1
|
Patel P, Jinugu ME, Thareja P. Rheology and Extrusion Printing of κ-Carrageenan/Olive Oil Emulsion Gel Tablets with Varying Surface Area to Volume Ratios for Release of Vitamin C and Curcumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16069-16084. [PMID: 39058356 DOI: 10.1021/acs.langmuir.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, κ-carrageenan and olive oil at different oil to κ-carrageenan ratios (OCR) are homogenized to create emulsion gels. Interestingly, confocal imaging shows that the oil droplets are stabilized in the κ-carrageenan-structured gel matrix without using any surfactants. Rheological studies show that the oil droplets enhanced the oscillatory yield stress and the maximum printable height of the emulsion gels. The creation of the emulsion gels with an OCR of 1:9-3:7 led to an improvement in the structural integrity of extrusion printed structures. The emulsion gel with an OCR of 3:7 efficiently encapsulates vitamin C in the aqueous phase and curcumin in the hydrophobic oil phase, enabling the extrusion 3D printing of tablets with varying surface area to volume (SA/V) ratios. The release of vitamin C and curcumin is influenced by the preparation method of printing versus casting and the SA/V ratio of the tablets. The hollow cylinder with the highest SA/V ratio was observed to have the highest vitamin C release, whereas for curcumin, the printed tablets had a higher release compared to the cast tablet. Additionally, through rheo-dissolution experiments, we observe a lower modulus and higher vitamin C release from the 3D-printed disc versus the higher modulus and lower vitamin C release from the cast disc tablet.
Collapse
Affiliation(s)
- Panchami Patel
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Dr. Kiran C. Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Yang X, Pei J, He X, Wang Y, Wang L, Shen F, Li P, Fang Y. A novel method for determination of peroxide value and acid value of extra-virgin olive oil based on fluorescence internal filtering effect correction. Food Chem 2024; 441:138342. [PMID: 38176142 DOI: 10.1016/j.foodchem.2023.138342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Peroxide value (PV) and acid value (AV) are widely used indicators for evaluating oxidation degree of olive oils. Fluorescence spectroscopy has been extensively studied on the detection of oil oxidation, however, the detection accuracy is limited due to internal filtering effect (IFE). Due to the primary and secondary IFE, at least two wavelengths of absorption information are required. Least squares support vector regression (LSSVR) models for PV and AV were established based on two absorption coefficients (μa) at 375 nm and emission wavelength and one fluorescence intensity at corresponding wavelength. The regression results proved that the model based on 375 and 475 nm could reach the best performance, with the highest correlation coefficient for prediction (rp) of 0.889 and 0.960 for PV and AV respectively. Finally, the explicit formulations for PV and AV were determined by nonlinear least squares fitting, and the rp could reach above 0.94 for two indicators.
Collapse
Affiliation(s)
- Xiaoyun Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Jingyu Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Xueming He
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China.
| | - Yue Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Liu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms , Ministry of Agriculture and Rural Affairs, Hangzhou 310022, China
| | - Fei Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| |
Collapse
|
3
|
Yasin N, Naqvi SMD, Akhter SM. Simultaneous spectrophotometric determination of Co (II) and Co (III) in acidic medium with partial least squares regression and artificial neural networks. Heliyon 2024; 10:e26373. [PMID: 38404845 PMCID: PMC10884494 DOI: 10.1016/j.heliyon.2024.e26373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
This study aims at the application of two chemometric techniques to visible spectra of acetic acid solutions of Co (II) and Co (III) for simultaneous determination thereof. Spectral data of 145 samples in the range of 400-700 nm were used to build the models. Partial least squares regression models were developed for which latent variables were determined using internal cross-validation with a leave-one-out strategy and 3 and 2 latent variables were selected for Co(II) and Co(III) based on root mean square error of cross-validation. For these models, root mean square errors of prediction were 1.16 and 0.536 mM and coefficients of determination were 0.975 and 0.892 for Co (II) and Co (III). As an alternate method, artificial neural networks consisting of three layers, with 10 neurons in hidden layer, were trained to model spectra and concentrations of cobalt species. Levenberg-Marquardt algorithm with feed-forward back-propagation learning resulted root mean square errors of prediction of 0.316 and 0.346 mM for Co (II) and Co (III) respectively and coefficients of determination were 0.996 and 0.988.
