-Ortíz JR, Böhnel HN, Gonzalez C, Esquivel K. Magnetic nanoparticle behavior evaluation on cardiac tissue contractility through Langendorff rat heart technique as a nanotoxicology parameter. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, Han T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol 2021; 184:946-954. [PMID: 34182000 DOI: 10.1016/j.ijbiomac.2021.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Polysaccharides are macromolecules obtained from a wide range of sources and are known to have diverse biological activities. The biological activities of polysaccharides depend on their structure and physicochemical properties, including water solubility, monosaccharide composition, degree of branching, molecular structure, and molecular weight. Phosphorylation is a commonly used chemical modification method that improves the physicochemical properties of native polysaccharides, thus enhancing their biological activity, or even imparting novel biological activity. Therefore, phosphorylated polysaccharides have attracted increasing attention owing to their antioxidant, antitumor, antiviral, immunomodulatory, and hepatoprotective effects. In this review, we have discussed recent advances in the phosphorylation of polysaccharides, and the methods used for phosphorylation, structural characterization, and determination of biological activities, to provide a theoretical basis for the use of polysaccharides. The structure-activity relationship of phosphorylated polysaccharides and their use in the food and pharmaceutical industries needs to be further studied.
Collapse
Affiliation(s)
- Shunli Xia
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Yongcong Zhai
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xue Wang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Qirui Fan
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xiaoyi Dong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Mei Chen
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Tao Han
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China; Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Wu Y, Huang W, Peng D, Huang XA, Gu J, Wu S, Deng T, Liu F. Synthesis of Dihydroquinolines as Scaffolds for Fluorescence Sensing of Hydroxyl Radical. Org Lett 2020; 23:135-139. [PMID: 33263409 DOI: 10.1021/acs.orglett.0c03852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A mild synthetic method to prepare dihydroquinolines has been presented. These dihydroquinolines, for the first time, showed great potential for fluorescence detection of the important biorelevant hydroxyl radicals (•OH). Sensitive and selective •OH detection and intracellular organelle-targeted fluorescence imaging of •OH have been demonstrated by using one of the synthetic dihydroquinolines. Moreover, dihydroquinoline has also exhibited promising potential to construct advanced fluorescence probes for •OH with tunable photophysical properties.
Collapse
Affiliation(s)
- Yalan Wu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Wenyi Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Danfeng Peng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xin-An Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Jiangyong Gu
- School of Basic Medical Science, Guangzhou University of Chinese Medicin, Guangzhou 510006, P.R. China
| | - Shengjun Wu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Tao Deng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Fang Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| |
Collapse
|
12
|
Wu Y, Zeng Q, Qi Z, Deng T, Liu F. Recent Progresses in Cancer Nanotherapeutics Design Using Artemisinins as Free Radical Precursors. Front Chem 2020; 8:472. [PMID: 32626687 PMCID: PMC7311774 DOI: 10.3389/fchem.2020.00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Artemisinin and its derivatives (ARTs) are sort of important antimalarials, which exhibit a wide range of biological activities including anticancer effect. To solve the issues regarding poor solubility and limited bioavailability of ARTs, nanoformulation of ARTs has thus emerged as a promising strategy for cancer treatment. A common consideration on nanoARTs design lies on ARTs' delivery and controlled release, where ARTs are commonly regarded as hydrophobic drugs. Based on the mechanism that ARTs' activation relies on ferrous ions (Fe2+) or Fe2+-bonded complexes, new designs to enhance ARTs' activation have thus attracted great interests for advanced cancer nanotherapy. Among these developments, the design of a nanoparticle that can accelerate ARTs' activation has become the major consideration, where ARTs have been regarded as radical precursors. This review mainly focused on the most recent developments of ARTs nanotherapeutics on the basis of advanced drug activation. The basic principles in those designs will be summarized, and a few excellent cases will be also discussed in detail.
Collapse
Affiliation(s)
- Yalan Wu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingping Zeng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Deng T, Wang X, Wu S, Hu S, Liu W, Chen T, Yu Z, Xu Q, Liu F. A new FRET probe for ratiometric fluorescence detecting mitochondria-localized drug activation and imaging endogenous hydroxyl radicals in zebrafish. Chem Commun (Camb) 2020; 56:4432-4435. [DOI: 10.1039/d0cc00382d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new FRET probe has been prepared and successfully used for imaging hydroxyl radicals generated by drug activation and endogenous hydroxyl radicals in zebrafish.
