1
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
2
|
Chen SJ, Lu SY, Tseng CC, Huang KH, Chen TL, Fu LM. Rapid Microfluidic Immuno-Biosensor Detection System for the Point-of-Care Determination of High-Sensitivity Urinary C-Reactive Protein. BIOSENSORS 2024; 14:283. [PMID: 38920587 PMCID: PMC11201708 DOI: 10.3390/bios14060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic immuno-biosensor detection system consisting of a microfluidic spectrum chip and a micro-spectrometer detection device is presented for the rapid point-of-care (POC) detection and quantification of high-sensitivity C-reactive protein (hs-CRP) in urine. The detection process utilizes a highly specific enzyme-linked immunosorbent assay (ELISA) method, in which capture antibodies and detection antibodies are pre-deposited on the substrate of the microchip and used to form an immune complex with the target antigen. Horseradish peroxidase (HRP) is added as a marker enzyme, followed by a colorimetric reaction using 3,3',5,5'-tetramethylbenzidine (TMB). The absorbance values (a.u.) of the colorimetric reaction compounds are measured using a micro-spectrometer device and used to measure the corresponding hs-CRP concentration according to the pre-established calibration curve. It is shown that the hs-CRP concentration can be determined within 50 min. In addition, the system achieves recovery rates of 93.8-106.2% in blind water samples and 94.5-104.6% in artificial urine. The results showed that the CRP detection results of 41 urine samples from patients with chronic kidney disease (CKD) were highly consistent with the conventional homogeneous particle-enhanced turbidimetric immunoassay (PETIA) method's detection results (R2 = 0.9910). The experimental results showed its applicability in the detection of CRP in both urine and serum. Overall, the results indicate that the current microfluidic ELISA detection system provides an accurate and reliable method for monitoring the hs-CRP concentration in point-of-care applications.
Collapse
Affiliation(s)
- Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Song-Yu Lu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan;
- College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - To-Lin Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| |
Collapse
|
3
|
Yan H, Hu X, Shao H, Li J, Deng J, Liu L. Low-Cost Full-Range Detection of C-Reactive Protein in Clinical Samples by Aptamer Hairpin Probes and Coprecipitation of Silver Ions and Gold Nanoparticles. Anal Chem 2023; 95:11918-11925. [PMID: 37531571 DOI: 10.1021/acs.analchem.3c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
C-reactive protein (CRP) levels can vary widely related to diverse disease contexts. However, expensive antibodies have impeded the clinical utility of antibody-based full-range CRP assays, especially in developing countries. Herein, we established a low-cost, antibody-free, 96-well plate-based full-range CRP detection method by combining gold nanoparticles (AuNPs), silver iodide (AgI), Eosin Y, and the aptamer hairpin probe (AHP) with Ag+-mediated cytosine-cytosine mismatches, that is, the Au@AgI/Eosin Y-AHP method. After binding the target CRP, the AHP released Ag+, which subsequently induced the aggregation of AuNPs on the surface of AgI colloids, resulting in a significant increase in the adsorption of Eosin Y on the surface of AuNPs. The changes in fluorescence intensity (FI) of Eosin Y in the supernate without and with CRP were proportional to the concentration of the CRP in the wide range of 0.01-40 ng/mL (r = 0.9969), and 96 samples can be detected in 96-well plates simultaneously by a microplate reader within 45 min. Remarkably, the CRP levels of 100 clinical samples achieved with the Au@AgI/Eosin Y-AHP had a good correlation with those obtained with the latex-enhanced immune turbidimetry assay (r = 0.986). Furthermore, the kit based on the Au@AgI/Eosin Y-AHP method costs only $8.1 for 100 tests. Therefore, the new method is beneficial for less developed areas where expensive assays are not affordable.
Collapse
Affiliation(s)
- Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Kumar PS, Madapusi S, Goel S. Sub-second synthesis of silver nanoparticles in 3D printed monolithic multilayered microfluidic chip: Enhanced chemiluminescence sensing predictions via machine learning algorithms. Int J Biol Macromol 2023; 245:125502. [PMID: 37348592 DOI: 10.1016/j.ijbiomac.2023.125502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Futuristic microfluidics will require alternative ways to extend its potential in vast areas by integrating various facets such as automation of different subsystems, multiplexing, incorporation of cyber-physical capabilities, and rapid prototyping. On the rapid prototyping aspect, for the last decade, additive manufacturing (AM) or 3D printing (3DP) has advanced to become an alternative fabrication process for microfluidic devices, enabling industry-level abilities towards mass production. In this context, for the first time, this work demonstrates the fabrication of monolithic multilayer microfluidic devices (MMMD) from planar orientation (1 layer) to nonplanar (4 layers) monolithic microchannels. The developed MMM device was impeccable for synthesizing highly potentialized silver nanoparticles (AgNPs) in <1 s. Moreover, the transport of chemical species with laminar flow simulations was performed on the process along with the thorough characterizations of produced AgNPs, finding the mean AgNPs particle size of around 35 nm without any post-processing requirements. The well-known catalytic activity of AgNPs was leveraged to enhance weak chemiluminescence (CL) sensing signals by >1300 %, increasing CL sensitivity. Further, machine learning (ML) predictive models encouraged to obtain the experimental parameters without human intervention iterations for target-specific applications. The proposed methodology finds the potential to save resources, time, and enables automation with rapid prototyping, providing possibilities for mass fabrications.
