1
|
Serafimov K, Lämmerhofer M. Comprehensive Coverage of Glycolysis and Pentose Phosphate Metabolic Pathways by Isomer-Selective Accurate Targeted Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Assay. Anal Chem 2024; 96:17271-17279. [PMID: 39425639 DOI: 10.1021/acs.analchem.4c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The accurate liquid chromatography-tandem mass spectrometry analysis of phosphorylated isomers from glycolysis and pentose phosphate pathways is a challenging analytical problem in metabolomics due to extraction problems from the biological matrix, adherence to stainless steel surfaces leading to tailing in LC, and incomplete separation of hexose and pentose phosphate isomers. In this study, we present a targeted HILIC-ESI-MS/MS method based on a BEH amide fully porous 1.7 μm particle column with an inert surface coating of column hardware and multiple reaction monitoring (MRM) acquisition fully covering the glycolysis and pentose phosphate pathway metabolites. To minimize contact of the phosphorylated analytes with stainless steel surfaces, a μ-ESI-MS probe with a hybrid electrode made of PEEKsil was employed. Optimized HILIC gradient elution conditions with 100 mM ammonium formate (pH 11) provided the separation of hexose monophosphate and pentose phosphate isomers. To ensure good retention time repeatability in HILIC, perfluoroalkoxy alkane bottles were used for the mobile phase (with sd over 60 runs between 0.01 and 0.02 min). For the quantitative assay, the U-13C-labeled cell extract was spiked prior to extraction by metal oxide-based affinity chromatography (MOAC) with TiO2 beads. The concentrations of the 24 targets were quantified in HeLa and human embryonic kidney (HEK293) cells. Erastin-induced ferroptosis in HEK293 cells was accompanied by enhanced levels of fructose-1,6-bis-phosphate, 2- and 3-phosphoglycerate, and 2,3-bis-phosphoglycerate.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Hu Y, Wu B, Tang YS, Wu Y, Liu LY. Dispersive solid-phase extraction based on zirconium metal-organic framework coupled with gas chromatography-mass spectrometry for determining sugar phosphates in biological samples. Anal Chim Acta 2024; 1317:342908. [PMID: 39030009 DOI: 10.1016/j.aca.2024.342908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Sugar phosphates (SPx) play important role in the metabolism of the organism. SPx such as glycerate 3-phosphate, fructose 6-phosphate and glucose 6-phosphate in biological samples have the poor stability, similar structure and low abundance, which make their separation and detection more challenging. METHOD UiO-66-NH2 and ZrO2 coated SiO2(SBA-15) hard-core-shell adsorbents (UiO-66-NH2@SBA-15 and ZrO2@SBA-15) were synthesized, which were further used for dispersive solid-phase extraction for enriching the SPx in biological samples. The protocol was developed by UiO-66-NH2@SBA-15 and ZrO2@SBA-15 coupled with gas chromatography-mass spectrometry for the detection of trace SPx. The univariate experiment and response surface methodology were used to optimize the adsorption and desorption conditions. RESULTS The adsorbents showed excellent adsorption capacity and specificity towards SPx, which were proved by adsorption and selective experiments. Under the optimized conditions, there were good linearity within the range of 5.0-5000.0 ng mL-1, low limits of detection (0.001-1.0 ng mL-1), low limits of quantification (0.005-5.0 ng mL-1) and good precision (relative standard deviation less than 14.7 % for intra-day and inter-day). The satisfactory recoveries (89.1-113.8 %) and precision (0.5-14.6 %) were obtained when the sorbents were used to extract SPx from serum, saliva and cell samples. Moreover, UiO-66-NH2@SBA-15 was applied to the quantitative analysis of SPx from gastric cancer patients, because of a higher adsorption capacity (169.5-196.1 mg g-1). CONCLUSIONS UiO-66-NH2@SBA-15 showed great potential in the extraction of SPx in biological samples, which was beneficial to find out the metabolic change of SPx and explain the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yuyan Hu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Boxue Wu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Ying-Shu Tang
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Yi Wu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Li-Yan Liu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China.
| |
Collapse
|
3
|
Shen D, Zhu Y, Mao J, Lin R, Jiang X, Liang L, Peng J, Cao Y, Dong S, He K, Wang N. Highly sensitive and accurate measurement of underivatized phosphoenolpyruvate in plasma and serum via EDTA-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry. Talanta 2024; 275:126134. [PMID: 38692044 DOI: 10.1016/j.talanta.2024.126134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.