Collapse
Affiliation(s)
- Nausheen Yasin
- Department of Applied Chemistry and Chemical Technology, University of Karachi, Karachi, Pakistan
| | - Syed Mumtaz Danish Naqvi
- Department of Applied Chemistry and Chemical Technology, University of Karachi, Karachi, Pakistan
| | | |
Collapse
|
4
|
Lamas S, Ruano D, Dias F, Barreiro F, Pereira JA, Peres AM, Rodrigues N. Application of the FTIR technique as a non-invasive tool to discriminate Portuguese olive oils with Protected Designation of Origin. Chem Biodivers 2024; 21:e202301629. [PMID: 38109266 DOI: 10.1002/cbdv.202301629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023]
Abstract
Three Portuguese olive oils with PDO ('Azeite do Alentejo Interior', 'Azeites da Beira Interior' and 'Azeite de Trás-os-Montes') were studied considering their physicochemical quality, antioxidant capacity, oxidative stability, total phenols content, gustatory sensory sensations and Fourier transform infrared (FTIR) spectra. All oils fulfilled the legal thresholds of EVOOs and the PDO's specifications. Olive oils from 'Azeite da Beira Interior' and 'Azeite de Trás-os-Montes' showed greater total phenols contents and antioxidant capacities, while 'Azeites da Beira Interior' presented higher oxidative stabilities. Linear discriminant models were developed using FTIR spectra (transmittance and the 1st and 2nd derivatives), allowing the correct identification of the oils' PDO (100 % sensitivity and specificity, repeated K-fold-CV). This study also revealed that multiple linear regression models, based on FTIR transmittance data, could predict the sweet, bitter, and pungent intensities of the PDO oils (R2 ≥0.979±0.016; RMSE≤0.26±0.05, repeated K-fold-CV). This demonstrates the potential of using FTIR as a non-destructive technique for authenticating oils with PDO.
Collapse
Affiliation(s)
- Sandra Lamas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - Daniela Ruano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - Francisco Dias
- Centro de Investigação, Desenvolvimento e Inovação em Turismo (CiTUR), Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901, Leiria, Portugal
| | - Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - António M Peres
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| |
Collapse
|
5
|
Nayila I, Sharif S, Lodhi MS, Rehman MFU, Aman F. Synthesis, characterization and anti-breast cancer potential of an incensole acetate nanoemulsion from Catharanthus roseus essential oil; in silico, in vitro, and in vivo study. RSC Adv 2023; 13:32335-32362. [PMID: 37928847 PMCID: PMC10621725 DOI: 10.1039/d3ra06335f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
The characteristics of phytocompounds and essential oils have undergone extensive research in the medical and pharmaceutical sectors due to their extensive usage. In spite of the fact that these molecules are widely used, terpenes, terpenoids, and their derivatives have not yet been well characterized. This study intends to evaluate the prospective activity of incensole acetate (IA), a compound identified and isolated from Catharanthus roseus essential oil by GC/MS analysis and column chromatography, and to analyze the anticancer effect of an IA biosynthesized nanoemulsion against breast cancer. The in silico activity of IA against breast cancer targets was observed by molecular docking, ADMET assessment and molecular dynamics simulations. The IA-mediated nanoformulation exhibited cytotoxicity against breast cancer cell lines at an effective concentration when analyzed by MTT and crystal violet assay. The increased interleukin serum indicators were significantly improved as a result of nanoemulsion treatment in a DMBA-induced rat model. In addition, the anticancer properties of IA biosynthesized nanoemulsion are supported due to their potential effects on biochemical parameters, oxidative stress markers, proinflammatory cytokines, and upon tumor growth profiling in cancer-induced rats.
