1
|
Wang G, Zhang L, Sugawara A, Hsu YI, Asoh TA, Uyama H. Development of Citric-Acid-Modified Cellulose Monolith for Enriching Glycopeptides. Anal Chem 2025. [PMID: 39772436 DOI: 10.1021/acs.analchem.4c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions. We demonstrated the efficacy of CCM as a hydrophilic interaction liquid chromatography (HILIC) medium for the efficient enrichment of glycopeptides. It exhibited remarkable selectivity in enriching glycopeptides from trypsin-digested immunoglobulin G (IgG), serving as a model protein, even in the presence of a significant amount of non-glycopeptide contaminants from bovine serum albumin (BSA) at a ratio of BSA/IgG of 1000/1. Additionally, CCM showed a low detection limit (0.25 fmol μL-1) and commendable reusability in glycopeptide enrichment, successfully enriching 35 glycopeptides from IgG. Additionally, 641 unique N-glycosylation sites of 698 unique glycopeptides from 393 glycosylated proteins were identified from the triplicate analysis of 900 μg of human hepatocellular carcinoma tissue. Therefore, CCM holds significant promise as an eco-friendly stationary phase for hydrophilic interaction liquid chromatography aimed at glycopeptide enrichment.
Collapse
Affiliation(s)
- Guan Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Luwei Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Akihide Sugawara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
2
|
Ti W, Liu M, Xie A, Wang Y, Wu S, Sheng Q, Lan M. Application of Ti 4+ embedded functional composite materials in simultaneous enrichment of glycopeptides and phosphopeptides. Talanta 2025; 282:126955. [PMID: 39357403 DOI: 10.1016/j.talanta.2024.126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Glycosylation and phosphorylation of proteins represent crucial forms of post-translational modifications (PTMs), playing pivotal roles in various biological processes. Research indicates a strong correlation between the development of type 2 diabetes (T2D) and abnormal protein translation in the body. Therefore, studying glycosylation and phosphorylation at the molecular level can be used for monitoring disease progression and refining research methodologies. In this study, the material is modified and functionally engineered by utilizing graphene oxide (GO) as the substrate, and incorporating titanium ions (Ti4+) into chondroitin sulfate. The composite was successfully applied to the selective enrichment of glycopeptides and phosphopeptides by utilizing the bifunctionality of hydrophilic interaction chromatography and metal ion chelation chromatography. This approach allowed for the capture of 57 glycopeptides and 2 phosphopeptides from normal human serum, and 141 glycopeptides and 10 phosphopeptides from T2D serum, respectively. This approach effectively tackles the challenges of detecting low-abundance glycopeptides and phosphopeptides in complex environments, enabling the successful capture from serum samples. The design and application of this material provide new insights into the development of PTMs and their connection to the study of T2D diabetes.
Collapse
Affiliation(s)
- WenGeng Ti
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - MeiYan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - AnYu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - YueYao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - SiJin Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - QianYing Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Cheng L, Huang M, Ren H, Wang Y, Cui H, Xu M. Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography. Anal Bioanal Chem 2024:10.1007/s00216-024-05708-9. [PMID: 39710781 DOI: 10.1007/s00216-024-05708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step. Efficient enrichment technology can increase the abundance of intact N-glycopeptides in complex biological samples, thereby improving the sensitivity and coverage of glycosylation analysis, which is of great significance for the accurate identification of biomarkers and the development of glycopeptide-based drugs. Among various separation methods for N-glycopeptides, hydrophilic interaction chromatography has received increasing attention, and a variety of enrichment materials have been developed. This article classifies and describes the relevant hydrophilic interaction chromatography materials and provides a comprehensive review of their applications in N-glycopeptide enrichment regarding selectivity, sensitivity, and enrichment performance. Future development trends of ideal glycopeptide enrichment materials are also discussed.
Collapse
Affiliation(s)
- Li Cheng
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
| | - Mingxian Huang
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- BEAVER Laboratories, Suzhou, 215123, China
| | - Hui Ren
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- BEAVER Laboratories, Suzhou, 215123, China
| | - Yiqiang Wang
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Mingming Xu
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China.
