1
|
Zhao Y, Jiang X, Huang K, Xiong X, Yang Q. A smartphone-integrated ratiometric fluorescent sensor for ascorbic acid determination using microplasma-enabled carbon dots and rhodamine B. Food Chem 2025; 463:141280. [PMID: 39288466 DOI: 10.1016/j.foodchem.2024.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
A switchable ratiometric fluorescent smartphone-assisted sensing platform based on nitrogen-doped carbon dots (N-CDs) and Rhodamine B was fabricated for the determination of the ascorbic acid (AA) content in fruits by quenching the fluorescence of N-CDs with Hg2+ (turn-off) and recovering with AA (turn-on). The blue-emission N-CDs was synthesized by liquid dielectric barrier discharge microplasma with an average size of 3.65 nm and an absolute quantum yield of 18 % (excited at 345 nm). In addition, the fluorescence color was converted to RGB values, enabling visual and quantitative determination of AA. Under optimal parameters, the linear ranges for detecting AA were found to be 3-170 μM and 5-170 μM for fluorescence spectrometer and smartphone sensing platform. The detection limits were 0.98 μM and 2.90 μM, respectively. Furthermore, the satisfactory recoveries in fruits were obtained by RF probe and smartphone platform. This smartphone-assisted platform will facilitate sensitive and visual determination for AA.
Collapse
Affiliation(s)
- Yilan Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xue Jiang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xiaoli Xiong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Qing Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
2
|
He Y, Zou H, Zhou S, Liu D, Jiang X, Zhang Z, Li S. Smartphone-assisted fluorescent sensor for the visualization and quantitative detection of doxycycline and L-arginine. Food Chem 2024; 459:140365. [PMID: 39024874 DOI: 10.1016/j.foodchem.2024.140365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
A novel smartphone-assisted fluorescent sensor based on europium/zirconium metal-organic framework (Eu0.5/Zr0.5-MOF) was developed for the fast and sensitive determination of doxycycline (DOX) and L-arginine (Arg). After the addition of DOX, the fluorescence of Eu0.5/Zr0.5-MOF was quenched owing to the inner filter effect (IFE). When Arg was introduced into the Eu0.5/Zr0.5-MOF@DOX complex system, the fluorescence was recovered because the interaction between Arg and Eu0.5/Zr0.5-MOF@DOX weakened the IFE. Moreover, the Eu0.5/Zr0.5-MOF produced continuous fluorescence color changes for the visual measurement of DOX and Arg. The fluorescent probe for DOX and Arg offered broad linear ranges of 0.05-80 and 0.1-60 μg/mL, respectively, with detection limits as low as 2.07 and 67.5 ng/mL. The proposed method was successfully applied to monitor DOX in eggs and Arg in human serum. This work provides a powerful platform for the real-time and visual analysis of DOX and Arg in food and biological samples.
Collapse
Affiliation(s)
- Yuxin He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hecun Zou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Song Zhou
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Dongmei Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xinhui Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Siqiao Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China.
| |
Collapse
|
3
|
Hu C, Wang W, Li Q, Liu B, Xiao F, Liu J, Yang S. A Ratiometric Fluorescence Assay for Detection of Ascorbic Acid Based on N,S Co-Doped Carbon Dots Combined With Ce 4. LUMINESCENCE 2024; 39:e4912. [PMID: 39354830 DOI: 10.1002/bio.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Hence, N,S-CDs with photoluminescent property were simply synthesized via a one-step hydrothermal method. Combined with the commercial reagent Ce4+, a ratiometric fluorescence assay for ascorbic acid (AA) detection was established. Ce4+, possessing oxidization, could directly oxidize o-phenylenediamine (OPD) to form the yellow fluorescent product oxOPD. Under the excitation wavelength of 370 nm, oxOPD had a maximum fluorescence emission at 562 nm. Meanwhile, due to the occurrence of the inner filter effect (IFE), oxOPD quenched the fluorescence of N,S-CDs. However, ascorbic acid (AA) inhibited the oxidation of Ce4+, causing the fluorescence of oxOPD at 562 nm to decrease, accompanied by an increase in the fluorescence belonging to N,S-CDs at 450 nm. Thus, a Ce4+-assisted ratiometric fluorescence method was established for AA detection. The two fluorescence output signals in this method had opposite changing trends, which could reduce system errors and improve the accuracy. This method was successfully applied to the determination of AA in drugs and fruits.
Collapse
Affiliation(s)
- Congcong Hu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
- Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Wenjuan Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Qianwen Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Bin Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Fubing Xiao
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Shengyuan Yang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| |
Collapse
|
4
|
Belayneh Asfaw T, Getachew Tadesse M, Beshah Tessema F, Woldemichael Woldemariam H, V. Chinchkar A, Singh A, Upadhyay A, Mehari B. Ultrasonic-assisted extraction and UHPLC determination of ascorbic acid, polyphenols, and half-maximum effective concentration in Citrus medica and Ziziphus spina-christi fruits using multivariate experimental design. Food Chem X 2024; 22:101310. [PMID: 38645936 PMCID: PMC11031790 DOI: 10.1016/j.fochx.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
This study aimed to determine the concentrations of ascorbic acid and polyphenols in fruits and peels of Citrus medica and Ziziphus spina-christi grown in Ethiopia. Conditions of ultrasound-assisted extraction (UAE) and ultra-high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) were optimized, using a multivariate experimental design. The optimum conditions of UAE were 15 min extraction time at 35 ℃, with 75 % aqueous methanol as solvent, and a fruit powder-to-solvent ratio (m/v) of 1:15. Among the different drying conditions investigated, freeze-drying was found to be appropriate for analyzing ascorbic acid, polyphenols, and antioxidant potential. The overall ranges, across the fruits and peels, of ascorbic acid, total polyphenols, and antioxidant potentials (EC50) obtained were 8.7 ± 1.4-91.2 ± 2.6 mg/100 g, 253.0 ± 6.3-764.1 ± 25.8 mg GAE/100 g and 2.4 ± 0.1-26.1 ± 2.9 mg/mL, respectively. This indicates that the fruits and peels of the studied plants are advantageous as sources of ascorbic acid and polyphenols.