Collapse
Affiliation(s)
- Iffat Nayila
- Institute of Molecular Biology and Biotechnology, The University of Lahore Lahore Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore Lahore Pakistan
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology, The University of Lahore Lahore Pakistan
| | | | - Farhana Aman
- Department of Chemistry, The University of Lahore Sargodha Campus Sargodha Pakistan
| |
Collapse
|
6
|
Dhal S, Pal A, Gramza-Michalowska A, Kim D, Mohanty B, Sagiri SS, Pal K. Formulation and Characterization of Emulgel-Based Jelly Candy: A Preliminary Study on Nutraceutical Delivery. Gels 2023; 9:466. [PMID: 37367137 DOI: 10.3390/gels9060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The development of consumer-friendly nutraceutical dosage forms is highly important for greater acceptance. In this work, such dosage forms were prepared based on structured emulsions (emulgels), where the olive oil phase was filled within the pectin-based jelly candy. The emulgel-based candies were designed as bi-modal carriers, where oil-soluble curcumin and water-soluble riboflavin were incorporated as the model nutraceuticals. Initially, emulsions were prepared by homogenizing varied concentrations (10% to 30% (w/w)) of olive oil in a 5% (w/w) pectin solution that contained sucrose and citric acid. Herein, pectin acted as a structuring agent-cum-stabilizer. Physico-chemical properties of the developed formulations were thoroughly analyzed. These studies revealed that olive oil interferes with the formation of polymer networks of pectin and the crystallization properties of sugar in candies. This was confirmed by performing FTIR spectroscopy and DSC studies. In vitro disintegration studies showed an insignificant difference in the disintegration behavior of candies, although olive oil concentration was varied. Riboflavin and curcumin were then incorporated into the jelly candy formulations to analyze whether the developed formulations could deliver both hydrophilic and hydrophobic nutraceutical agents. We found that the developed jelly candy formulations were capable of delivering both types of nutraceutical agents. The outcome of the present study may open new directions for designing and developing oral nutraceutical dosage forms.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Anupam Pal
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Anna Gramza-Michalowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Seoul 25354, Republic of Korea
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Sai S Sagiri
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
7
|
Tsai YH, Chiang D, Li YT, Perng TP, Lee S. Thermal Degradation of Vegetable Oils. Foods 2023; 12:foods12091839. [PMID: 37174377 PMCID: PMC10178358 DOI: 10.3390/foods12091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Vegetable oils provide lipids and nutrition and provide foods with a desirable flavor, color, and crispy texture when used to prepare fried foods. However, the oil quality is degraded at elevated temperatures, and thus must be examined frequently because of the damage to human health. In this study, sunflower, soybean, olive, and canola oils were examined, and their properties were measured periodically at different elevated temperatures. The unsaturated triglyceride in oils reacted with the environmental oxygen or water vapor significantly changes in optical absorbance, viscosity, electrical impedance, and acid value. We used defect kinetics to analyze the evolution of these oil properties at elevated temperatures. The optical absorbance, viscosity, and electrical impedance follow the second-order, first-order, and zeroth-order kinetics, respectively. The rate constants of the above kinetics satisfy the Arrhenius equation. Olive oil has the lowest rate of color center and dynamic viscosity among the four oils, with the smallest pre-exponential factor and the largest activation energy, respectively. The rate constants of acid reaction also satisfy the Arrhenius equation. The activation energies of the polar compound and acid reaction are almost the same, respectively, implying that the rate constant is controlled by a pre-exponential factor if four oils are compared. Olive oil has the largest rate constant of acid reaction among the four oils, with the lowest pre-exponential factor.
Collapse
Affiliation(s)
- Yi-Hsiou Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Donyau Chiang
- National Applied Research Laboratories, Taiwan Instrument Research Institute, Hsinchu 300, Taiwan
| | - Yu-Ting Li
- National Applied Research Laboratories, Taiwan Instrument Research Institute, Hsinchu 300, Taiwan
| | - Tsong-Pyng Perng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sanboh Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Johnson JB, Walsh KB, Naiker M, Ameer K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023; 28:molecules28073215. [PMID: 37049978 PMCID: PMC10096661 DOI: 10.3390/molecules28073215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Infrared spectroscopy (wavelengths ranging from 750-25,000 nm) offers a rapid means of assessing the chemical composition of a wide range of sample types, both for qualitative and quantitative analyses. Its use in the food industry has increased significantly over the past five decades and it is now an accepted analytical technique for the routine analysis of certain analytes. Furthermore, it is commonly used for routine screening and quality control purposes in numerous industry settings, albeit not typically for the analysis of bioactive compounds. Using the Scopus database, a systematic search of literature of the five years between 2016 and 2020 identified 45 studies using near-infrared and 17 studies using mid-infrared spectroscopy for the quantification of bioactive compounds in food products. The most common bioactive compounds assessed were polyphenols, anthocyanins, carotenoids and ascorbic acid. Numerous factors affect the accuracy of the developed model, including the analyte class and concentration, matrix type, instrument geometry, wavelength selection and spectral processing/pre-processing methods. Additionally, only a few studies were validated on independently sourced samples. Nevertheless, the results demonstrate some promise of infrared spectroscopy for the rapid estimation of a wide range of bioactive compounds in food matrices.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kerry B Walsh
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Miadonye A, Amadu M, Stephens J, O'Keefe T. Correlation of tangible quality parameters of vegetable-based transformer fluids. Heliyon 2023; 9:e14763. [PMID: 37025818 PMCID: PMC10070675 DOI: 10.1016/j.heliyon.2023.e14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Due to the inherent environmental footprint of petroleum derived transformer fluids, the power industry is gradually exploring the potential of vegetable oils as alternatives. The impetus comes mostly from vegetable oils renewability and their inherent biodegradability. However, the major drawback in the use of vegetable oils as dielectric fluids is their lower oxidative stability and higher kinematic viscosity compared to mineral oils. The results obtained clearly demonstrate the correlation between spectroscopic data induction time, kinematic viscosity, acid value, and peroxide value. Quantitatively, the absorption frequencies of functional groups in vegetable oil transformer fluids that can be correlated to the mentioned quality parameters show noticeable changes with aging/oxidative degradation. The study also demonstrates the utility of integrating spectroscopic data to understand trends in induction time and kinematic viscosity of oil samples heated under transformer service conditions.