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Swinnen S, de Azambuja F, Parac-Vogt TN. From Nanozymes to Multi-Purpose Nanomaterials: The Potential of Metal-Organic Frameworks for Proteomics Applications. Adv Healthc Mater 2024:e2401547. [PMID: 39246191 DOI: 10.1002/adhm.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols. Additionally, the study discusses evolving MOF materials that are tailored for proteomics, showcasing their structural diversity and functional advantages compared to other types of materials used for similar applications. MOFs can be developed to seamlessly integrate into proteomics workflows due to their tunable features, contributing to protein separation, peptide enrichment, and ionization for mass spectrometry. This review is meant as a guide to help bridge the gap between material scientists, engineers, and MOF chemists and on the other side researchers in biology or bioinformatics working in proteomics.
Collapse
Affiliation(s)
- Siene Swinnen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | | |
Collapse
|
6
|
Zhu Z, Fu H, Zhao Y, Yan Q. Progress in Core-Shell Magnetic Mesoporous Materials for Enriching Post-Translationally Modified Peptides. J Funct Biomater 2024; 15:158. [PMID: 38921532 PMCID: PMC11205187 DOI: 10.3390/jfb15060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Endogenous peptides, particularly those with post-translational modifications, are increasingly being studied as biomarkers for diagnosing various diseases. However, they are weakly ionizable, have a low abundance in biological samples, and may be interfered with by high levels of proteins, peptides, and other macromolecular impurities, resulting in a high limit of detection and insufficient amounts of post-translationally modified peptides in real biological samples to be examined. Therefore, separation and enrichment are necessary before analyzing these biomarkers using mass spectrometry. Mesoporous materials have regular adjustable pores that can eliminate large proteins and impurities, and their large specific surface area can bind more target peptides, but this may result in the partial loss or destruction of target peptides during centrifugal separation. On the other hand, magnetic mesoporous materials can be used to separate the target using an external magnetic field, which improves the separation efficiency and yield. Core-shell magnetic mesoporous materials are widely utilized for peptide separation and enrichment due to their biocompatibility, efficient enrichment capability, and excellent recoverability. This paper provides a review of the latest progress in core-shell magnetic mesoporous materials for enriching glycopeptides and phosphopeptides and compares their enrichment performance with different types of functionalization methods.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Weiyang University Park, Xi’an 710021, China
| | - Hang Fu
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| | - Yu Zhao
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| | - Qiulin Yan
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| |
Collapse
|
7
|
Liu Z, Wu Z, Zhou Y, Xia J, Zhang W, Gao S, Li S, Lu Z, Zhang X, Yang S. Hydrophilic Peptide and Glycopeptide as Immobilized Sorbents for Glycosylation Analysis. Anal Chem 2024; 96:1498-1505. [PMID: 38216336 DOI: 10.1021/acs.analchem.3c03944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment in shot-gun glycoproteomics to enhance the glycopeptide signal and minimize the ionization competition of peptides. In this work, we have developed a novel hydrophilic material (glycoHILIC) based on glycopeptides and peptides to provide hydrophilic properties. GlycoHILIC was synthesized by oxidizing cotton and then reacting the resulting aldehyde with the N-terminus of the glycopeptide or peptide by reductive amination. Due to the large amount of hydrophilic carbohydrates and hydrophilic amino acids contained in glycopeptides, glycoHILIC showed significantly better enrichment of glycopeptides than cotton itself. Our results demonstrate that glycoHILIC has high selectivity, a low detection limit, and good stability. Over 257 unique N-linked glycosylation sites in 1477 intact N-glycopeptides from 146 glycoproteins were identified from 1 μL of human serum using glycoHILIC. Serum analysis of pancreatic cancer patients found that 38 N-glycopeptides among 21 glycoproteins changed significantly, of which 7 N-glycopeptides increased and 31 N-glycopeptides decreased. These results demonstrate that glycoHILIC can be used for glycopeptide enrichment and analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yufeng Zhou
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