Collapse
Affiliation(s)
- Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Xiaojuan Wang
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Shengjun Wu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Shiyou Hu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Wei Liu
- Science and Technology Innovation Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Tongkai Chen
- Science and Technology Innovation Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences
- Guangdong Provincial Key Laboratory of New Drug Screening
- Southern Medical University
- Guangzhou
- China
| | - Qin Xu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- China
| |
Collapse
|
14
|
Zhang ZW, Wang YL, Wang WK, Chen YY, Si XM, Wang YJ, Wang W, Cao ZJ, Li SL, Yang HJ. The Antimethanogenic Nitrocompounds Can be Cleaved into Nitrite by Rumen Microorganisms: A Comparison of Nitroethane, 2-Nitroethanol, and 2-Nitro-1-propanol. Metabolites 2019; 10:E15. [PMID: 31881649 PMCID: PMC7023367 DOI: 10.3390/metabo10010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
A class of aliphatic short chain nitrocompounds have been reported as being capable of CH4 reduction both in vitro and in vivo. However, the laboratory evidence associated with the metabolic fate of nitrocompounds in the rumen has not been well documented. The present study was conducted to compare in vitro degradation and metabolism of nitroethane (NE), 2-nitroethanol (NEOH), and 2-nitro-1-propanol (NPOH) incubated with mixed rumen microorganisms of dairy cows. After 10 mM supplementation of nitrocompounds, a serious of batch cultures were carried out for 120 h under the presence of two substrates differing in the ratio of maize meal to alfalfa hay (HF, 1:4; LF, 4:1). Compared to the control, methane production was reduced by 59% in NPOH and by >97% in both NE and NEOH, and such antimethanogenic effects were more pronounced in the LF than the HF group. Although NE, NEOH, and NPOH addition did not alter total VFA production, the rumen fermentation pattern shifted toward increasing propionate and butyrate and decreasing acetate production. The kinetic disappearance of each nitrocompound was well fitted to the one-compartment model, and the disappearance rate (k, %/h) of NE was 2.6 to 5.2 times greater than those of NEOH and NPOH. Higher intermediates of nitrite occurred in NEOH in comparison with NPOH and NE while ammonia N production was lowest in NEOH. Consequently, a stepwise accumulation of bacterial crude protein (BCP) in response to the nitrocompound addition was observed in both the HF and LF group. In brief, both NE and NEOH in comparison with NPOH presented greater antimethanogenic activity via the shift of rumen fermentation. In addition, the present study provided the first direct evidence that rumen microbes were able to cleave these nitrocompounds into nitrite, and the subsequent metabolism of nitrite into ammonia N may enhance the growth of rumen microbes or promote microbial activities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.-W.Z.); (Y.-L.W.); (W.-K.W.); (Y.-Y.C.); (X.-M.S.); (Y.-J.W.); (W.W.); (Z.-J.C.); (S.-L.L.)
| |
Collapse
|
15
|
Zhang J, Li QR, Zhang MH, You Y, Wang Y, Wang YH. Enhancement of carotenoid biosynthesis in Phaffia rhodozyma PR106 under stress conditions. Biosci Biotechnol Biochem 2019; 83:2375-2385. [DOI: 10.1080/09168451.2019.1650633] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT
Carotenoids have good biological activity in antioxidant, anti-aging and scavenging harmful free radicals. In this study, we screened a strain that produced carotenoids, and selected a stress condition which significantly improved carotenoids content. The strain was identified as Phaffia rhodozyma PR106. Active oxygen generator TiO2 was the most significant factor to the carotenoids content of the P. rhodozyma. The content of carotenoids was 54.45 mg/g at 500 mg/L TiO2, which was about 1.25 times of the control and the proportion of carotenoids also changed from 1:9:16 to 1:8.5:12. Further, we determined the reactive oxygen species (ROS) in YEPD medium and P. rhodozyma, found that the ROS (H2O2, O2−, and HO•) was significantly increased at 500 mg/L TiO2 in YEPD medium compared with the control, but increased in P. rhodozyma under 1000 mg/L TiO2 treated. These results suggested that the increase in carotenoids was related to ROS in P. rhodozyma.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Qing-Ru Li
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Ming-Hao Zhang
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Ying You
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yu-Hua Wang
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| |
Collapse
|
16
|
A novel electrochemical sensor for determination of hydroxyl radicals in living cells by coupling nanoporous gold layer with self-assembled 6-(Ferrocenyl) hexanethiol. Anal Chim Acta 2019; 1096:69-75. [PMID: 31883593 DOI: 10.1016/j.aca.2019.10.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
Abstract
The detection of hydroxyl radicals (•OH) in live cells is significant to study its physiological and pathological roles, while it is full of challenge due to the extremely low concentration and short lifetime of •OH. Herein, we have developed a novel electrochemical sensor based on 6-(Ferrocenyl) hexanethiol (6-FcHT) self-assembled nanoporous gold layer (NPGL) modified GE (6-FcHT/NPGL/GE), which can detect the release of •OH from living cells with high sensitivity and selectivity. The superior sensitivity can stem from the unique porous architecture of NPGL, which enlarged electrode surface area and expedited electron transportation during electrochemical reactions. Additionally, NPGL provides more active binding sites for the assembly of capture agent (6-FcHT) of •OH, thus ensuring high selectivity. For comparison, 6-FcHT/GE was applied to detect •OH, and the obtained sensitivity was 0.0305 mA nM-1 and detection limit was 0.133 nM in the linear range of 0.4 nM-70 nM. After modification of NPGL, the sensitivity of 6-FcHT/NPGL/GE to the •OH response was increased to 0.1364 mA nM-1, detection limit was reduced to 0.316 pM and the linear range was extended from 1 pM to 100 nM. It is worth mentioning that a plenty of extra merits has also been validated like reproducibility, repeatability and stability, enabling to direct electrochemical detection of •OH in HepG2 cells.
Collapse
|
17
|
Deng T, Wu S, Wu Y, Hu S, Bao H, Huang XA, Xu Q, Yang Z, Song J, Liu F. An unexpected Griess reaction on the important anti-malarial drug primaquine and its application for drug determination. J Pharm Biomed Anal 2019; 171:8-14. [DOI: 10.1016/j.jpba.2019.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|