Collapse
Affiliation(s)
- Adango Miadonye
- School of Science & Technology, Cape Breton University, Sydney, NS, Canada
| | - Mumuni Amadu
- School of Science & Technology, Cape Breton University, Sydney, NS, Canada
- Corresponding author.
| | | | | |
Collapse
|
10
|
Hyperspectral Imaging and Chemometrics for Authentication of Extra Virgin Olive Oil: A Comparative Approach with FTIR, UV-VIS, Raman, and GC-MS. Foods 2023; 12:foods12030429. [PMID: 36765958 PMCID: PMC9914562 DOI: 10.3390/foods12030429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Limited information on monitoring adulteration in extra virgin olive oil (EVOO) by hyperspectral imaging (HSI) exists. This work presents a comparative study of chemometrics for the authentication and quantification of adulteration in EVOO with cheaper edible oils using GC-MS, HSI, FTIR, Raman and UV-Vis spectroscopies. The adulteration mixtures were prepared by separately blending safflower oil, corn oil, soybean oil, canola oil, sunflower oil, and sesame oil with authentic EVOO in different concentrations (0-20%, m/m). Partial least squares-discriminant analysis (PLS-DA) and PLS regression models were then built for the classification and quantification of adulteration in olive oil, respectively. HSI, FTIR, UV-Vis, Raman, and GC-MS combined with PLS-DA achieved correct classification accuracies of 100%, 99.8%, 99.6%, 96.6%, and 93.7%, respectively, in the discrimination of authentic and adulterated olive oil. The overall PLS regression model using HSI data was the best in predicting the concentration of adulterants in olive oil with a low root mean square error of prediction (RMSEP) of 1.1%, high R2pred (0.97), and high residual predictive deviation (RPD) of 6.0. The findings suggest the potential of HSI technology as a fast and non-destructive technique to control fraud in the olive oil industry.
Collapse
|
11
|
Rodrigues N, Peres F, Casal S, Santamaria-Echart A, Barreiro F, Peres AM, Alberto Pereira J. Geographical discrimination of olive oils from Cv. ‘Galega Vulgar’. Food Chem 2023; 398:133945. [DOI: 10.1016/j.foodchem.2022.133945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
|
12
|
Efficient mass spectrometric characterization and classification of methylmalonic aciduria subtypes through urinary and blood metabolic profiles fusion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Schmidt M, Prager A, Schönherr N, Gläser R, Schulze A. Reagent-Free Immobilization of Industrial Lipases to Develop Lipolytic Membranes with Self-Cleaning Surfaces. MEMBRANES 2022; 12:599. [PMID: 35736306 PMCID: PMC9229154 DOI: 10.3390/membranes12060599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
Biocatalytic membrane reactors combine the highly efficient biotransformation capability of enzymes with the selective filtration performance of membrane filters. Common strategies to immobilize enzymes on polymeric membranes are based on chemical coupling reactions. Still, they are associated with drawbacks such as long reaction times, high costs, and the use of potentially toxic or hazardous reagents. In this study, a reagent-free immobilization method based on electron beam irradiation was investigated, which allows much faster, cleaner, and cheaper fabrication of enzyme membrane reactors. Two industrial lipase enzymes were coupled onto a polyvinylidene fluoride (PVDF) flat sheet membrane to create self-cleaning surfaces. The response surface methodology (RSM) in the design-of-experiments approach was applied to investigate the effects of three numerical factors on enzyme activity, yielding a maximum activity of 823 ± 118 U m-2 (enzyme concentration: 8.4 g L-1, impregnation time: 5 min, irradiation dose: 80 kGy). The lipolytic membranes were used in fouling tests with olive oil (1 g L-1 in 2 mM sodium dodecyl sulfate), resulting in 100% regeneration of filtration performance after 3 h of self-cleaning in an aqueous buffer (pH 8, 37 °C). Reusability with three consecutive cycles demonstrates regeneration of 95%. Comprehensive membrane characterization was performed by determining enzyme kinetic parameters, permeance monitoring, X-ray photoelectron spectroscopy, FTIR spectroscopy, scanning electron microscopy, and zeta potential, as well as water contact angle measurements.