Collapse
Affiliation(s)
- Tilahun Belayneh Asfaw
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, P.O.Box 196, Gondar, Ethiopia
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
- Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Fekade Beshah Tessema
- Department of Chemistry, College of Natural and Computational Sciences, Woldia University, Woldia, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, College of Engineering, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
- Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Ajay V. Chinchkar
- National Institute of Food Technology Entrepreneurship and Management, Department of Food Science and Technology, Haryana, India
| | - Anurag Singh
- National Institute of Food Technology Entrepreneurship and Management, Department of Food Science and Technology, Haryana, India
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India
| | - Ashutosh Upadhyay
- National Institute of Food Technology Entrepreneurship and Management, Department of Food Science and Technology, Haryana, India
| | - Bewketu Mehari
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, P.O.Box 196, Gondar, Ethiopia
| |
Collapse
|
5
|
Guo H, Ren B, Peng L, Liu Y, Tian J, Xu J, Yu Z, Hui Y, Yang W. Covalent post-synthetic modification of MOFs as a fluorescent sensor for the efficient detection of the biomarker of cystinuria. Mikrochim Acta 2024; 191:432. [PMID: 38951266 DOI: 10.1007/s00604-024-06519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Cystinuria is a genetic disorder, and in severe cases, it might lead to kidney failure. As an important biomarker for cystinuria, the level of arginine (Arg) in urine is a vital indicator for cystinuria screening. Therefore, it is urgently needed to detect Arg with high selectivity and sensitivity. In this work, a boric acid functionalized Zr-based metal-organic framework UiO-PhbA is prepared by grafting phenylboronic acid on UiO-66-NH2 through a Schiff base reaction using a covalent post-synthesis modification (CPSM) strategy. The prepared UiO-PhbA exhibits a sensitive and specific fluorescence "turn-on" response to Arg and can be exploited to detect Arg in human serum and urine samples with a broad linear range of 0.6-350 µM and low limit of detection (LOD) of 18.45 nM. This study provides a new and reliable rapid screening protocol for sulfite oxidase deficiency-related diseases.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Borong Ren
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Liping Peng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Yinsheng Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Jiaying Tian
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Jiaxi Xu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Zhiguo Yu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Yingfei Hui
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Wu Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
6
|
Pukleš I, Páger C, Sakač N, Matasović B, Kovač-Andrić E, Šarkanj B, Samardžić M, Budetić M, Molnárová K, Marković D, Vesinger A, Jozanović M. A new green approach to L-histidine and β-alanine analysis in dietary supplements using rapid and simple contactless conductivity detection integrated with high-resolution glass-microchip electrophoresis. Anal Bioanal Chem 2024; 416:3605-3617. [PMID: 38713223 DOI: 10.1007/s00216-024-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
The analysis of dietary supplements is far less regulated than pharmaceuticals, leading to potential quality issues. Considering their positive effect, many athletes consume supplements containing L-histidine and β-alanine. A new microfluidic method for the determination of L-histidine and β-alanine in dietary supplement formulations has been developed. For the first time, capacitively coupled contactless conductivity detection was employed for the microchip electrophoresis of amino acids in real samples. A linear relationship between detector response and concentration was observed in the range of 10-100 µmol L-1 for L-histidine (R2 = 0.9968) and β-alanine (R2 = 0.9954), while achieved limits of detection (3 × S/N ratio) were 4.2 µmol L-1 and 5.2 µmol L-1, respectively. The accuracy of the method was confirmed using recovery experiments as well as CE-UV-VIS and HPLC-UV-VIS techniques. The developed method allows unambiguous identification of amino acids in native form without chemical derivatization and with the possibility of simultaneous analysis of amino acids with metal cations.
Collapse
Affiliation(s)
- Iva Pukleš
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, Pécs, 7624, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja, Pécs, 7624, Hungary
| | - Csilla Páger
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova 7, HR-42000, Varaždin, Croatia
| | - Brunislav Matasović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Elvira Kovač-Andrić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Bojan Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000, Koprivnica, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Ana Vesinger
- Pirelli Deutschland GmbH, Höchster Straße 48-60, 64747, Breuberg, Germany
| | - Marija Jozanović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia.