El Jery A, Alawamleh HSK, Sami MH, Abbas HA, Sammen SS, Ahsan A, Imteaz MA, Shanableh A, Shafiquzzaman M, Osman H, Al-Ansari N. Isotherms, kinetics and thermodynamic mechanism of methylene blue dye adsorption on synthesized activated carbon. Sci Rep 2024; 14:970. [PMID: 38200095 PMCID: PMC10781703 DOI: 10.1038/s41598-023-50937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The treatment of methylene blue (MB) dye wastewater through the adsorption process has been a subject of extensive research. However, a comprehensive understanding of the thermodynamic aspects of dye solution adsorption is lacking. Previous studies have primarily focused on enhancing the adsorption capacity of methylene blue dye. This study aimed to develop an environmentally friendly and cost-effective method for treating methylene blue dye wastewater and to gain insights into the thermodynamics and kinetics of the adsorption process for optimization. An adsorbent with selective methylene blue dye adsorption capabilities was synthesized using rice straw as the precursor. Experimental studies were conducted to investigate the adsorption isotherms and models under various process conditions, aiming to bridge gaps in previous research and enhance the understanding of adsorption mechanisms. Several adsorption isotherm models, including Langmuir, Temkin, Freundlich, and Langmuir-Freundlich, were applied to theoretically describe the adsorption mechanism. Equilibrium thermodynamic results demonstrated that the calculated equilibrium adsorption capacity (qe) aligned well with the experimentally obtained data. These findings of the study provide valuable insights into the thermodynamics and kinetics of methylene blue dye adsorption, with potential applications beyond this specific dye type. The utilization of rice straw as an adsorbent material presents a novel and cost-effective approach for MB dye removal from wastewater.
Collapse
Affiliation(s)
- Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411, Abha, Saudi Arabia
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, Al-Huson College, Al-Balqa Applied University, P. O. Box 50, Al-Huson, 21510, Jordan
| | | | | | - Saad Sh Sammen
- Department of Civil Engineering, College of Engineering, University of Diyala, Baquba, Diyala Governorate, 32001, Iraq
| | - Amimul Ahsan
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur, 1704, Bangladesh.
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia.
| | - M A Imteaz
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Civil and Environmental Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Md Shafiquzzaman
- Department of Civil Engineering, College of Engineering, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Haitham Osman
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411, Abha, Saudi Arabia
| | - Nadhir Al-Ansari
- Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
10
|
Li S, Wei Y, Wang Y, Liang H. Advances in hydrophilic metal-organic frameworks for N-linked glycopeptide enrichment. Front Chem 2022; 10:1091243. [PMID: 36531319 PMCID: PMC9751774 DOI: 10.3389/fchem.2022.1091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 02/06/2024] Open
Abstract
The comprehensive profiling of glycoproteins is of great significance for the timely clinical diagnosis and therapy. However, inherent obstacles hamper their direct analysis from biological samples, and specific enrichment prior to analysis is indispensable. Among the various approaches for glycopeptide enrichment, hydrophilic interaction liquid chromatography (HILIC) has attracted special focus, especially for the development of novel hydrophilic materials, which is the key of HILIC. Metal-organic frameworks (MOFs) are a type of porous materials constructed from the self-assembly of metal and organic linkers. Advantages such as high surface area, flexible pore size, and easy modification render hydrophilic MOFs as ideal candidates for HILIC, which has inspired many studies over the past years. In this review, advances in hydrophilic MOFs for N-linked glycopeptide enrichment are summarized. According to the synthesis strategies, those materials are categorized into three classes, namely pristine MOFs, MOFs with chemical modifications, and MOFs-derived composite. In each categorization, the preparation and the function of different moieties are covered, as well as the enrichment performances of sensitivity, selectivity, and practical application. Finally, a summary and future perspective on the applications of hydrophilic MOFs for N-linked glycopeptide enrichment are briefly discussed. This review is expected to raise awareness of the properties of hydrophilic MOFs and offer some valuable information to further research in glycoproteomics.