Collapse
Affiliation(s)
- Martin Schmidt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (M.S.); (A.P.); (N.S.)
| | - Andrea Prager
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (M.S.); (A.P.); (N.S.)
| | - Nadja Schönherr
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (M.S.); (A.P.); (N.S.)
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany;
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (M.S.); (A.P.); (N.S.)
| |
Collapse
|
14
|
ZENG G, TIAN W, ZENG Z, YAN X, YU P, GONG D, WANG J. Construction and in vitro digestibility evaluation of a novel human milk fat substitute rich in structured triglycerides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Affiliation(s)
- Guibing ZENG
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Wenran TIAN
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Zheling ZENG
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Xianghui YAN
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Ping YU
- Nanchang University, China; Nanchang University, China; Nanchang University, China
| | - Deming GONG
- New Zealand Institute of Natural Medicine Research, New Zealand
| | - Jun WANG
- Nanchang University, China; Nanchang University, China
| |
Collapse
|
15
|
Jolayemi OS, Tokatli F, Ozen B. UV–Vis spectroscopy for the estimation of variety and chemical parameters of olive oils. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00986-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lamas S, Rodrigues N, Fernandes IP, Barreiro MF, Pereira JA, Peres AM. Fourier transform infrared spectroscopy-chemometric approach as a non-destructive olive cultivar tool for discriminating Portuguese monovarietal olive oils. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Valasi L, Kokotou MG, Pappas CS. GC-MS, FTIR and Raman spectroscopic analysis of fatty acids of Pistacia vera (Greek variety "Aegina") oils from two consecutive harvest periods and chemometric differentiation of oils quality. Food Res Int 2021; 148:110590. [PMID: 34507735 DOI: 10.1016/j.foodres.2021.110590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Pistacia vera oil is a rich source of unsaturated fatty acids, whose presence is associated with high quality and nutritional value. According to the literature, fatty acid oil composition is not constant every harvest year, but varies mainly depending on climate conditions. Therefore, the knowledge of oil composition in fatty acids is necessary to assess both its quality and its nutritional value. Twenty-two samples (11 samples from the harvest year 2017 and 11 samples from 2018) of the Greek variety "Aegina" were collected from four different Greek regions, from producers following the same cultivation and post-harvest cares. Extraction oil yields were found to be similar (61.7% w/w, 2017; 60.8% w/w, 2018). A reduction of the saturated fatty acids content was determined in 2018 (mean values 12.2% w/w against 13.8% w/w in 2017) by Gas Chromatography-Mass Spectrometry, accompanied by an increase of the unsaturated ones (mean values 87.9% w/w against 86.2% w/w in 2017). These results indicate that the harvest year 2018 may be considered superior to 2017 in terms of quality and nutritional value and may be correlated with an increased mean rain rate in 2018 and a slight decrease of the mean temperature. Fourier transform infrared (FTIR) and Raman spectroscopic studies of the oils were also performed. Three chemometric models were developed for the two consecutive harvest years of pistachio oil and the discrimination was based on GC-MS analysis, FTIR and Raman spectroscopic data combined with cross-validation techniques and comparison among them. The most successful chemometric model was that based on FTIR spectroscopy, which has the advantage of speed, simplicity and economy. Such a chemometric model may help in estimating the quality of Pistacia vera oils.
Collapse
Affiliation(s)
- Lydia Valasi
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Christos S Pappas
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Greece.
| |
Collapse
|
18
|
Mousa MAA, Wang Y, Antora SA, Al-Qurashi AD, Ibrahim OHM, He HJ, Liu S, Kamruzzaman M. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils. Crit Rev Food Sci Nutr 2021; 62:8009-8027. [PMID: 33977844 DOI: 10.1080/10408398.2021.1922872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Authenticity and adulteration detection are primary concerns of various stakeholders, such as researchers, consumers, manufacturers, traders, and regulatory agencies. Traditional approaches for authenticity and adulteration detection in edible oils are time-consuming, complicated, laborious, and expensive; they require technical skills when interpreting the data. Over the last several years, much effort has been spent in academia and industry on developing vibrational spectroscopic techniques for quality, authenticity, and adulteration detection in edible oils. Among them, Fourier transforms infrared (FT-IR) spectroscopy has gained enormous attention as a green analytical technique for the rapid monitoring quality of edible oils at all stages of production and for detecting and quantifying adulteration and authenticity in edible oils. The technique has several benefits such as rapid, precise, inexpensive, and multi-analytical; hence, several parameters can be predicted simultaneously from the same spectrum. Associated with chemometrics, the technique has been successfully implemented for the rapid detection of adulteration and authenticity in edible oils. After presenting the fundamentals, the latest research outcomes in the last 10 years on quality, authenticity, and adulteration detection in edible oils using FT-IR spectroscopy will be highlighted and described in this review. Additionally, opportunities, challenges, and future trends of FT-IR spectroscopy will also be discussed.