Collapse
Affiliation(s)
- Pavar Sai Kumar
- MEMS, Microfluidics and Nano electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Srinivasan Madapusi
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai, United Arab Emirates
| | - Sanket Goel
- MEMS, Microfluidics and Nano electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
| |
Collapse
|
5
|
Tavakoli H, Mohammadi S, Li X, Fu G, Li X. Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis. Trends Analyt Chem 2022; 157:116806. [PMID: 37929277 PMCID: PMC10621318 DOI: 10.1016/j.trac.2022.116806] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microfluidic technology provides a portable, cost-effective, and versatile tool for point-of-care (POC) bioanalysis because of its associated advantages such as fast analysis, low volumes of reagent consumption, and high portability. Along with microfluidics, the application of nanomaterials in biosensing has attracted lots of attention due to their unique physical and chemical properties for enhanced signal modulation such as signal amplification and signal transduction for POC bioanalysis. Hence, an enormous number of microfluidic devices integrated with nano-sensors have been developed for POC bioanalysis targeting low-resource settings. Herein, we review recent advances in POC bioanalysis on nano-sensor-based microfluidic platforms. We first briefly summarized the different types of cost-effective microfluidic platforms, followed by a concise introduction to nanomaterial-based biosensors. Then, we highlighted the application of microfluidic platforms integrated with nano-sensors for POC bioanalysis. Finally, we discussed the current limitations and perspective trends of the nano-sensor-based microfluidic platforms for POC bioanalysis.
Collapse
Affiliation(s)
- Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Samayeh Mohammadi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030606, China
| | - Guanglei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA
| |
Collapse
|
6
|
Dang T, Li Z, Zhao L, Zhang W, Huang L, Meng F, Liu GL, Hu W. Ultrasensitive Detection of C-Reactive Protein by a Novel Nanoplasmonic Immunoturbidimetry Assay. BIOSENSORS 2022; 12:958. [PMID: 36354468 PMCID: PMC9688280 DOI: 10.3390/bios12110958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology has attracted much attention, and may become the key to a whole new world in the fields of food, agriculture, building materials, machinery, medicine, and electrical engineering, because of its unique physical and chemical properties, including high surface area and outstanding electrical and optical properties. The bottom-up approach in nanofabrication involves the growth of particles, and we were inspired to propose a novel nanoplasmonic method to detect the formation of nanoparticles in real time. This innovative idea may contribute to the promotion of nanotechnology development. An increase in nanometer particle size leads to optical extinction or density (OD)-value changes in our nanosensor chip at a specific wavelength measured in a generic microplate reader. Moreover, in applying this method, an ultrasensitive nanoplasmonic immunoturbidimetry assay (NanoPITA) was carried out for the high-throughput quantification of hypersensitive C-reactive protein (CRP), a well-known biomarker of cardiovascular, inflammatory, and tumor diseases. The one-step detection of the CRP concentration was completed in 10 min with high fidelity, using the endpoint analysis method. The new NanoPITA method not only produced a linear range from 1 ng/mL to 500 ng/mL CRP with the detection limit reduced to 0.54 ng/mL, which was an improvement of over 1000 times, with respect to regular immunoturbidity measurement, but was also effective in blood detection. This attractive method, combined with surface plasmon resonance and immunoturbidimetry, may become a new technology platform in the application of biological detection.