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, Pécs, 7624, Hungary.
| |
Collapse
|
7
|
Zhang W, Li X, Liu X, Song K, Wang H, Wang J, Li R, Liu S, Peng Z. A Novel Electrochemical Sensor Based on Pd Confined Mesoporous Carbon Hollow Nanospheres for the Sensitive Detection of Ascorbic Acid, Dopamine, and Uric Acid. Molecules 2024; 29:2427. [PMID: 38893303 PMCID: PMC11173461 DOI: 10.3390/molecules29112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we designed a novel electrochemical sensor by modifying a glass carbon electrode (GCE) with Pd confined mesoporous carbon hollow nanospheres (Pd/MCHS) for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The structure and morphological characteristics of the Pd/MCHS nanocomposite and the Pd/MCHS/GCE sensor are comprehensively examined using SEM, TEM, XRD and EDX. The electrochemical properties of the prepared sensor are investigated through CV and DPV, which reveal three resolved oxidation peaks for AA, DA, and UA, thereby verifying the simultaneous detection of the three analytes. Benefiting from its tailorable properties, the Pd/MCHS nanocomposite provides a large surface area, rapid electron transfer ability, good catalytic activity, and high conductivity with good electrochemical behavior for the determination of AA, DA, and UA. Under optimized conditions, the Pd/MCHS/GCE sensor exhibited a linear response in the concentration ranges of 300-9000, 2-50, and 20-500 µM for AA, DA, and UA, respectively. The corresponding limit of detection (LOD) values were determined to be 51.03, 0.14, and 4.96 µM, respectively. Moreover, the Pd/MCHS/GCE sensor demonstrated outstanding selectivity, reproducibility, and stability. The recovery percentages of AA, DA, and UA in real samples, including a vitamin C tablet, DA injection, and human urine, range from 99.8-110.9%, 99.04-100.45%, and 98.80-100.49%, respectively. Overall, the proposed sensor can serve as a useful reference for the construction of a high-performance electrochemical sensing platform.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Xijiao Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Xiaoxue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Kaixuan Song
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Haiyang Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Renlong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Zhikun Peng
- China Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Liu Y, Sun G, Ma P, Song D. Combining fluorescent quantum dots with transition metal oxide shell as core-shell nanocomposite for turn-on sensing of ascorbic acid. Talanta 2024; 271:125687. [PMID: 38271843 DOI: 10.1016/j.talanta.2024.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Ascorbic acid (AA) is an essential vitamin in humans, and numerous AA detection studies have been conducted. Most quantum dots (QDs)-based approaches depend on redox reactions involving AA, and they require the introduction of an intermediate (e.g., metal ions, OPD, TMB) or the assembly of fluorescent substances with nanosheets (such as MnO2) that can be degraded by AA. These methods are complex, unstable, and are susceptible to interferences. To address these problems, a core-shell fluorescence probe was developed for turn-on sensing of AA. The transition metal oxide shell FeOOH was generated around the surface of CuInZnS QDs to quench the fluorescence. In the presence of AA, the FeOOH shell was decomposed into Fe2+ and the fluorescence of QDs was recovered. Using a physical shell, the obtained nanocomposite realized direct AA detection, avoiding the effects of interfering substances caused by QDs exposure. Moreover, our probe showed great potential in point-of-care tests and was readily adapted for use as a smartphone-assisted paper sensor.
Collapse
Affiliation(s)
- Yibing Liu
- School of Chemistry and Life Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China; Advanced Institute of Materials Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
9
|
Feng Z, Lim HN, Ibrahim I, Gowthaman NSK. A review of zeolitic imidazolate frameworks (ZIFs) as electrochemical sensors for important small biomolecules in human body fluids. J Mater Chem B 2023; 11:9099-9127. [PMID: 37650588 DOI: 10.1039/d3tb01221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Small biomolecules play a critical role in the fundamental processes that sustain life and are essential for the proper functioning of the human body. The detection of small biomolecules has garnered significant interest in various fields, including disease diagnosis and medicine. Electrochemical techniques are commonly employed in the detection of critical biomolecules through the principle of redox reactions. It is also a very convenient, cheap, simple, fast, and accurate measurement method in analytical chemistry. Zeolitic imidazolate frameworks (ZIFs) are a unique type of metal-organic framework (MOF) composed of porous crystals with extended three-dimensional structures. These frameworks are made up of metal ions and imidazolate linkers, which form a highly porous and stable structure. In addition to their many advantages in other applications, ZIFs have emerged as promising candidates for electrochemical sensors. Their large surface area, pore diameter, and stability make them ideal for use in sensing applications, particularly in the detection of small molecules and ions. This review summarizes the critical role of small biomolecules in the human body, the standard features of electrochemical analysis, and the utilization of various types of ZIF materials (including carbon composites, metal-based composites, ZIF polymer materials, and ZIF-derived materials) for the detection of important small biomolecules in human body fluids. Lastly, we provide an overview of the current status, challenges, and future outlook for research on ZIF materials.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - H N Lim
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - I Ibrahim
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
10
|
Liu T, Zhou N, Bai Z, Cao Y, Zhang J, Wang Y, Zheng X, Feng W. A comparative metabolomics study on dried and processed Rehmannia Radix. Biomed Chromatogr 2023; 37:e5654. [PMID: 37070162 DOI: 10.1002/bmc.5654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
