1
|
Zhang T, Liang X, Si T, Lu X, Wang S. An adhesive hydrogel functionalized silica sphere for polar analytes separation and analysis. Talanta 2024; 280:126768. [PMID: 39197312 DOI: 10.1016/j.talanta.2024.126768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
In response to the challenges associated with the chromatographic separation of polar compounds, this study aims to devise a solution by introducing a novel stationary phase. Hydrogels, characterized by a three-dimensional network structure, have aroused wide attention owing to its functional designability, multiple interaction sites and good adhesion, etc. In this work, an adhesive hydrogel functionalized silica stationary phase (Sil@PVA/TA) was synthesized using physical coating technique. Due to the co-existence of hydroxyl and benzene ring in the hydrogel structure, the obtained composites materials exhibited excellent separation performance for various of compounds and excellent column efficiency up to 71385.6 plates/m for thymidine. Furthermore, the hydrogel functionalized silica demonstrated superior selectivity to bare silica, diol-column and NH2-column for the separation of various of polar molecules, including, nucleosides/bases, alkaloids, organic acids, antibiotics and amino acids. Notably, for alkaloids, which frequently encounter peak tailing issues, Sil@PVA/TA demonstrated superior peak shape compared with C18 column. In short, this study successfully synthesized a hydrogel functionalized silica stationary phase, offering a novel method for the separation and analysis of polar compounds.
Collapse
Affiliation(s)
- Tong Zhang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Liang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Tiantian Si
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaofeng Lu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuai Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Song Z, Wu W, Sui L, Han X, Xu H, Yang G, Zhang P, Zhou N, Chen L, Li J. Design and Synthesis of Fluorine-Containing Embedded Carbon Dots Stationary Phase for Separation of Versatile Analytes. Anal Chem 2024; 96:16590-16598. [PMID: 39365181 DOI: 10.1021/acs.analchem.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Thus far, numerous new stationary phases have been developed. A fluorine-containing embedded carbon dots (F3-CDs-SiO2) stationary phase was first designed and synthesized. The resulting F3-CDs-SiO2 stationary phase was characterized carefully by scanning electron microscopy, transmission electron microscopy, elemental analysis, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller experiment. The F3-CDs-SiO2 stationary phase was slurry packed into the HPLC column (150 × 2.1 mm) for evaluation. Furthermore, the F3-CDs-SiO2 column was successfully used for separation of pesticides, nucleosides, sulfonamides, alkaloids, and alkylbenzenes. The retention mechanism (including hydrophobic interaction, F-F, hydrogen bond interaction, ion-exchange, dipole-dipole interaction, electrostatic interaction, etc.) was investigated carefully. Meanwhile, the F3-SiO2 stationary phase was synthesized and used to evaluate the role of CDs. Furthermore, various commercial stationary phases (including amino-SiO2, diol-SiO2, C18-SiO2, and PFP-SiO2) were used for comparison. Moreover, the F3-CDs-SiO2 column possessed good repeatability, reproducibility, and stability in separation of versatile analytes.
Collapse
Affiliation(s)
- Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Wenpu Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Lei Sui
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Xinyan Han
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| |
Collapse
|
3
|
Zhang P, Hu Y, Liu K, Sun Y, He L, Zhao W. Hydrophilic interaction chromatographic evaluation of zwitterionic polymer grafted silica gel via multiple binding sites. J Sep Sci 2024; 47:e2400065. [PMID: 39054584 DOI: 10.1002/jssc.202400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A novel zwitterionic polymer grafted silica stationary phase, Sil-PZIC, was prepared by bonding poly(ethylene maleic anhydride) molecules on the surface of silica via multiple binding sites, followed by ammonolysis of maleic anhydride through a nucleophilic substitution reaction with ethylenediamine. The stationary phase was characterized by solid-state 13C nuclear magnetic resonance, zeta potential, and elemental analysis and the results show the successful encapsulation of zwitterionic polymer on the surface of silica. The chromatographic performance of Sil-PZIC was investigated by using nucleosides and nucleic bases as test analytes The variation of retention and separation performance of these model compounds were investigated by varying the chromatographic conditions such as the components of mobile phase, salt concentration, and pH. The results show that the retention of the Sil-PZIC phase was dominated by a hydrophilic partitioning mechanism accompanied by secondary interactions such as electrostatic and hydrogen bonding. In addition, saccharides and Amadori compounds were also well separated on the Sil-PZIC, indicating that the Sil-PZIC column has potential application for separation of the polar compound.