Collapse
Affiliation(s)
- Danning Shen
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yingjie Zhu
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jie Mao
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Runfeng Lin
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xin Jiang
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Longhui Liang
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jing Peng
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yanqing Cao
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Suhe Dong
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Kun He
- National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Na Wang
- National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
4
|
McCullagh J, Probert F. New analytical methods focusing on polar metabolite analysis in mass spectrometry and NMR-based metabolomics. Curr Opin Chem Biol 2024; 80:102466. [PMID: 38772215 DOI: 10.1016/j.cbpa.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Following in the footsteps of genomics and proteomics, metabolomics has revolutionised the way we investigate and understand biological systems. Rapid development in the last 25 years has been driven largely by technical innovations in mass spectrometry and nuclear magnetic resonance spectroscopy. However, despite the modest size of metabolomes relative to proteomes and genomes, methodological capabilities for robust, comprehensive metabolite analysis remain a major challenge. Therefore, development of new methods and techniques remains vital for progress in the field. Here, we review developments in LC-MS, GC-MS and NMR methods in the last few years that have enhanced quantitative and comprehensive metabolome coverage, highlighting the techniques involved, their technical capabilities, relative performance, and potential impact.
Collapse
Affiliation(s)
- James McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fay Probert
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
5
|
Ovbude ST, Sharmeen S, Kyei I, Olupathage H, Jones J, Bell RJ, Powers R, Hage DS. Applications of chromatographic methods in metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124124. [PMID: 38640794 DOI: 10.1016/j.jchromb.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.
Collapse
Affiliation(s)
- Susan T Ovbude
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Harshana Olupathage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Richard J Bell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
6
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Ngere J, Ebrahimi KH, Williams R, Pires E, Walsby-Tickle J, McCullagh JSO. Ion-Exchange Chromatography Coupled to Mass Spectrometry in Life Science, Environmental, and Medical Research. Anal Chem 2023; 95:152-166. [PMID: 36625129 PMCID: PMC9835059 DOI: 10.1021/acs.analchem.2c04298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Judith
B. Ngere
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kourosh H. Ebrahimi
- Institute
of Pharmaceutical Science, King’s
College London, London SE1 9NH, U.K.
| | - Rachel Williams
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Elisabete Pires
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - John Walsby-Tickle
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - James S. O. McCullagh
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,
| |
Collapse
|
8
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
9
|
Targeted analysis of sugar phosphates from glycolysis pathway by phosphate methylation with liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 2022; 1221:340099. [DOI: 10.1016/j.aca.2022.340099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|
10
|
Isomer-selective analysis of inositol phosphates with differential isotope labelling by phosphate methylation using liquid chromatography with tandem mass spectrometry. Anal Chim Acta 2022; 1191:339286. [PMID: 35033253 DOI: 10.1016/j.aca.2021.339286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Inositol phosphates belong to a family of structurally diverse signaling molecules playing crucial role in Ca2+ release from intracellular storage vesicles. There are many possibilities of phosphorylation, including their degree and position. Inositol (1,4,5) trisphosphate has been well recognized as the most important second messenger among this family. It remains a challenge to analyse the entire inositol phosphate metabolite family due to its structural complexity, high polarity, and high phosphate density. In this study, we have established an improved UHPLC-ESI-MS/MS method based on a differential isotope labelling methylation strategy. An SPE extraction kit composed of TiO2 and PTFE filter was employed for sample preparation which provided good extraction performance. Samples were methylated (light label) to neutralize the phosphate groups and give better performance in liquid chromatography. Regioisomers and inositol phosphates differing in their number of phosphate residues were successfully separated after optimization on a core-shell cholesterylether-bonded RP-type column (Cosmocore 2.6Cholester) using methanol as organic modifier. Triple quadrupole MS detection was based on selected reaction monitoring (SRM) acquisition with characteristic fragments. Stable isotope labeling methylation was performed to generate internal standards (heavy label). Limits of quantification from 0.32 to 0.89 pmol on column was achieved. This method was validated to be suitable for inositol phosphate profiling in biological samples. After application in cultured HeLa cells, NIST SRM1950 plasma, and human platelets, distinct inositol profiles were obtained. This newly established method exhibited improved analytical performance, holding the potential to advance the understanding of inositol phosphate signaling.