Collapse
Affiliation(s)
- Magdi A A Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Yangyang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Salma Akter Antora
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, USA
| | - Adel D Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omer H M Ibrahim
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Ornamental Plants and Landscape Gardening, Faculty of Agriculture, Assiut University, Egypt
| | - Hong-Ju He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, China
| | - Mohammed Kamruzzaman
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
19
|
Revelou PK, Pappa C, Kakouri E, Kanakis CD, Papadopoulos GK, Pappas CS, Tarantilis PA. Discrimination of botanical origin of olive oil from selected Greek cultivars by SPME-GC-MS and ATR-FTIR spectroscopy combined with chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2994-3002. [PMID: 33205420 DOI: 10.1002/jsfa.10932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Consumers today wish to know the botanical origin of the olive oil they purchase. The objective of the present study was the development of robust chemometric models based on gas chromatography-mass spectrometry (GC-MS) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for the purpose of botanical differentiation of three commercial Greek olive oil cultivars. RESULTS Using the solid-phase microextraction technique (SPME), volatile compounds (VC) were obtained and analyzed by GC-MS. Five hydrocarbons and one ester were selected by the forward stepwise algorithm, which best discriminated the olive oil samples. From ATR-FTIR analysis, the spectral regions chosen from the forward stepwise algorithm were associated with CO stretching vibration of the esters of triglycerides and the CH bending vibrations of the CH2 aliphatic group and double bonds. Application of the supervised methods of linear and quadratic discriminant cross-validation analysis, based on VC data, provided a correct classification score of 97.4% and 100.0%, respectively. Corresponding statistical analyses were used in the mid-infrared spectra, by which 96.1% of samples were discriminated correctly. CONCLUSION ATR-FTIR and SPME-GC-MS techniques in conjunction with the appropriate feature selection algorithm and classification methods proved to be powerful tools for the authentication of Greek olive oil. The proposed methodology could be used in an industrial setting for determination of the botanical origin of Greek olive oil. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panagiota-Kyriaki Revelou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Charis Pappa
- Erganal Food and Environmental Testing Laboratories, Piraeus, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Charalabos D Kanakis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - George K Papadopoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Christos S Pappas
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
20
|
Zaroual H, Chénè C, El Hadrami EM, Karoui R. Application of new emerging techniques in combination with classical methods for the determination of the quality and authenticity of olive oil: a review. Crit Rev Food Sci Nutr 2021; 62:4526-4549. [DOI: 10.1080/10408398.2021.1876624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hicham Zaroual
- Université d'Artois, UMRT 1158 BioEcoAgro, ICV-Institut Charles VIOLLETTE, Lens, France
- Sidi Mohamed Ben Abdellah University, Applied Organic Chemistry Laboratory, Fez, Morocco
| | | | - El Mestafa El Hadrami
- Sidi Mohamed Ben Abdellah University, Applied Organic Chemistry Laboratory, Fez, Morocco
| | - Romdhane Karoui
- Université d'Artois, UMRT 1158 BioEcoAgro, ICV-Institut Charles VIOLLETTE, Lens, France
- INRA, USC 1281,Lille, France
- Yncréa, Lille, France
- University of the Littoral Opal Coast (ULCO), Boulogne sur Mer, France
- University of Lille, Lille, France
| |
Collapse
|
21
|
Dogruer I, Uyar HH, Uncu O, Ozen B. Prediction of chemical parameters and authentication of various cold pressed oils with fluorescence and mid-infrared spectroscopic methods. Food Chem 2020; 345:128815. [PMID: 33333358 DOI: 10.1016/j.foodchem.2020.128815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
It was aimed to compare the performances of two spectroscopic methods, fluorescence and mid-infrared spectroscopy, in terms of their adulteration detection and estimation of several chemical properties for various cold pressed seed oils. Spectroscopic profiles, fatty acid, free fatty acid and total phenol contents of pumpkin seed, grape seed, black cumin oil, and sesame seed oils were determined and these oils were mixed with sunflower oil at 1-50% (v/v). Both spectroscopic techniques provided comparable results for determination of adulteration of each oil type and the most successful prediction was obtained for pumpkin seed oil at levels >%1. Combined data set of oils resulted in successful quantification of their free fatty acid value, total phenol and major fatty acids contents with both spectroscopic methods regardless of oil type. Both techniques could be used as reliable, fast and environmentally friendly alternatives in the analyses of different types of seed oils.
