1
|
Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mRNA Therapy: Challenges and Promise for Clinical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310531. [PMID: 38287729 DOI: 10.1002/smll.202310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Due to the outbreak of novel coronavirus pneumonia, messenger RNA (mRNA) technology has attracted heated attention. A specific, safe, and efficient mRNA delivery system is needed. Lipid nanocarriers have become attractive carriers for mRNA delivery due to their high delivery efficiency, few side effects, and easy modification to change their structures and functions. To achieve the desired biological effect, lipid nanocarriers must reach the designated location for effective drug delivery. Therefore, the effects of the composition of lipid nanocarriers on their key properties are briefly reviewed. In addition, the progress of smart drug delivery by changing the composition of lipid nanocarriers is summarized, and the importance of component design and structure is emphasized. Subsequently, this review summarizes the latest progress in lipid nanocarrier-based mRNA technology and provides corresponding strategies for its current challenges, putting forward valuable information for the future design of lipid nanocarriers and mRNA.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Nogueira SS, Samaridou E, Simon J, Frank S, Beck-Broichsitter M, Mehta A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur J Pharm Biopharm 2024; 198:114235. [PMID: 38401742 DOI: 10.1016/j.ejpb.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.
Collapse
|
3
|
Dey T, Ghosh A, Sanyal A, Charles CJ, Pokharel S, Nair L, Singh M, Kaity S, Ravichandiran V, Kaur K, Roy S. Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer. Biomed Mater 2024; 19:032003. [PMID: 38574581 DOI: 10.1088/1748-605x/ad3abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for theirin vivoandin vitrointerventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.
Collapse
Affiliation(s)
- Tanima Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Anushikha Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Arka Sanyal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | | | - Sahas Pokharel
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
- Department of Pharmacy & Biomolecular Science, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| |
Collapse
|
4
|
Sadiq Z, Al-Kassawneh M, Safiabadi Tali SH, Jahanshahi-Anbuhi S. Tailoring plasmonic sensing strategies for the rapid and sensitive detection of hypochlorite in swimming water samples. Mikrochim Acta 2024; 191:183. [PMID: 38451315 DOI: 10.1007/s00604-024-06246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
A tunable plasmonic sensor has been developed by varying the dextran content in the initially synthesized dextran-gold nanoparticle (dAuNPs) solution. A colloidal nanogold solution (dAuNPs-Sol) was initially prepared using dextran and gold salt in alkaline media by a one-pot green synthetic route. The dAuNPs-Sol was combined with varying amounts of dextran (ranging from 0.01 to 30.01%) to create a tunable probe, along with different solid formats, including tablet (dAuNPs-Tab), powder (dAuNPs-Powder), and composite (dAuNPs-Comp). Both the liquid and solid phase plasmonic probes were characterized using UV-vis spectroscopy, transmission electron microscopy (TEM) dynamic light scattering (DLS), and zeta potential analysis. The impact of dextran content in the dAuNP solution is studied in terms of surface charge and hydrodynamic size. The influence of operational treatments used to achieve solid dAuNPs probes is also explored. All plasmonic probes were employed to detect a broad range of OCl¯ concentrations (ranging from µM to mM) in water through aggregation followed by calculating a lower and upper limit of detection (LLoD, ULoD) of the proposed colorimetric sensors. Results indicate that the most sensitive detection is achieved with a lower dextran content (0.01%), which exhibits an LLoD of 50 µM. The dAuNPs-Sol sensor is selective and demonstrates real-world applicability, as confirmed by interference analysis and successful testing with various water samples. Additionally, it is found that a 20 × concentration of dextran-coated gold nanoparticles could be attained without any changes in the particle morphology. This concentration is achieved through a straightforward process that does not require the use of a centrifuge machine. This finding highlights the practicality and simplicity of the method, indicating its potential for scalable and cost-effective production of concentrated dAuNPs without compromising their structural integrity.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Mirón-Barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Noncoding RNA 2022; 8:ncrna8040058. [PMID: 36005826 PMCID: PMC9412371 DOI: 10.3390/ncrna8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Collapse
Affiliation(s)
- Sofía Mirón-Barroso
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Correspondence:
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - James Clark
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Laura Tookman
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Silvia Ottaviani
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | | | - Alexandra E. Porter
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| |
Collapse
|
6
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
7
|
Thangavelu P, Sundaram V, Gunasekaran K, Mujyambere B, Raju S, Kannan A, Arasu A, Krishna K, Ramamoorthi J, Ramasamy S, Velusamy T, Ramalingam S. Development of Optimized Novel Liposome Loaded with 6-gingerol and Assessment of its Therapeutic Activity Against NSCLC In vitro and In vivo Experimental Models. Chem Phys Lipids 2022; 245:105206. [PMID: 35483420 DOI: 10.1016/j.chemphyslip.2022.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