Collapse
|
11
|
Irfan A, Feng W, Liu K, Habib K, Qu Q, Yang L. TiO 2-modified fibrous core-shell mesoporous material to selectively enrich endogenous phosphopeptides with proteins exclusion prior to CE-MS analysis. Talanta 2021; 235:122737. [PMID: 34517605 DOI: 10.1016/j.talanta.2021.122737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/01/2023]
Abstract
As an important post-translational modification of proteins, phosphorylation plays a key role in regulating a variety of complicated biological reactions. Owing to the fact that phosphopeptides are low abundant and the ionization efficiency could be suppressed in mass spectroscopic detection, highly efficient and selective enrichment methods are essential to identify protein phosphorylation by mass spectrometry. Here, we develop novel titanium oxide coated core shell mesoporous silica (CSMS@TiO2) nanocomposites for enrichment of phosphopeptides with simultaneous exclusion of massive proteins. The CSMS@TiO2 nanocomposites have essential features, including uniform 1.0 μm diameter, 120 nm thick shell, 7.0 nm mesopores perpendicular to the surface, large surface area of 77 m2/g and pore volume of 0.15 cm3/g, therefore can greatly improve the sensitivity for identifying phosphopeptides by capillary electrophoresis-mass spectrometry. The proposed CSMS@TiO2 nanocomposites are applied for analysis of β-casein tryptic digest and bovine serum albumin (BSA) protein mixture, respectively. The results show that the number of phosphopeptides detected is tremendously increased by using CSMS@TiO2 nanocomposite, proving selectively enriching phosphopeptides due to the size-exclusive and specific interaction of the TiO2-modified mesopores. The enrichment of the phosphopeptides is achieved even for the digests at very low concentration of β-casein (1 fmol/μL). This research would open up a promising idea to utilize mesoporous materials in peptidomics analysis.
Collapse
Affiliation(s)
- Azhar Irfan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Wenxia Feng
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Kexin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Khan Habib
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Qishu Qu
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui Province, 230601, China.
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
12
|
Wasito H, Hermann G, Fitz V, Troyer C, Hann S, Koellensperger G. Yeast-based reference materials for quantitative metabolomics. Anal Bioanal Chem 2021; 414:4359-4368. [PMID: 34642781 PMCID: PMC9142427 DOI: 10.1007/s00216-021-03694-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
We introduce a new concept of yeast-derived biological matrix reference material for metabolomics research relying on in vivo synthesis of a defined biomass, standardized extraction followed by absolute quantification with isotope dilution. The yeast Pichia pastoris was grown using full control- and online monitoring fed-batch fermentations followed by fast cold methanol quenching and boiling ethanol extraction. Dried extracts served for the quantification campaign. A metabolite panel of the evolutionarily conserved primary metabolome (amino acids, nucleotides, organic acids, and metabolites of the central carbon metabolism) was absolutely quantified by isotope dilution utilizing uniformly labeled 13C-yeast-based internal standards. The study involved two independent laboratories employing complementary mass spectrometry platforms, namely hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) and gas chromatography-tandem mass spectrometry (GC–MS/MS). Homogeneity, stability tests (on a panel of >70 metabolites over a period of 6 months), and excellent biological repeatability of independent fermentations over a period of 2 years showed the feasibility of producing biological reference materials on demand. The obtained control ranges proved to be fit for purpose as they were either superior or comparable to the established reference materials in the field.
Collapse
Affiliation(s)
- Hendri Wasito
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190, Vienna, Austria.,Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Dr. Soeparno Street, 53122, Purwokerto, Indonesia
| | - Gerrit Hermann
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 11, 1190, Vienna, Austria.,ISOtopic Solutions, Waehringer Str. 38, 1090, Vienna, Austria
| | - Veronika Fitz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Christina Troyer
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Liu FL, Ye TT, Ding JH, Yin XM, Yang XK, Huang WH, Yuan BF, Feng YQ. Chemical Tagging Assisted Mass Spectrometry Analysis Enables Sensitive Determination of Phosphorylated Compounds in a Single Cell. Anal Chem 2021; 93:6848-6856. [PMID: 33882236 DOI: 10.1021/acs.analchem.1c00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polar phosphorylated metabolites are involved in a variety of biological processes and play vital roles in energetic metabolism, cofactor regeneration, and nucleic acid synthesis. However, it is often challenging to interrogate polar phosphorylated metabolites and compounds from biological samples. Liquid chromatography-mass spectrometry (LC/MS) now plays a central role in metabolomic studies. However, LC/MS-based approaches have been hampered by the issues of the low ionization efficiencies, low in vivo concentrations, and less chemical stability of polar phosphorylated metabolites. In this work, we synthesized paired reagents of light and heavy isotopomers, 2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (DMPI) and d3-(2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (d3-DMPI). The paired reagents of DMPI and d3-DMPI carry diazo groups that can efficiently and selectively react with the phosphate group on polar phosphorylated metabolites under mild conditions. As a proof of concept, we found that the transfer of the indole heterocycle group from DMPI/d3-DMPI to ribonucleotides led to the significant increase of ionization efficiencies of ribonucleotides during LC/MS analysis. The detection sensitivities of these ribonucleotides increased by 25-1137-fold upon DMPI tagging with the limits of detection (LODs) being between 7 and 150 amol. With the developed method, we achieved the determination of all the 12 ribonucleotides from a single mammalian cell and from a single stamen of Arabidopsis thaliana. The method provides a valuable tool to investigate the dynamic changes of polar phosphorylated metabolites in a single cell under particular conditions.