Collapse
Affiliation(s)
| | | | | | - Haoran Liang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
11
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Xie Z, Feng Q, Zhang S, Yan Y, Deng C, Ding CF. Advances in proteomics sample preparation and enrichment for phosphorylation and glycosylation analysis. Proteomics 2022; 22:e2200070. [PMID: 36100958 DOI: 10.1002/pmic.202200070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
As the common and significant chemical modifications, post-translational modifications (PTMs) play a key role in the functional proteome. Affected by the signal interference, low concentration, and insufficient ionization efficiency of impurities, the direct detection of PTMs by mass spectrometry (MS) still faces many challenges. Therefore, sample preparation and enrichment are an indispensable link before MS analysis of PTMs in proteomics. The rapid development of functionalized materials with diverse morphologies and compositions provides an avenue for sample preparation and enrichment for PTMs analysis. In this review, we summarize recent advances in the application of novel functionalized materials in sample preparation for phosphoproteomes and glycoproteomes analysis. In addition, this review specifically discusses the design and preparation of functionalized materials based on different enrichment mechanisms, and proposes research directions and potential challenges for proteomic PTMs research.
Collapse
Affiliation(s)
- Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shun Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chunhui Deng
- Department of Chemistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, Yang S. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4437-4448. [PMID: 36300821 DOI: 10.1039/d2ay01369j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, and aberrant glycosylation is associated with the occurrence and development of diseases. Deciphering abnormal glycosylation changes can identify disease-specific signatures to facilitate the discovery of potential disease biomarkers. However, glycosylation analysis is challenging due to the diversity of glycans, heterogeneity of glycosites, and poor electrospray ionization of mass spectrometry. To overcome these obstacles, glycosylation is often elucidated using enriched glycopeptides by removing highly abundant non-glycopeptides. Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment due to its excellent selectivity and specificity to hydrophilic glycans and compatibility with mass spectrometry. However, the development of HILIC has lagged far behind hydrophobic interaction chromatography, so efforts to further improve the performance of HILIC are beneficial for glycosylation analysis. This review discusses recent developments in HILIC materials and their advanced applications. Based on the physiochemical properties of glycopeptides, the use of amino acids or peptides as stationary phases showed improved enrichment and separation of glycopeptides. We can envision that the use of glycopeptides as stationary phases would definitely further improve the selectivity and specificity of HILIC for glycosylation analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Xinyu Miao
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Perry G Wang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| |
Collapse
|
14
|
Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Wang B, Yan Y, Ding CF. Metal-organic framework-based sample preparation in proteomics. J Chromatogr A 2022; 1671:462971. [DOI: 10.1016/j.chroma.2022.462971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
|
16
|
Su P, Li M, Li X, Yuan X, Gong Z, Wu L, Song J, Yang Y. Glutathione functionalized magnetic covalent organic frameworks with dual-hydrophilicity for highly efficient and selective enrichment of glycopeptides. J Chromatogr A 2022; 1667:462869. [DOI: 10.1016/j.chroma.2022.462869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/31/2022]
|
17
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
18
|
Zhao B, Wang Y, Ma J, Jia Q. Design of a hydrophilic mercaptosuccinic acid-functionalized β-cyclodextrin polymer via host–guest interaction: toward highly efficient glycopeptide enrichment. Analyst 2022; 147:4553-4561. [DOI: 10.1039/d2an01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrophilic material (denoted as magCDP@Ada-MSA) was constructed through host–guest interaction between crosslinked β-cyclodextrin polymers and mercaptosuccinic acid derived adamantane, and was applied to specific glycopeptide enrichment.