The efficacy of Rehmannia Radix changes after processing. However, the precise effect of processing on the properties of Rehmannia Radix is an intricate topic, as this effect cannot be explained by traditional methods. The purpose of this study was to investigate how processing methods influence the properties of Rehmannia Radix, as well as the changes in body function after administering dried Rehmannia Radix (RR) and processed Rehmannia Radix (PR) using a metabolomics approach. In addition, principal component analysis and orthogonal partial least-squares discriminant analysis models were generated using SIMCA-P 14.0 to evaluate the properties of RR and PR. Potential biomarkers were identified, and associated metabolic networks were established to clarify differences in the properties and efficacies of RR and PR. The results showed that RR and PR have cold and hot properties, respectively. RR can exert a hypolipidaemic effect by regulating nicotinate and nicotinamide metabolism. PR exerts a tonic effect and regulates the body's reproductive function through the regulation of alanine, aspartate and glutamate metabolism, arachidonic acid, pentose and glucuronate metabolism, respectively. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabolomics is a promising approach to determine the cold/hot properties of traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhiyao Bai
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| |
Collapse
|
11
|
Peng L, Guo H, Wu N, Liu B, Wang M, Tian J, Ren B, Yu Z, Yang W. Rapid detection of the biomarker for cystinuria by a metal-organic framework fluorescent sensor. Talanta 2023; 262:124715. [PMID: 37245430 DOI: 10.1016/j.talanta.2023.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Arginine (Arg) is considered a valuable biomarker for various diseases, including cystinuria, and its concentration level holds significant implications for human health. To achieve the purposes of food evaluation and clinical diagnosis, it is imperative to develop a rapid and facile method for selective and sensitive determination of Arg. In this work, a novel fluorescent material (Ag/Eu/CDs@UiO-66) was synthesized by encapsulating carbon dots (CDs), Eu3+ and Ag + into UiO-66. This material can serve as a ratiometric fluorescent probe for detecting Arg. It exhibits a high sensitivity with a detection limit of 0.74 μM and a relatively broad linear range from 0-300 μM. After dispersing the composite Ag/Eu/CDs@UiO-66 in an Arg solution, the red emission of Eu3+ center at 613 nm was significantly enhanced, while the characteristic peak of CDs center at 440 nm remained unchanged. Therefore, a ratio fluorescence probe could be constructed based on the peak height ratio of the two emission peaks to achieve selective detection of Arg. In addition, the remarkable ratiometric luminescence response induced by Arg results in a significant color transition from blue to red under UV-lamp for Ag/Eu/CDs@UiO-66, which was convenient for visual analysis.
Collapse
Affiliation(s)
- Liping Peng
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Bingqing Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Jiaying Tian
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Zhiguo Yu
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
12
|
Zhang J, Fu Y, Li L, Yan L, Wu X, Lei C. Ratiometric Electrochemical Determination of Ascorbic Acid Using a Copper Nanoparticle@Resin Nanosphere (CuNPs@RNS) Modified Glassy Carbon Electrode (GCE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jie Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yulin Fu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Liqiang Yan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiongzhi Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Chenghong Lei
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
13
|
Mahanta B, Al Mamun H, Konwar M, Patar S, Saikia P, Jyoti Borthakur L. Non‐Enzymatic Electrochemical Biosensor for Dopamine Detection Using MoS
2
/rGO/Ag Nanostructure. ChemistrySelect 2023. [DOI: 10.1002/slct.202205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Baishali Mahanta
- Department of Chemistry Gauhati University Guwahati Assam 781014 India
| | - Hasan Al Mamun
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam Pin-782001 India
| | - Madhabi Konwar
- Department of Chemistry Gauhati University Guwahati Assam 781014 India
| | - Shyamalee Patar
- Department of Chemistry Gauhati University Guwahati Assam 781014 India
| | - Pranjal Saikia
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam Pin-782001 India
| | | |
Collapse
|
14
|
Djonse Justin BT, Blaise N, Valery HG. Investigation of the photoactivation effect of TiO 2 onto carbon-clay paste electrode by cyclic voltammetry analysis. Heliyon 2023; 9:e13474. [PMID: 36846689 PMCID: PMC9947266 DOI: 10.1016/j.heliyon.2023.e13474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, a cyclic voltammetry analysis for the detection of Ascorbic Acid (AA) based on a carbon-clay paste electrode modified with titanium dioxide (CPEA/TiO2) is presented. The electrochemical sensor was prepared using clay and carbon graphite, mixed with TiO2 to investigate the electrode behavior towards the detection of AA. Comprehensive characterization approaches including X-ray diffraction (XRD), Selected area electron diffraction (SAED), Transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) were carried out on different samples. The results indicated that, the electrode has been effectively modified, while the electrochemical parameters of AA on CPEA/TiO2/UV such as the charge transfer coefficient (α a ), number of electrons (n) transferred and standard potential were calculated. CPEA/TiO2/UV exhibit better photoactivity and also higher electronic conductivity under light radiation (100 W). The linear range for AA was determined between 0.150μM and 0.850 μM with the straight-line equation equivalent to I p a ( μ A ) = 2.244 [ A A ] + 1.234 (n = 8, R2 = 0.993). The limit of detection was 0.732 μM (3σ) and limit of quantification was 2.440 μM. For the analytical applications, pharmaceutical tablets such as Chloroquine phosphate, Azithromycin and Hydroxychloroquine sulfate were performed. In addition, interference study in the analytical application was performed, and it was found that the electroanalytical method used can be well adopted for simultaneous electrochemical detection of AA and Azithromycin.