6-Gingerol (Gn) is an active compound derived from ginger which possesses various biological activities. The therapeutic applications of Gn are limited due to its hydrophobic nature. To ease its administration, one of the nano-emulsion methods, liposome was selected to encapsulate Gn. Response Surface Methodology (RSM) was used to optimize liposome ratio. 97.2% entrapment efficiency was achieved at the ratio of 1:20:2 (Drug: Lipid: Cholesterol). The optimized liposome attained size below 200 d nm, spherical shape, negative surface charge and showed sustain release upon physical characterization methods such as FESEM, DLS, Zeta potential, Drug release. The signature FTIR peaks of both free Gn and free liposome (FL) were also observed in Lipo-Gn peak. Lipo-Gn showed significant cytotoxic effect on A549 cells (IC50 160.5 ± 0.74µM/ml) as well as inhibits the cell migration. DAPI staining showed higher apoptotic nuclear morphological change in the cells treated with Lipo-Gn, and also Lipo-Gn increased the apoptotic percentage in A549 as 39.89 and 70.32 for 12 and 24h respectively which were significantly more than free Gn. Moreover, the formulation of Lipo-Gn showed significant cell cycle arrest at the G2/M phase compared with free Gn (28.9 and 34.9% in Free Gn vs. 42.7 and 50.1% in Lipo -Gn for 12 and 24hours respectively). Lipo-Gn have been assessed in NSCLC induced BALB/c mice and showed significantly improved pharmacological properties compared to those of free Gn. Thus, Lipo-Gn may be considered for its widening applications against lung cancer.
Collapse
Affiliation(s)
| | - Viswanathan Sundaram
- Bharathiar Cancer Theranostics Research Center - RUSA-2.0, Bharathiar university
| | - Kaavya Gunasekaran
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Sowndarya Raju
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arya Kannan
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ashok Arasu
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kathirvelu Krishna
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, Tamil Nadu. India.cs
| | - Jayaraj Ramamoorthi
- Theme lead, Flinders NT, Flinders University, Northern Territory 0909, Australia
| | - Sivasamy Ramasamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil nadu, India
| | | | - Suja Ramalingam
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
8
|
New Core-Shell Nanostructures for FRET Studies: Synthesis, Characterization, and Quantitative Analysis. Int J Mol Sci 2022; 23:ijms23063182. [PMID: 35328604 PMCID: PMC8952644 DOI: 10.3390/ijms23063182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
This work describes the synthesis and characterization of new core-shell material designed for Förster resonance energy transfer (FRET) studies. Synthesis, structural and optical properties of core-shell nanostructures with a large number of two kinds of fluorophores bound to the shell are presented. As fluorophores, strongly fluorescent rhodamine 101 and rhodamine 110 chloride were selected. The dyes exhibit significant spectral overlap between acceptor absorption and donor emission spectra, which enables effective FRET. Core-shell nanoparticles strongly differing in the ratio of donors to acceptor numbers were prepared. This leads to two different interesting cases: typical single-step FRET or multistep energy migration preceding FRET. The single-step FRET model that was designed and presented by some of us recently for core-shell nanoparticles is herein experimentally verified. Very good agreement between the analytical expression for donor fluorescence intensity decay and experimental data was obtained, which confirmed the correctness of the model. Multistep energy migration between donors preceding the final transfer to the acceptor can also be successfully described. In this case, however, experimental data are compared with the results of Monte Carlo simulations, as there is no respective analytical expression. Excellent agreement in this more general case evidences the usefulness of this numerical method in the design and prediction of the properties of the synthesized core-shell nanoparticles labelled with multiple and chemically different fluorophores.
Collapse
|
9
|
Deng Y, Ouyang J, Liu H, Wang J, Zhu Y, Chen Z, Yang C, Li D, Ma K. An effective immobilization of β-glucosidases by partly cross-linking enzyme aggregates. Prep Biochem Biotechnol 2022; 52:1035-1043. [PMID: 35015605 DOI: 10.1080/10826068.2021.2024848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enzyme immobilization provides ideal operating conditions for enzymes stabilization and sustainable recycling. In this work, as a kind of clay material, montmorillonite (MTL) was chosen for immobilizing the β-glucosidase extracted from Agrocybe aegirit. The immobilized β-glucosidase via partly cross-linking enzyme aggregates (pCLEAs) formed by self-catalysis provided biocatalysts with satisfactory thermal and pH stability. Compared to the glutaraldehyde cross-linked, the immobilized β-glucosidase (β-G-pCLEAs@MTL) exhibited significantly higher immobilization efficiency (IE) and immobilization yield (IY), which were 80.6% and 76.9%, respectively. The β-G-pCLEAs@MTL also showed better stability and preferable reusability. And the activity of the β-G-pCLEAs@MTL remained 85.0% after 5 cycles and 74.7% after 10 cycles. Therefore, the method based on the pre- crosslinking to form pCLEAs and after-immobilization can effectively improve IY and IE. In addition, MTL seems to be a good alternative carrier to immobilize other enzymes for industrial application.