Collapse
Affiliation(s)
- Binfen Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuxuan Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Wang S, Fan Y, Feng Z, Song M, Li Q, Jiang B, Qin F, Liu H, Lan L, Yang M. Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a system. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
GAO W, BAI Y, LIU H. [Recent advances in functionalized magnetic nanomaterials for glycoprotein and glycopeptide enrichment]. Se Pu 2021; 39:981-988. [PMID: 34486837 PMCID: PMC9404082 DOI: 10.3724/sp.j.1123.2021.08012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Protein glycosylation is among the most common and important post-translational modifications, and plays an important regulatory role in many biological processes, including signal transduction, protein translation, and immune response. Abnormal protein glycosylation is also associated with numerous diseases, suggesting that glycoproteins may offer an array of useful disease biomarkers. Mass spectrometry (MS) has become an important analytical tool in glycoproteomics. However, the low abundance and weak ionization efficiency of glycopeptides have hindered direct mass spectrometric analyses, which remain considerably challenging. Glycoprotein and glycopeptide enrichment from complex biological samples is an important step in glycoproteomics. Diverse methods have recently been developed for specific glycoprotein and glycopeptide enrichment, including hydrophilic interaction liquid chromatography (HILIC), lectin affinity chromatography, boronate affinity chromatography, and hydrazide functional affinity chromatography. A variety of enrichment materials designed for the above strategies have been developed to meet the requirement of enriching low abundance glycoproteins and glycopeptides in complex samples. Magnetic solid phase extraction (MSPE) is an efficient sample pretreatment technology that offers advantages of simple operation, low cost, and high extraction efficiency. Functionalized magnetic nanomaterials have been widely used as adsorbents in glycoproteome studies. Since magnetic adsorbent is a key factor in MSPE, in this review, the preparation of magnetic nanomaterials functionalized with sugars, ionic liquids, lectins, boronate affinity ligands, metal organic frameworks, and covalent organic frameworks, and their applications in glycoprotein and glycopeptide enrichment are summarized. These functional magnetic nanomaterials possess high specific surface area and a large number of active adsorption sites, allowing different enrichment mechanisms, including HILIC, lectin affinity chromatography, and boronate and hydrazide functional affinity chromatography. These functional magnetic nanomaterials are mainly used to enrich glycoproteins and glycopeptides in serum, plasma, cells, tissues, saliva and other biological samples. Nearly 90 papers published in the last decade from the Science Citation Index (SCI) and Chinese core journals have been cited in this paper. Finally, the development and prospects of magnetic nanomaterials in glycoprotein and glycopeptide enrichment are also discussed.
Collapse
Affiliation(s)
- Wenjie GAO
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu BAI
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei LIU
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Fabrication of magnetic dual-hydrophilic metal organic framework for highly efficient glycopeptide enrichment. Anal Bioanal Chem 2021; 413:5267-5278. [PMID: 34331089 DOI: 10.1007/s00216-021-03535-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Highly selective glycopeptide enrichment is important before mass spectrometry analysis because of the ultra-low abundance of glycopeptides in the peptide mixtures. Herein, a UiO-66-NH2-based magnetic composite was prepared and used for the hydrophilic enrichment of glycopeptides. The composite was modified with phytic acid (PA) molecules by partially replacing 2-aminoterephthalic acid ligands in UiO-66-NH2, with electrostatic interactions also promoting this modification process. Based on the hydrophilicity of both the PA molecules and the UiO-66-NH2 skeleton, the resulting material, denoted as MUiO-66-NH2/PA, showed excellent dual hydrophilicity towards glycopeptide enrichment. Compared with pure UiO-66-NH2, the specific surface area and hydrophilicity of the prepared material were increased, and MUiO-66-NH2/PA exhibited good magnetic responsiveness to facilitate a convenient enrichment procedure. HRP and IgG were used as standard proteins to evaluate the glycopeptide enrichment properties, with 21 and 34 glycopeptides enriched from their tryptic digests. Furthermore, MUiO-66-NH2/PA showed outstanding sensitivity (1 fmol/μL) and selectivity (HRP/BSA = 1:1000), and achieved remarkable glycopeptide enrichment performance for practical human serum samples. Notably, MUiO-66-NH2/PA showed perfect reusability and stability, achieving enrichment performance after five cycles similar to that of the first use. This material can be used for glycopeptide enrichment to obtain further glycosylation information, providing the possibility for cancer treatment.