Collapse
Affiliation(s)
| | - Niraka Blaise
- Department of Textile and Leather Engineering, National Advanced School of Engineering of Maroua, P.O. Box 46, Maroua, Cameroon
| | - Hambate Gomdje Valery
- Department of Textile and Leather Engineering, National Advanced School of Engineering of Maroua, P.O. Box 46, Maroua, Cameroon,Corresponding author.
| |
Collapse
|
15
|
Yang J, Cheng S, Qin S, Huang L, Xu Y, Wang Y. CeO 2–Co 3O 4 nanocomposite with oxidase-like activity for colorimetric detection of ascorbic acid †. RSC Adv 2023; 13:9918-9923. [PMID: 36998518 PMCID: PMC10043987 DOI: 10.1039/d3ra01074k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
A CeO2–Co3O4 nanocomposite (NC) was prepared and characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The obtained CeO2–Co3O4 NC displayed biomimicking oxidase-like activity, which can catalytically oxidize the 3, 3′, 5, 5′-tetramethylbenzidine (TMB) substrate from colorless to the blue oxidized TMB (ox-TMB) product with a characteristic absorption peak at 652 nm. When ascorbic acid (AA) was present, ox-TMB would be reduced, resulting in a lighter blue and lower absorbance. On the basis of these facts, a simple colorimetric method for detection of AA was established with a linear relationship ranging from 1.0 to 500 μM and a detection limit of 0.25 μM. When this method was used to detect AA in human serum and commercially available vitamin C tablet samples, a good recovery of 92.0% to 109.0% was obtained. Besides, the catalytic oxidation mechanism was investigated, and the possible catalytic mechanism of CeO2–Co3O4 NC can be described as follows. TMB is adsorbed on the CeO2–Co3O4 NC surface and provides lone-pair electrons to the CeO2–Co3O4 NC, leading to an increase in electron density of the CeO2–Co3O4 NC. An increased electron density can improve the electron transfer rate between TMB and the oxygen absorbed on its surface to generate O2˙− and ˙O2, which further oxidize TMB. A CeO2–Co3O4 nanocomposite (NC) was prepared and characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction.![]()
Collapse
Affiliation(s)
- Jin Yang
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning 530004China
| | - Shiqi Cheng
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning 530004China
| | - Shangying Qin
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning 530004China
| | - Li Huang
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning 530004China
| | - Yuanjin Xu
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning 530004China
| | - Yilin Wang
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning 530004China
| |
Collapse
|
16
|
Wang Y, Zhao P, Gao B, Yuan M, Yu J, Wang Z, Chen X. Self-reduction of bimetallic nanoparticles on flexible MXene-graphene electrodes for simultaneous detection of ascorbic acid, dopamine, and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
An Enzyme-Free Photoelectrochemical Sensor Platform for Ascorbic Acid Detection in Human Urine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A novel enzyme-free photoelectrochemical (PEC) potential measurement system based on Dy-OSCN was designed for ascorbic acid (AA) detection. The separation and transmission of internal carriers were accelerated and the chemical properties became more stable under light excitation due to the regular microstructure of the prepared Dy-OSCN monocrystal. More importantly, the PEC potential method (OCPT, open circuit potential-time) used in this work was conducive to the reduction of photoelectric corrosion and less interference introduced during the detection process, which effectively ensured the repeatability and stability of the electrode. Under optimal conditions, the monocrystal successfully served as a matrix for the detection of AA, and the prepared PEC sensor exhibited a wide linear range from 7.94 × 10−6 mol/L to 1.113 × 10−2 mol/L and a sensitive detection limit of 3.35 μM. Practical human urine sample analysis further revealed the accuracy and feasibility of the Dy-OSCN-based PEC platform. It is expected that such a PEC sensor would provide a new way for rapid and non-invasive AA level assessment in human body constitution monitoring and lays a foundation for the further development of practical products.
Collapse
|
19
|
Highly sensitive ascorbic acid sensors from EDTA chelation derived nickel hexacyanoferrate/ graphene nanocomposites. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Li Y, Wang L, Qian M, Qi S, Zhou L, Pu Q. Concise analysis of γ-hydroxybutyric acid in beverages and urine by capillary electrophoresis with capacitively coupled contactless conductivity detection using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid as background electrolyte. J Chromatogr A 2022; 1675:463191. [DOI: 10.1016/j.chroma.2022.463191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
|
21
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
22
|
N, P Co-Doped Carbon Dots as Multifunctional Fluorescence Nano-Sensor for Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Lalaouna AED, Hadef Y, Nekkaa A, Titel F, Dalia F. Cost-effective and earth-friendly chemometrics-assisted spectrophotometric methods for simultaneous determination of Acetaminophen and Ascorbic Acid in pharmaceutical formulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120422. [PMID: 34619510 DOI: 10.1016/j.saa.2021.120422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The development of analytical chemistry is omnipresent in all fields, this leads to considerable consumption of organic solvents and hazardous reagents with an increase in the production of waste to be treated. In this work, we developed simple, fast, cost-effective and above all environmentally friendly methods for the analysis of Acetaminophen (ACT) and Ascorbic acid (ASC) in synthetic mixtures and pharmaceutical formulation, using UV spectroscopy. Four chemometric methods were studied, including PLS-1 with full-spectrum (Full-PLS) and PLS-1 using three variable selection methods, namely subset selection through a genetic algorithm (GA), uninformative variable elimination using iterative predictor weighting (IPW), and variable selection by sub-window permutation analysis (SwPA). The accuracy of the developed methods was evaluated through the root mean square error of prediction (RMSEP), the mean absolute percentage error (MAPE) and the recovery values. All methods showed more accurate prediction results in comparison with full-PLS calibration. Furthermore, the results indicate that the GA-PLS models showed the highest prediction accuracy among all other models with RMSEP and MAPE values of (0.0494 and 0.610) and (0.0163 and 0.321) for the estimation of ACT and ASC, respectively. The proposed methods were successfully applied to the determination of ACT and ASC in their combined dosage form. In addition, the results obtained were statistically compared to those of the conventionally used HPLC method and were found to be in good agreement. The main advantages of the developed methods over HPLC during routine analysis are that they are faster, inexpensive, simple to perform, without the need for major pretreatment of samples. Besides, no organic solvents are used, and thus toxicity and pollution are avoided.