Collapse
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Hu Liu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ziqian Chen
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
10
|
Mazzotta E, Muzzalupo R, Chiappetta A, Muzzalupo I. Control of the Verticillium Wilt on Tomato Plants by Means of Olive Leaf Extracts Loaded on Chitosan Nanoparticles. Microorganisms 2022; 10:microorganisms10010136. [PMID: 35056586 PMCID: PMC8781408 DOI: 10.3390/microorganisms10010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/23/2023] Open
Abstract
In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Centro di Ricerca Olivicoltura, Frutticoltura, Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-OFA), C.da Li Rocchi-Vermicelli, 87036 Rende, CS, Italy;
| | - Rita Muzzalupo
- Dipartimento di Farmacia, Scienze della Salute e della Nutrizione, Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, 87036 Arcavacata di Rende, CS, Italy;
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria, Cubo 6B, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (A.C.); (I.M.)
| | - Innocenzo Muzzalupo
- Centro di Ricerca Olivicoltura, Frutticoltura, Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-OFA), C.da Li Rocchi-Vermicelli, 87036 Rende, CS, Italy;
- Correspondence: (A.C.); (I.M.)
| |
Collapse
|
11
|
Sennato S, Chauveau E, Casciardi S, Bordi F, Truzzolillo D. The Double-Faced Electrostatic Behavior of PNIPAm Microgels. Polymers (Basel) 2021; 13:1153. [PMID: 33916554 PMCID: PMC8038440 DOI: 10.3390/polym13071153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
PNIPAm microgels synthesized via free radical polymerization (FRP) are often considered as neutral colloids in aqueous media, although it is well known, since the pioneering works of Pelton and coworkers, that the vanishing electrophoretic mobility characterizing swollen microgels largely increases above the lower critical solution temperature (LCST) of PNIPAm, at which microgels partially collapse. The presence of an electric charge has been attributed to the ionic initiators that are employed when FRP is performed in water and that stay anchored to microgel particles. Combining dynamic light scattering (DLS), electrophoresis, transmission electron microscopy (TEM) and atomic force microscopy (AFM) experiments, we show that collapsed ionic PNIPAm microgels undergo large mobility reversal and reentrant condensation when they are co-suspended with oppositely charged polyelectrolytes (PE) or nanoparticles (NP), while their stability remains unaffected by PE or NP addition at lower temperatures, where microgels are swollen and their charge density is low. Our results highlight a somehow double-faced electrostatic behavior of PNIPAm microgels due to their tunable charge density: they behave as quasi-neutral colloids at temperature below LCST, while they strongly interact with oppositely charged species when they are in their collapsed state. The very similar phenomenology encountered when microgels are surrounded by polylysine chains and silica nanoparticles points to the general character of this twofold behavior of PNIPAm-based colloids in water.
Collapse
Affiliation(s)
- Simona Sennato
- CNR-ISC Sede Sapienza and Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Rome, Italy;
| | - Edouard Chauveau
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France;
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), 00078 Monte Porzio Catone (Rome), Italy;
| | - Federico Bordi
- CNR-ISC Sede Sapienza and Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Rome, Italy;
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France;
| |
Collapse
|
12
|
A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme Microb Technol 2020; 138:109560. [DOI: 10.1016/j.enzmictec.2020.109560] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
|
13
|
Pacheco CM, Bustos A C, Reyes G. Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1775092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Claudia Marcela Pacheco
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío , Concepción , Chile
- Centro de Biomateriales y Nanotecnología (CBN), Universidad del Bío-Bío , Concepción , Chile
| | - Cecilia Bustos A
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío , Concepción , Chile
- Centro de Biomateriales y Nanotecnología (CBN), Universidad del Bío-Bío , Concepción , Chile
| | - Guillermo Reyes
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío , Concepción , Chile
- Centro de Biomateriales y Nanotecnología (CBN), Universidad del Bío-Bío , Concepción , Chile
| |
Collapse
|