Collapse
Affiliation(s)
- Fei-Long Liu
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tian-Tian Ye
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Ming Yin
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Ke Yang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Ion Chromatography with Mass Spectrometry for Metabolomic Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33791980 DOI: 10.1007/978-3-030-51652-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Ion chromatography (IC) represents an important technique for separation of charged and polar compounds. Traditionally, IC is often used for the analysis of small inorganic ions. Due to the development of eluent suppression technology that allows continuous online desalting and conversion of high-salt eluents into pure water, IC has been coupled with mass spectrometry (MS) for the analysis of more diverse range of anionic and cationic analytes. Recent studies have demonstrated that IC-MS is a powerful technique with exquisite detection sensitivity, high reproducibility, and quantitative capability for metabolomic analysis. In this chapter, we provide a brief overview of IC principles and IC-MS for metabolomic analysis.
Collapse
|
15
|
Rampler E, Hermann G, Grabmann G, El Abiead Y, Schoeny H, Baumgartinger C, Köcher T, Koellensperger G. Benchmarking Non-Targeted Metabolomics Using Yeast-Derived Libraries. Metabolites 2021; 11:metabo11030160. [PMID: 33802096 PMCID: PMC7998801 DOI: 10.3390/metabo11030160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Non-targeted analysis by high-resolution mass spectrometry (HRMS) is an essential discovery tool in metabolomics. To date, standardization and validation remain a challenge. Community-wide accepted cost-effective benchmark materials are lacking. In this work, we propose yeast (Pichia pastoris) extracts derived from fully controlled fermentations for this purpose. We established an open-source metabolite library of >200 identified metabolites based on compound identification by accurate mass, matching retention times, and MS/MS, as well as a comprehensive literature search. The library includes metabolites from the classes of (1) organic acids and derivatives (2) nucleosides, nucleotides, and analogs, (3) lipids and lipid-like molecules, (4) organic oxygen compounds, (5) organoheterocyclic compounds, (6) organic nitrogen compounds, and (7) benzoids at expected concentrations ranges of sub-nM to µM. As yeast is a eukaryotic organism, key regulatory elements are highly conserved between yeast and all annotated metabolites were also reported in the human metabolome database (HMDB). Orthogonal state-of-the-art reversed-phase (RP-) and hydrophilic interaction chromatography mass spectrometry (HILIC-MS) non-targeted analysis and authentic standards revealed that 104 out of the 206 confirmed metabolites were reproducibly recovered and stable over the course of three years when stored at −80 °C. Overall, 67 out of these 104 metabolites were identified with comparably stable areas over all three yeast fermentation and are the ideal starting point for benchmarking experiments. The provided yeast benchmark material enabled not only to test for the chemical space and coverage upon method implementation and developments but also allowed in-house routines for instrumental performance tests. Transferring the quality control strategy of proteomics workflows based on the number of protein identification in HeLa extracts, metabolite IDs in the yeast benchmarking material can be used as metabolomics quality control. Finally, the benchmark material opens new avenues for batch-to-batch corrections in large-scale non-targeted metabolomics studies.
Collapse
Affiliation(s)
- Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
- ISOtopic Solutions, Währinger Str. 38, 1090 Vienna, Austria
| | - Gerlinde Grabmann
- Metabolomics Core Facility, Vienna BioCenter Core Facilities, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria; (G.G.); (T.K.)
| | - Yasin El Abiead
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
| | - Christoph Baumgartinger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
| | - Thomas Köcher
- Metabolomics Core Facility, Vienna BioCenter Core Facilities, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria; (G.G.); (T.K.)
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|