Collapse
Affiliation(s)
- Abd El Djalil Lalaouna
- Laboratory of Analytical Chemistry, Salah Boubnider University, Constantine 3, Faculty of Medicine, Department of Pharmacy, Constantine 25000, Algeria; Laboratory of Pharmacology and Toxicology, Mentouri University Constantine 1, Constantine 25000, Algeria.
| | - Youcef Hadef
- Laboratory of Analytical Chemistry, Badji Moukhtar University, Faculty of Medicine, Department of Pharmacy, Annaba 23000, Algeria; Laboratory for the Development and Control of Hospital Pharmaceutical Preparations, Annaba 23000, Algeria
| | - Amine Nekkaa
- Lorraine University, CNRS, LRGP, F-54000 Nancy, France
| | - Faouzi Titel
- Laboratory of Analytical Chemistry, Salah Boubnider University, Constantine 3, Faculty of Medicine, Department of Pharmacy, Constantine 25000, Algeria; Laboratory of Pharmacology and Toxicology, Mentouri University Constantine 1, Constantine 25000, Algeria
| | - Farid Dalia
- Laboratory of Pharmacology and Toxicology, Mentouri University Constantine 1, Constantine 25000, Algeria
| |
Collapse
|
24
|
Vaschetti VM, Viada BN, Tamborelli A, Eimer GA, Rivas GA, Dalmasso PR. Ultrasensitive multiwall carbon nanotube-mesoporous MCM-41 hybrid-based platform for the electrochemical detection of ascorbic acid. Analyst 2022; 147:2130-2140. [DOI: 10.1039/d2an00473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive multiwall carbon nanotube-MCM-41 hybrid-based ascorbic acid sensor for electro-detection in real samples is proposed. The MWCNT–MCM-41 hybrid preparation via dispersion was optimized through an experimental design based on CCD/RSM.
Collapse
Affiliation(s)
- Virginia M. Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016 Córdoba, Argentina
- INFIQC, CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Benjamín N. Viada
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016 Córdoba, Argentina
| | - Alejandro Tamborelli
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016 Córdoba, Argentina
- INFIQC, CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Griselda A. Eimer
- CITeQ, CONICET-UTN, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016 Córdoba, Argentina
| | - Gustavo A. Rivas
- INFIQC, CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Pablo R. Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016 Córdoba, Argentina
| |
Collapse
|
25
|
Zhong Y, Zou Y, Yang X, Lu Z, Wang D. Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots. Mikrochim Acta 2021; 189:19. [PMID: 34877612 DOI: 10.1007/s00604-021-05124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
A rapid and facile method is reported for the detection of ascorbic acid using molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescence sensor. Water-soluble and biocompatible MoS2 QDs with the maximum fluorescence emission at 506 nm have been successfully synthesized by hydrothermal method and specific detection for ascorbic acid (AA) was constructed to utilize the modulation of metal ion on the fluorescence of MoS2 QDs and the affinity and specificity between the ligand and the metal ion. The fluorescence of MoS2 QDs was quenched by the irreversible static quenching of Fe3+ through the formation of a MoS2 QDs/Fe3+ complex, while the pre-existence of AA can retain the fluorescence of MoS2 QDs through the redox reaction between AA and Fe3+. Based on this principle, a good linear relationship was obtained in the AA concentration range 1 to 150 μM with a detection limit of 50 nM. The proposed fluorescent sensing strategy was proven to be highly selective, quite simple, and rapid with a requirement of only 5 min at room temperature (RT), which is particularly useful for rapid and easy analysis. Satisfactory results were obtained when applied to AA determination in fruits, beverages, and serum samples as well as AA imaging in living cells, suggesting its great potential in constructing other fluorescence detection and imaging platforms.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Yibiao Zou
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Xianhong Yang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
26
|
Sefid-Sefidehkhan Y, Salehniya H, Khoshkam M, Amiri M. Transfer of multivariate calibration model for simultaneous electrochemical determination of ascorbic acid and uric acid. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
do Prado AA, Ribeiro MMAC, Richter EM. Ultra-rapid capillary zone electrophoresis method for simultaneous determination of arginine and ibuprofen. J Sep Sci 2021; 44:2596-2601. [PMID: 33884758 DOI: 10.1002/jssc.202100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
The combination of arginine and ibuprofen is widely used for pain relief with a faster onset of action than conventional ibuprofen. Therefore, the determination of both compounds in a single run is highly desirable for rapid quality control applications. This paper reports an ultra-fast method (100 injections/h) for simultaneous determination of arginine and ibuprofen using capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation of arginine as cation and ibuprofen as anion was achieved using a background electrolyte composed by an equimolar mixture of 10 mmol/L of 2-(cyclohexylamino) ethanesulfonic acid and boric acid with pH adjusted to 8.4 using potassium hydroxide. The limits of detections were 5.3 and 10.0 μmol/L for arginine and ibuprofen, respectively. The proposed method is simple, fast (one analysis every 35 s), environmentally friendly (minimal waste generation) and accurate (recovery values between 95 and 98%).