Collapse
|
22
|
Xu Z, Wu Y, Deng Z, Long J, Sun N, Deng C. One-step fabrication of strongly hydrophilic mesoporous silica for comprehensive analysis of serum glycopeptidome. Talanta 2021; 234:122713. [PMID: 34364505 DOI: 10.1016/j.talanta.2021.122713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022]
Abstract
Glycopeptidome represents reliable predictors of physiological and pathological status. Obstructions mainly including low abundance of endogenous glycopeptides and varied interference necessitate glycopeptide enrichment prior to MS analysis. Inspired by the prevalence of hydrophilic interaction chromatography for glycopeptide enrichment, a novel magnetic mesoporous silica nanomaterial (Fe3O4@mSiO2-TSG) with strongly hydrophilic property was developed through a one-pot method. In this work, the gluconamide-containing organosilane is innovatively proposed to directly serve as the strongly hydrophilic silica source for fabrication of hydrophilic mesoporous silica nanomaterial for glycopeptidomics research. Apart from excellent hydrophilicity, Fe3O4@mSiO2-TSG also was equipped with large specific surface area, ordered mesopore channels and great magnetic responsiveness. With all the advantages, Fe3O4@mSiO2-TSG displayed remarkable size-exclusion effect and considerable reusability. Moreover, combined with nano-LC-MS/MS, the glycopeptidome of serum from breast cancer patients was analyzed comprehensively, which showed noteworthy difference from healthy serum through gene ontology analysis, indicating great potential of the approach for glycopeptidomics research.
Collapse
Affiliation(s)
- Zixing Xu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yonglei Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhiqiang Deng
- First People's Hospital of Fuzhou, Jiangxi, 344000, China
| | - Jian Long
- First People's Hospital of Fuzhou, Jiangxi, 344000, China.
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai, 200433, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Yan Y, Han R, Hou Y, Zhang H, Yu J, Gao W, Xu L, Tang K. Bowl-like mesoporous polydopamine with size exclusion for highly selective recognition of endogenous glycopeptides. Talanta 2021; 233:122468. [PMID: 34215103 DOI: 10.1016/j.talanta.2021.122468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023]
Abstract
It has been confirmed that endogenous glycopeptide plays an important role in a variety of pathological and physiological processes. However, direct analysis of endogenous glycopeptide is still a great challenge owing to the low abundance of endogenous glycopeptides and the presence of a large number of interfering substances such as large-sized proteins and heteropeptides in complex biological sample. Herein, we reported a novel bowl-like mesoporous polydopamine nanoparticle modified by carrageenan (denoted as MPDA@PEI@CA) with strong hydrophilicity and size-exclusion effect for high specificity enrichment of endogenous glycopeptides. Thanks to the suitable pore channel structure as well as strong hydrophilic surface, the as-prepared MPDA@PEI@CA nanoparticles exhibited prominent performance in enrichment of N-linked glycopeptide with ultrahigh selectivity (1:5000 M ratio of horseradish peroxidase (HRP) digests/bovine serum albumin (BSA) digests), low detection limit (5 fmol μL-1), outstanding size-exclusion ability (1:1000 mass of HRP/BSA), and unique reusability (five times). 125 N-glycosylation sites of 134 glycopeptides from 65 glycoproteins were identified from 2 μL sample of human serum treated with the MPDA@PEI@CA nanoparticles, which manifested the ability to enrich endogenous N-linked glycopeptides from complex biological samples. These results indicated that the bowl-like MPDA@PEI@CA nanoparticles with novel structure prepared in this work had great potential for glycopeptidome analysis.
Collapse
Affiliation(s)
- Yuyan Yan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Renlu Han
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Yafei Hou
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Huijun Zhang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Wenqing Gao
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Long Xu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
24
|
A novel fluorescent strategy based on double modifications of metal organic framework material CAU-10-NH 2 for low background and high sensitivity determination of H 2S. Talanta 2021; 229:122271. [PMID: 33838773 DOI: 10.1016/j.talanta.2021.122271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide is typical metabolic marker and environmental pollutant which is worthwhile to determine. Herein, a low background and high sensitivity fluorescent strategy based on double modifications of metal organic framework material CAU-10-NH2 is proposed for the determination of hydrogen sulfide. Firstly, a functional monomer 3,5-diaminobenzoic acid is employed to modify on the CAU-10-NH2, the product CAU-10-NH-dAba has strong fluorescent performance at 412 nm under an excitation wavelength of 320 nm. Subsequently, it is further modified by the azide group to form CAU-10-NH-dAba-N3. This azidation inhibits the fluorescent signal. However, in the presence of hydrogen sulfide, the azide group is specifically reduced to amidogen, and results in the recovery of the fluorescence. The CAU-10-NH-DABA-N3 was characterized by solid state NMR, XPS, fluorescence, IR, XRD, SEM and specific surface area. After the optimization of pH value, temperature and interaction time, the detection results of hydrogen sulfide demonstrate the linear range of this strategy is from 20 to 140 nM with a detection limit of 1.51 nM, which is significantly better than that of the CAU-10-NH2 merely modified by 3,5-dinitrobenzoic acid. Meanwhile, the satisfactory assay results of hydrogen sulfide in serum sample and Pearl river water suggest a potential application prospect of this strategy in clinical diagnosis and environment monitoring.