Collapse
Affiliation(s)
- Ilgin Dogruer
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey
| | - H Hilal Uyar
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey
| | - Oguz Uncu
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey
| | - Banu Ozen
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey.
| |
Collapse
|
22
|
Wang QQ, Huang HY, Wang YZ. FTIR and UV spectra for the prediction of triterpene acids in Macrohyporia cocos. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Total and Sustainable Valorisation of Olive Pomace Using a Fractionation Approach. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olive pomace management represents a great concern to the olive oil industry. This work focused on the development of a “zero waste” strategy for olive pomace based on a fractionation approach resulting in the obtention of different value-added fractions. The physicochemical composition of edible fractions obtained (liquid and pulp) was analysed. The potential use as a solid biofuel of the non-edible fraction (stones) was evaluated. High amounts of hydroxytyrosol (513.61–625.76 mg/100 g dry weight) were present in the liquid fraction. Pulp fraction was demonstrated to be a good source of fibre (53–59% dry weight) with considerable antioxidant activity both from free and bound phenolics. The stones fraction exhibited substantial high heating values (18.65–18.94 megajoule (MJ/kg). All these results support the added value of the olive pomace fractions combining the biofuel potential from the stones fraction and the functional food ingredients’ potential both from liquid and pulp fractions. The present methodology seems to be a feasible whole valorisation approach to achieve the circularity in the olive oil sector, prioritising obtaining high over low added-value products.
Collapse
|
24
|
Palagano R, Valli E, Tura M, Cevoli C, Pérez-Camino MDC, Moreda W, Bendini A, Gallina Toschi T. Fatty Acid Ethyl Esters in Virgin Olive Oils: In-House Validation of a Revised Method. Foods 2020; 9:E924. [PMID: 32674289 PMCID: PMC7404475 DOI: 10.3390/foods9070924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
The content of fatty acid ethyl esters (FAEEs) is one of the quality parameters to define if an olive oil can be classified as extra virgin as these compounds are considered markers for virgin olive oils obtained from poor-quality olives. In addition, FAEEs can also be indirect markers to detect soft deodorization treatment. In this study, an off-line HPLC-GC-FID method for determination of FAEEs is presented, revising the preparative step and the GC injector required by the official method (EU Reg. 61/2011). After optimization, the method was validated in-house by analyzing several parameters (linearity, limit of detection LOD, limit of quantification LOQ, robustness, recovery, precision, and accuracy) to determine its effectiveness. Linearity was measured in the 2.5-50 mg/L range; furthermore, intra-day and inter-day precision values were lower than 15%, while the LOD and LOQ were lower than 1 and 1.5 mg/kg, respectively, for all compounds considered. The main advantages of this revised protocol are: (i) significant reduction in time and solvents needed for each analytical determination; (ii) application of HPLC as an alternative to traditional LC, carried with manually packed glass columns, thus simplifying the separation step.
Collapse
Affiliation(s)
- Rosa Palagano
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy; (R.P.); (E.V.); (M.T.); (C.C.); (T.G.T.)
| | - Enrico Valli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy; (R.P.); (E.V.); (M.T.); (C.C.); (T.G.T.)
| | - Matilde Tura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy; (R.P.); (E.V.); (M.T.); (C.C.); (T.G.T.)
| | - Chiara Cevoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy; (R.P.); (E.V.); (M.T.); (C.C.); (T.G.T.)
| | | | - Wenceslao Moreda
- Instituto de la Grasa (CSIC), 41013 Sevilla, Spain; (M.d.C.P.-C.); (W.M.)
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy; (R.P.); (E.V.); (M.T.); (C.C.); (T.G.T.)