Collapse
Affiliation(s)
- Aliceana Almeida do Prado
- Instituto de Quimica, Universidade Federal de Uberlandia, Av. João Naves de Avila, 2121, Uberlandia, MG, 13400-970, Brazil
| | | | - Eduardo Mathias Richter
- Instituto de Quimica, Universidade Federal de Uberlandia, Av. João Naves de Avila, 2121, Uberlandia, MG, 13400-970, Brazil
| |
Collapse
|
28
|
Zhao J, Xu Z. Capillary electrophoresis with dual C 4D/UV detection for simultaneously determining major metal cations and whey proteins in milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:801-808. [PMID: 33496699 DOI: 10.1039/d0ay02092c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A reliable and simple CE method with dual C4D and UV detection modes for simultaneous determination of major metal cations and whey proteins in milk samples was developed. Sample pretreatment comprised dilution, acidification to pH 4.55 with 10 mM AcOH and centrifugation. The complete separation of metal cations K+, Ca2+, Na+, and Mg2+ and whey proteins α-Lac, and β-Lg could be achieved respectively within 10 min and 20 min in a simple BGE composed of 1.0 M AcOH, 12 mM l-His and 2 mM 18-crown-6 with pH 2.74 at a voltage/current of +15 kV/12.5 μA. The samples were injected hydrodynamically by a pressure of 50 mbar for 5 s, the excitation voltage and excitation frequency of the C4D detector were 80 V and 1000 kHz, respectively and the detection wavelength of UV detection was set at 200 nm. In cation analysis, the range of the detection limit was 0.05-0.10 mg L-1 for C4D detection and 0.10-0.50 mg L-1 for UV detection, respectively, and the relative standard deviations (RSD%, n = 5) of intraday and interday analysis were 0.37-0.55% and 0.46-0.79% for the relative migration time, and 2.51-4.12% and 3.65-4.91% for the peak area, respectively. In whey protein analysis, the detection limits of β-Lg and α-Lac analysis were 5 mg L-1 and 3 mg L-1, respectively and the relative standard deviations (RSD%, n = 5) of intraday and interday analysis were 0.29-0.31% and 0.43-0.48% for the migration time and 2.89-3.25% and 3.29-4.18% for the peak area, respectively. The content of four major metal cations and two whey proteins in various types of milk samples was obtained. The results indicated that the content of metal cations varied little in milk samples of different brands and prices, while the content of whey proteins, as thermosensitive active proteins, varied greatly among different heat-treated milk samples.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | | |
Collapse
|
29
|
Tůma P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection - Theory, instrumentation and applications. Talanta 2020; 224:121922. [PMID: 33379123 DOI: 10.1016/j.talanta.2020.121922] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
This review article summarises aspects of the determination of amino acids using capillary and chip electrophoresis in combination with contactless conductivity detection from their historical beginnings to the present time. Discussion is included of the theory of conductivity detection in electromigration techniques, the design of contactless conductivity cells for detection in capillaries and on microchips, including the use of computer programs for simulation of the conductivity response and the process of the electrophoretic separation of amino acids. Emphasis is placed on optimisation of the background electrolyte composition, chiral separation, multidimensional separation, stacking techniques and the use of multidetection systems. There is also a description of clinical applications, the determination of amino acids in foodstuffs, waters, soils and composts with emphasis on modern techniques of sample treatment, such as microdialysis, liquid membrane extraction and many other techniques.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
30
|
Bright Mn-doped carbon dots for the determination of permanganate and L-ascorbic acid by a fluorescence on-off-on strategy. Mikrochim Acta 2020; 187:659. [PMID: 33201322 DOI: 10.1007/s00604-020-04604-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
A one-pot hydrothermal synthesis of manganese-doped carbon dots (Mn-CDs) is reported for fluorescent "on-off-on" determination of Mn(VII) and L-ascorbic acid (L-AA) in aqueous solution and living cells. Mn-CDs were prepared by using sulfanilic acid, tetrakis(hydroxymethyl)phosphonium chloride, and Mn(II) chloride as precursors. Mn-CDs were characterized by several spectroscopic methods and microscopic techniques. Mn-CDs show distinctly long fluorescence lifetime (12.39 ± 0.07 ns) and high absolute fluorescence quantum yield (around 37%) with excitation and emission wavelengths of 362 and 500 nm, respectively. Mn-CDs exhibit no significant cytotoxicity to human cervical carcinoma HeLa cells and human embryonic kidney HEK-293T cells at 200 μg mL-1 level after 48 h incubation. The fluorescence of Mn-CDs at 500 nm (excited at 362 nm) is quenched efficiently by Mn(VII) and can be further recovered after the addition of L-AA, resulting in a fluorescent "on-off-on" assay for the determination of Mn(VII) and L-AA. Under optimal experimental conditions, the linear response covers the 3 to 150 μM Mn(VII) concentration range and the 3 to 140 μM L-AA concentration range. This method offers relatively low detection limits of 0.66 μM for Mn(VII) and 0.90 μM for L-AA. This strategy was applied to visual determination of Mn(VII) and L-AA in living HeLa cells with satisfying results. Graphical abstract Schematic presentation of bright Mn-CD-based fluorescence "on-off-on" assay for both Mn(VII) and L-AA. This fluorescent assay possessed low detection limit of 0.66 μM for Mn(VII) and 0.90 μM for L-AA. This strategy was applied for visual determination of Mn(VII) and L-AA in living HeLa cells with satisfying results.