Collapse
|
25
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Babaee S, Rostamnia S. Application of novel nanomagnetic metal-organic frameworks as a catalyst for the synthesis of new pyridines and 1,4-dihydropyridines via a cooperative vinylogous anomeric based oxidation. Sci Rep 2021; 11:5279. [PMID: 33674662 PMCID: PMC7935861 DOI: 10.1038/s41598-021-84005-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, a new magnetic metal-organic frameworks based on Fe3O4 (NMMOFs) with porous and high surface area materials were synthesized. Then, NMMOFs were characterized by FT-IR, XRD, SEM, elemental mapping, energy dispersive X-ray (EDS), TG, DTG, VSM, and N2 adsorption-desorption isotherms (BET). Fe3O4@Co(BDC)-NH2 as a magnetic porous catalyst was applied for synthesis of novel fused pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine moieties as suitable drug candidates under ultrasonic irradiation. The significant advantages of the presented methodology are mild, facile workup, high yields, short reaction times, high thermal stability, and reusability of the described NMMOFs catalyst.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box, 55181-83111, Maragheh, Iran.
| |
Collapse
|
26
|
Wu J, Jin X, Zhu C, Yan Y, Ding CF, Tang K. Gold nanoparticle-glutathione functionalized MOFs as hydrophilic materials for the selective enrichment of glycopeptides. Talanta 2021; 228:122263. [PMID: 33773719 DOI: 10.1016/j.talanta.2021.122263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Herein, a novel zwitterionic hydrophilic metal-organic framework (MOF)-functionalized material was synthesized through grafting l-glutathione (GSH) onto the Au which acts as the intermediate layer to modify the base material (PEI-ZIF-8) by the sulfhydryl group provided by GSH and the affinity provided by Au (denoted as PEI-ZIF-8@Au@GSH). The obtained product was employed to capture glycopeptides. Benefit from its excellent hydrophilic properties, abundant amphoteric ions, and unique large specific surface area, this material demonstrated amazing ability in the enrichment and identification of glycopeptides. As a result, the PEI-ZIF-8@Au@GSH displayed high sensitivity (as low as 2 fmol), excellent binding capacity (500 mg/g), outstanding enrichment selectivity (maximum mass ratio HRP to BSA is 1:1000) toward glycopeptides, and the ability to recycle at least five times. Furthermore, 35 and 51 glycopeptides were successfully detected from 5 μL human saliva and human serum respectively in the examination of the actual sample by MALDI-TOF MS. The above results indicated that the PEI-ZIF-8@Au@GSH had a satisfactory potential in the field of glycoproteomics.
Collapse
Affiliation(s)
- Jiani Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Xueting Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Canhong Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
27
|
Zhong H, Li Y, Huang Y, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:862-873. [PMID: 33543184 DOI: 10.1039/d0ay02193h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal-organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
28
|
Sheng Q, Xue C, Zhou Y, Li J, Yuan H, Ke Y, Lan M. Synthesis of Al 3+-doping-TiO 2 monodisperse microspheres and their application for phosphopeptides and glycopeptides enrichment. Talanta 2021; 223:121715. [PMID: 33298258 DOI: 10.1016/j.talanta.2020.121715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
Glycosylation and phosphorylation are two of the most common and important post-translational modifications (PTMs) of proteins, which play critical roles in regulating a variety of complex biological processes and involvement in many diseases. Due to the low abundance of phosphopeptides and glycopeptides, highly selective enrichment methods are crucial to the identification of protein phosphorylation and glycosylation by mass spectrometry (MS). Here, monodisperse uniform Al3+-doping-TiO2 mixed oxide microspheres were easily synthesized. The morphology was controlled by a sol-gel method, during the hydrothermal treatment. The obtained microspheres with uniform particle size distribution (about 1-2 μm),high surface area and improved pore structures, were characterized by SEM, TEM, XRD and N2 adsorption-desorption isotherms. Al3+-doping-TiO2 was applied in enriching glycopeptides and phosphopeptides respectively or simultaneously by using different enrichment conditions, achieving selective enrichment of glycopeptides and phosphopeptides. 20 glycopeptides and 25 phosphopeptides enriched from the tryptic digest mixtures of human serum immunoglobulin G (IgG) and α-casein (molar ratio of 1:1) were obviously observed with greatly improved signal-to-noise (S/N) ratio. Meanwhile, the enrichment results of non-fat milk and human serum also show the enrichment selectivity from complex biological samples. This study will provide a novel insight for selective enrichment of glycopeptides and phosphopeptides in post-translational modification proteomics research.