Collapse
Affiliation(s)
- Tang Dang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Zhang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liping Huang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Logan Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Huang S, Liu Z, Yan Y, Chen J, Yang R, Huang Q, Jin M, Shui L. Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. Biosens Bioelectron 2022; 207:114129. [DOI: 10.1016/j.bios.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
|
8
|
Nagy-Simon T, Hada AM, Suarasan S, Potara M. Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein. J Mol Struct 2021; 1246:131178. [DOI: 10.1016/j.molstruc.2021.131178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
|
9
|
Ding R, Qian Y, Chen M, Yi J, Zhao Z. The effect of N-acetylcysteine on the antibacterial capability and biocompatibility of nano silver-containing orthodontic cement. Angle Orthod 2021; 91:515-521. [PMID: 33570605 DOI: 10.2319/073120-670.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To determine whether the incorporation of N-acetylcysteine (NAC) improves the antibacterial ability and biocompatibility of nano silver (NAg)-containing orthodontic cement. MATERIALS AND METHODS NAg was synthesized using a sodium citrate reduction method. NAg particles were characterized using transmission electron microscopy and ultraviolet-visible absorption spectra. NAg and NAC were incorporated into a resin-modified glass ionomer cement. Enamel shear bond strength (SBS), antibacterial capability, and cytotoxicity were evaluated. RESULTS Incorporating 0.15% NAg and 20% NAC had no adverse effect on the SBS of orthodontic cement (P > .1). Adding NAC into NAg-containing cement greatly reduced the biofilm metabolic activity and lactic acid production (P < .05) and lowered the colony unit-forming counts by approximately 1 log (P < .05). The cell viability against NAg-containing cement was improved by NAC (P < .05). CONCLUSIONS The incorporation of NAC into NAg-containing cement achieved stronger antibacterial capability and better biocompatibility, without compromising the enamel SBS. The combined use of NAC and NAg is promising to combat caries in orthodontic practice.
Collapse
|
10
|
Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, Trozzi I, Guardigli M, Mirasoli M, Michelini E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:4309. [PMID: 34202483 PMCID: PMC8271422 DOI: 10.3390/s21134309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Antonia Lopreside
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Laura Montali
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
11
|
Liu F, Zou J, Luo X, Liu Y, Huang C, He X, Wang Y. A point-of-care chemiluminescence immunoassay for pepsinogen I enables large-scale community health screening. Anal Bioanal Chem 2021; 413:4493-4500. [PMID: 34041573 DOI: 10.1007/s00216-021-03412-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Pepsinogen I (PGI) can reflect the morphology and function of the gastric mucosa. Accordingly, the large-scale community health screening of PGI can dramatically increase the early diagnosis rate of gastric cancer. However, PGI testing can only be carried out in comprehensive hospitals and health examination centers. To ameliorate this issue, a point-of-care chemiluminescent immunoassay for PGI was developed in a fully automated miniaturized instrument. This instrument was especially developed for health check-ups in the grassroots communities; its volume of which is only 0.18 m3. Critically, the entire detection process for a single sample only requires 20 min, and the samples can be loaded continuously, making the method suitable for high-throughput analysis. The assay displayed an excellent detection limit of 0.048 ng/mL with a broad detection range of 0-200 ng/mL. Furthermore, this assay exhibited high sensitivity and specificity, had low intra- and inter-assay coefficients of variation (<10%), and was not affected after storage at 37 °C for 7 days. The assay was used to detect PGI in 95 clinical serum samples, and the results were highly correlated with those that were clinically tested (correlation coefficient, R2 = 0.998). Hence, the method established in this work has great application value and can be broadly applied for the large-scale screening of gastric cancer in resource-limited areas.
Collapse
Affiliation(s)
- Fangfang Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jingjing Zou
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangxiang Luo
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yu Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunrong Huang
- National & Local United Engineering Lab of Rapid Diagnostic Test, Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 5l0663, China
| | - Xiaowei He
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yu Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
12
|
Chen L, Li Y, Miao L, Pang X, Li T, Qian Y, Li H. "Lighting-up" curcumin nanoparticles triggered by pH for developing improved enzyme-linked immunosorbent assay. Biosens Bioelectron 2021; 188:113308. [PMID: 34030097 DOI: 10.1016/j.bios.2021.113308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
In the field of precision medicine, the anticipated features of ideal drug delivery systems (DDS) have high drug loading capacity and effective stimuli-triggered mechanism, which are fitting well with the expected merits of signal labels for enhanced enzyme-linked immunosorbent assay (ELISA). Inspired by this, poly (diallyldimethylammonium chloride)-capped curcumin nanoparticles (PDDA@CUR NPs) with high loading capacity were synthesized as signal labels and further applied to dual-model colorimetric and fluorescence ELISA for the detection of C-reactive protein (CRP). Curcumin (CUR) was elaborately selected as report molecule similar to the roles of drugs in DDS, which dispersed in neutral water exhibits a negligible fluorescence response due to the aggregation of CUR molecules induced quenching effect, stimulated by basic water (BW, pH 12.36), the allochroic effect from colorless to orange occurred and fluorescence restored because of the keto-enol tautomerism in the molecular structure of CUR, just like lighting-up (from signal "OFF" to signal "ON"), yielded a dual-model colorimetric and fluorescent signal readout. PDDA, as a polycationic electrolyte, provided a biological platform that is capable of interacting with CRP label antibodies by virtue of its positive centers. The results show that "lighting-up" CUR NPs-based dual-modal colorimetric and fluorescent ELISA for CRP detection has the merits of easy-to-use, good enough sensitivity and reliability. And more importantly, it brings innovative ideas for the precise identification and quantification of protein biomarkers.