Collapse
|
31
|
Su X, Li X, Wang H, Cai Z. Simultaneous determination of methionine cycle metabolites, urea cycle intermediates and polyamines in serum, urine and intestinal tissue by using UHPLC-MS/MS. Talanta 2020; 224:121868. [PMID: 33379078 DOI: 10.1016/j.talanta.2020.121868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Metabolites of methionine cycle, urea cycle and polyamine metabolism play important roles in regulating the metabolic processes and the development of diseases. It is rewarding and interesting to monitor the levels of the above metabolites in biological matrices to investigate pathological mechanisms. However, their quantitation is still unsatisfactory due to the poor retention behavior of the analytes on the traditional reversed-phase column. And never a single analytical method simultaneously quantify these three classes of metabolites. Besides, the concentrations of some metabolites are too low to be detected in the biological samples. In this study, we developed a UHPLC-ESI-MS/MS method to simultaneously determine the levels of 14 metabolites, including 4 methionine metabolism metabolites (methionine, homocysteine, S-adenosylmethionine and S-adenosylhomocysteine), 3 urea cycle intermediates (arginine, citrulline and ornithine) and 7 polyamines (putrescine, spermidine, spermine, N1-acetylputrescine, N1-acetylspermidine, N1-acetylspermine and N1,N12-diacetylspermine). The chromatographic separation was performed on the BEH amide column within 14 min using water and acetonitrile (both with 0.1% formic acid) as the mobile phases. The results of method validation showed good selectivity, linearity (r2 > 0.99), recovery (93.1%-112.1%), inter-day and intra-day precision (RSD < 13.6% and RSD < 11.0%, respectively), stability (RSD < 15.1%) and matrix effect (76.0%-113.2%). The method is simple, quick and sensitive without derivatization processes and the use of ion-pairing reagents. This approach was successfully applied in urine, serum and tissue matrices, as well as in identifying potential biomarkers for hyperthyroidism and hypothyroidism. The method is promising to provide more information on pathophysiological mechanisms in metabolomics study.
Collapse
Affiliation(s)
- Xiuli Su
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaona Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China; Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Haojiang Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
32
|
Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020. J Chromatogr A 2020; 1632:461616. [PMID: 33096295 DOI: 10.1016/j.chroma.2020.461616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
The developments of analytical contactless conductivity measurements based on capacitive coupling over the two years from mid-2018 to mid-2020 are covered. This mostly concerns applications of the technique in zone electrophoresis employing conventional capillaries and to a lesser extent lab-on-chip devices. However, its use for the detection in several other flow-based analytical methods has also been reported. Detection of bubbles and measurements of flow rates in two-phase flows are also recurring themes. A few new applications in stagnant aqueous samples, e.g. endpoint detection in titrations and measurement on paper-based devices, have been reported. Some variations of the design of the measuring cells and their read-out electronics have also been described.
Collapse
Affiliation(s)
- Peter C Hauser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland.
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
33
|
Wu S, Sun T, Wang H, Fan Z, Li L, Fan B, Liu L, Ma J, Tong Z. A sandwich-structured, layered CoTMPyP/Sr2Nb3O10 nanocomposite for simultaneous voltammetric determination of dopamine and ascorbic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Elbashir AA, Elgorashe REE, Alnajjar AO, Aboul-Enein HY. Application of Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (CE-C 4D): 2017-2020. Crit Rev Anal Chem 2020; 52:535-543. [PMID: 32835492 DOI: 10.1080/10408347.2020.1809340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Capacitively coupled contactless conductivity detection (C4D) has emerged as influential to detect analytes that do not have chromogenic or fluorogenic functional group. Since our last review several new capillary electrophoresis (CE) methods coupled with (CE-C4D) have been communicated. The aim of this review is to give an update of the almost all the new applications of CE-C4D in the field of pharmaceutical, food and biomedical analysis covering the period from 2017 to April 2020. The utilization of CE with C4D in the areas of pharmaceutical, food and biomedical analysis is presented. Finally, concluding remarks and outlooks are discussed.
Collapse
Affiliation(s)
- Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | | | - Ahmed O Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|