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy; (R.P.); (E.V.); (M.T.); (C.C.); (T.G.T.)
| |
Collapse
|
25
|
Uncu O, Ozen B. Importance of some minor compounds in olive oil authenticity and quality. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. Int J Biol Macromol 2020; 149:941-950. [DOI: 10.1016/j.ijbiomac.2020.01.175] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
|
27
|
Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils. Molecules 2020; 25:molecules25071614. [PMID: 32244701 PMCID: PMC7181075 DOI: 10.3390/molecules25071614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this work was to characterize the pistachio oil of the Greek variety, "Aegina", evaluate its various quality indices, and investigate the potential use of FTIR as a tool to discriminate different oil qualities. For this purpose, the antioxidant capacity, the tocopherol content and the oxidation and degradation of fatty acids, as described by k, Δk, R-values, and free acidity were evaluated using 45 samples from eight different areas of production and two subsequent years of harvesting. The antioxidant capacity was estimated using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS) and 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazine (DPPH) assays, and the tocopherol content was quantified through HPLC analysis. FTIR spectra were recorded for all samples and multivariate analysis was applied. The results showed significant differences between the oil samples of different harvesting years, which were successfully discriminated by a representative FTIR spectral region based on R-value, total antioxidant capacity, and scavenging capacity, through ABTS. A similar approach could not be confirmed for the other quality parameters, such as the free acidity and the tocopherol content. This research highlighted the possibility of developing a simple, rapid, economic, and environment friendly method for the discrimination of pistachio oils according to their quality profile, through FTIR spectroscopy and multivariate analysis.
Collapse
|
28
|
Uncu O, Ozen B, Tokatli F. Authentication of Turkish olive oils by using detailed pigment profile and spectroscopic techniques. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2153-2165. [PMID: 31901137 DOI: 10.1002/jsfa.10239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/07/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Minor compounds of olive oil could have discriminatory characteristics in the authentication of this product. It was aimed to determine the detailed pigment profiles of Turkish olive oils and use them in differentiation of the samples in comparison to fast, reliable, and environmentally friendly Fourier-transform infrared (FTIR) and ultraviolet (UV)-visible spectroscopic techniques. Pigment contents of 91 olive oils obtained from different locations for two consecutive harvesting years were determined with chromatographic analysis and FTIR and UV-visible spectra of these samples were also obtained. All data were analyzed with orthogonal partial least-squares discriminant analysis to investigate the differentiation ability of these methods with regard to their detailed pigment and spectroscopic profiles. RESULTS Pheophytin a (2.78-8.98 mg kg-1 ) and lutein (1.19-4.07 mg kg-1 ) were the major pigments in all samples. Pigment profiles provided successful classification of olive oils with respect to their designated origins and harvesting year with average correct classification rates of 97%. UV-visible spectroscopy has quite similar results with pigment profiles in terms of its discriminatory power. In addition, FTIR and fused data were slightly better in discrimination of the samples, and the fused dataset has the highest correct classification rate of 100%. CONCLUSION Use of detailed pigment profiles is quite promising in authentication of olive oils. However, UV-visible and FTIR spectroscopic techniques could be reliable alternatives for the same purposes. All of the techniques studied have great potential in 'protected designation of origin' certification studies. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Oguz Uncu
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - Banu Ozen
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - Figen Tokatli
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
29
|
Zhang X, Wu Q, Zhao Y, Yang X. Decaisnea insignis Seed Oil Inhibits Trimethylamine- N-oxide Formation and Remodels Intestinal Microbiota to Alleviate Liver Dysfunction in l-Carnitine Feeding Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13082-13092. [PMID: 31671940 DOI: 10.1021/acs.jafc.9b05383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated circulating level of the intestinal microbiota-derived l-carnitine metabolite trimethylamine-N-oxide (TMAO) has recently been linked to many chronic diseases. The purpose of our study was to investigate the effects of omega-7-enriched Decaisnea insignis seed oil (DISO) on reducing TMAO formation to prevent the l-carnitine-induced hepatic damage in mice. Feeding of mice with 3% l-carnitine in drinking water clearly increased the serum and urinary levels of TMAO (p < 0.05 vs Normal), whereas the serum and urinary TMAO formation was sharply reduced by DISO administration (p < 0.05). Meanwhile, DISO resulted in strong inhibition against the elevation of hepatic injury marker (AST, ALT, and ALP) activities and dyslipidemia (TC, TG, LDL-C, and HDL-C), as well as liver inflammatory cytokine (IL-1, IL-6, TNF-α, and TNF-β) release in l-carnitine-fed mice (p < 0.05). As revealed by 16S rDNA gene sequencing, DISO significantly inhibited the l-carnitine-induced elevations in the abundance of Firmicutes, Proteobacteria, and Erysipelotrichaceae and the increases in the proportion of Lactobacillus and Akkermansia, revealing that DISO attenuated the l-carnitine-caused gut dysbiosis. These findings suggested that DISO could alleviate liver dysfunction in l-carnitine-fed mice, which might be due to the protection against TMAO formation by modulating the gut microbiota.
Collapse
|