Collapse
Affiliation(s)
- Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chenli Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yang Zhou
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Junyan Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Huihui Yuan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
29
|
Quantitative N-glycoproteomics using stable isotopic diethyl labeling. Talanta 2020; 219:121359. [DOI: 10.1016/j.talanta.2020.121359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
|
30
|
Hu X, Wu Y, Deng C. Recognition of urinary N-linked glycopeptides in kidney cancer patients by hydrophilic carbohydrate functionalized magnetic metal organic framework combined with LC-MS/MS. Mikrochim Acta 2020; 187:616. [PMID: 33073321 DOI: 10.1007/s00604-020-04595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
A hydrophilic carbohydrate functionalized magnetic metal organic framework (Mag Zr-MOF@G6P) was synthesized via a facile one-step modification strategy for selective glycopeptide capture in virtue of hydrophilic interaction chromatography technique. The inherently hydrophilic Zr-MOF layer not only provides selective size-sieving pore structures but also offers large specific surface area to afford abundant affinity sites. Hydroxyl-rich glucose-6-phosphate was immobilized onto the Zr-MOF via a straightforward coordination manner to regulate its surface property, for the purpose of enhancing its hydrophilicity. Benefitting from the merits of Zr-MOF and glucose-6-phosphate, the as-designed composite exhibits good selectivity (the mass ratio of HRP digests to BSA digests was up to1:200) and low limit of detection (0.1 fmol μL-1) towards the recognition of glycopeptides from standard samples. More excitingly, glycopeptides in urine of healthy people and patients with kidney cancer were successfully enriched and identified by the combined liquid chromatography-mass spectrometry/mass spectrometry technology (LC-MS/MS). Further gene ontology analysis of molecular function and biological process revealed that 13 original glycoproteins of the identified glycopeptides from urine of patients significantly participate in diverse cancer-associated events, including collagen binding, immunoglobulin receptor binding, antigen binding, and complement activation process. Graphical abstract.
Collapse
Affiliation(s)
- Xufang Hu
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, 200433, Shanghai, China
| | - Yonglei Wu
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, 200433, Shanghai, China
| | - Chunhui Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
31
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
32
|
Xu W, Cao JF, Zhang YY, Shu Y, Wang JH. Boronic acid modified polyoxometalate-alginate hybrid for the isolation of glycoproteins at neutral environment. Talanta 2020; 210:120620. [DOI: 10.1016/j.talanta.2019.120620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023]
|
33
|
Magnetic titanium dioxide nanomaterial modified with hydrophilic dicarboxylic ligand for effective enrichment and separation of phosphopeptides and glycopeptides. Mikrochim Acta 2020; 187:195. [DOI: 10.1007/s00604-020-4161-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
|
34
|
Liu J, Li G, Wu D, Zhang X, Hu L, Liu J. Fabrication of a functionalized magnetic covalent organic framework composite as an efficient adsorbent for sulfonamide extraction from food samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj02849e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carboxyl group functionalized magnetic covalent organic framework as an adsorbent to extract sulfonamides from meat samples was proposed.
Collapse
Affiliation(s)
- Jichao Liu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Guoliang Li
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Di Wu
- Institute for Global Food Security
- School of Biological Sciences
- Queen's University Belfast
- Belfast
- UK
| | - Xianlong Zhang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Liangbin Hu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Jianghua Liu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| |
Collapse
|