Collapse
Affiliation(s)
- Lei Chen
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yan Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Luyang Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Xiaolong Pang
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China.
| |
Collapse
|
13
|
Zong C, Wang R, Jiang F, Zhang D, Yang H, Wang J, Lu X, Li F, Li P. Metal enhanced chemiluminescence nanosensor for ultrasensitive bioassay based on silver nanoparticles modified functional DNA dendrimer. Anal Chim Acta 2021; 1165:338541. [PMID: 33975696 DOI: 10.1016/j.aca.2021.338541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
A novel metal enhanced chemiluminescence (MEC) nanosensor was developed for ultrasensitive biosensing and imaging, based on functional DNA dendrimer (FDD), proximity-dependent DNAzyme and silver nanoparticles (AgNPs). The FDD containing two split G-quadruplex structures was prepared through an enzyme-free and step-by-step assembly strategy, and then reacted with AgNPs and hemin molecules to form the FDD/hemin/AgNPs facilely. Such a MEC nanosensor consisted of three modules: FDD (scaffold), the generated G-quadruplex/hemin DNAzyme (signal reporter) and AgNPs (chemiluminescence enhancer). The MEC effect was achieved by controlling the length of DNA sequences between AgNPs on the periphery of FDD and DNAzymes inside it. Such nanosensor exhibited 9-fold amplification and another 6.4-fold metal enhancement in chemiluminescence intensity, which can be easily applied into trace detection of multiple protein markers using a disposable protein immunoarray. The FDD/hemin/AgNPs-based multiplex MEC imaging assay showed wide linear ranges over 5 orders of magnitude and detection limits down to 5× 10-5 ng L-1 and 1.8 × 10-4 U mL-1 for cardiac troponin T and carcinoma antigen 125, demonstrating a promising potential in application to protein analysis and clinical diagnosis. Moreover, the MEC nanosensor can be effectively delivered into cells with excellent biocompatibility and outstanding stability, offering a new tool for detection of intracellular targets and suggesting wide applications in bioassay.
Collapse
Affiliation(s)
- Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ruike Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fan Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Duoduo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Junhong Wang
- Jiangsu Province Hospital, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, PR China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
14
|
Wang Y, Wang S, Huang M, Chen F. Bifunctionalized Prussian blue analogue particles oxidize luminol to produce chemiluminescence without other oxidants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Jiang F, Li P, Zong C, Yang H. Surface-plasmon-coupled chemiluminescence amplification of silver nanoparticles modified immunosensor for high-throughput ultrasensitive detection of multiple mycotoxins. Anal Chim Acta 2020; 1114:58-65. [DOI: 10.1016/j.aca.2020.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 11/29/2022]
|
16
|
Xie J, Tang MQ, Chen J, Zhu YH, Lei CB, He HW, Xu XH. A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 2020; 217:121070. [PMID: 32498852 DOI: 10.1016/j.talanta.2020.121070] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
C-reactive protein (CRP) level in blood is associated with the risk of developing cardiovascular events in higher-risk populations. We present a sandwich ELISA-like assay for the determination of CRP in blood by citicoline-bovine serum albumin (citicoline-BSA) conjugate and aptamer-functionalized gold nanoparticles (aptamer-AuNPs) nanozyme. The CRP in the blood sample was selectively adsorbed to the ELISA plate coated by citicoline-BSA, and then incubated with added aptamer-AuNPs. AuNPs exhibited peroxidase activity and oxidized 3,3'5,5'-tetramethylbenzidine from colorless to blue, achieving the measurement at 652 nm. The amplified signal increased linearly in a wide range from 0.1 to 200 ng mL-1 and with a detection limit of 8 pg mL-1. Finally, the method was further tested using rat blood from an isoproterenol-induced myocardial infarction experimental model to confirm its applicability. The developed method could directly determine CRP in blood sample after dilution with high accuracy and sensitivity. This method has many advantages, such as easiness to prepare materials, good stability between batches, high specificity, low detection limit, low-cost, easiness to operate with simple instruments, the most remarkable of which is its excellent lot-to-lot stability over the classical ELISA.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Ming-Qing Tang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Jia Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Ya-Han Zhu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Chao-Bo Lei
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Hong-Wei He
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Xiao-Hong Xu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|