Collapse
Affiliation(s)
- Pengcheng Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Kunling Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| |
Collapse
|
4
|
Yin Y, Gao Y, Wang J, Wang Q, Wang F, Li H, French PJ, Paoprasert P, Umar Siddiqui AM, Wang Y, Zhou G. Si, O-Codoped Carbonized Polymer Dots with High Chemiresistive Gas Sensing Performance at Room Temperature. ACS Sens 2024; 9:3282-3289. [PMID: 38864828 DOI: 10.1021/acssensors.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A new type of carbonized polymer dot was prepared by the one-step hydrothermal method of triethoxylsilane (TEOS) and citric acid (CA). The sensor made from carbonized polymer dots (CPDs) showed superior gas sensing performance toward ammonia at room temperature. The Si, O-codoped CPDs exhibited superior ammonia sensing performance at room temperature, including a low practical limit of detection (pLOD) of 1 ppm (Ra/Rg: 1.10, 1 ppm), short response/recovery time (30/36 s, 1 ppm), high humidity resistance (less than 5% undulation when changing relative humidity to 80 from 30%), high stability (less than 5% initial response undulation after 120 days), reliable repeatability, and high selectivity against other interferential gases. The gas sensing mechanism was investigated through control experiments and in situ FTIR, indicating that Si, O-codoping essentially improves the electron transfer capability of CPDs and synergistically dominates the superior ammonia sensing properties of the CPDs. This work presents a facile strategy for constructing novel high-performance, single-component carbonized polymer dots for gas sensing.
Collapse
Affiliation(s)
- Yubo Yin
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yixun Gao
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jianqiang Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Quan Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Fengnan Wang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, P. R. China
| | - Hao Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft 2628CD, The Netherlands
| | - Peerasak Paoprasert
- Department of Chemistry, Faculty of Science and technology Thammasat University, 99 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12121, Thailand
| | - Ahmad M Umar Siddiqui
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
| | - Yao Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Yang H, Peng J, Peng H, Zeng H, Yu J, Wu J, Wang X. Dicationic imidazole ionic liquid stationary phase for preservative detection and its application under mixed mode of HILIC/RPLC/IEC. Anal Chim Acta 2024; 1303:342504. [PMID: 38609259 DOI: 10.1016/j.aca.2024.342504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Food safety has always been a great concern, and the detection of additives is vital to ensuring food safety. Therefore, there is a necessity to develop a method that can quickly and efficiently separate and detect additives in food. High performance liquid chromatography is widely used in the analysis and testing of food additives. Ionic liquids have attracted wide attention in the preparation of high performance liquid chromatography stationary phases owing to their high stability, low vapor pressure and adjustable structure. RESULTS We developed a novel dicationic imidazole ionic liquid stationary phase for the simultaneous determination of organic preservatives (sodium benzoate, potassium sorbate) and inorganic preservatives (nitrate and nitrite) in foodstuffs under mixed-mode chromatography. The method had the advantages of easy operation, high reproducibility, good linearity and precision. In the detection of these four preservatives, the limit of detection ≤0.4740 mg⋅L-1 and the limit of quantification ≤1.5800 mg⋅L-1. The intra-day and inter-day precision were less than 4.02%, and the recovery rate was 95.90∼100.19 %. At the same time, we also characterized the stationary phase, explored the mechanism and evaluated the chromatographic performance. The stationary phase was able to operate under the mixed mode of reversed phase/hydrophilic interaction/ion exchange chromatography, and it was capable of separating hydrophilic substances, hydrophobic substances, acids, and inorganic anionic substances with good separation efficiency and had high column efficiency. SIGNIFICANCE In summary, the stationary phase has a promising application in the routine analysis of organic and inorganic preservatives in food. In addition, the stationary phase has good separation ability for hydrophilic, hydrophobic, ionic substances and complex samples, making it a prospective material for chromatographic separation.
Collapse
Affiliation(s)
- Hanqi Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hanlin Zeng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiayu Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiajia Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Liu Q, Zhou K, Liu Y, Zhang Y, Chen W, Tang S. Exploring the potential applications of amphiphilic carbon dots based nanocomposite hydrogel in liquid chromatographic separations. Anal Chim Acta 2024; 1299:342445. [PMID: 38499423 DOI: 10.1016/j.aca.2024.342445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Due to their excellent stability, low toxicity, flexible modification and adjustable functionality, carbon dots (CDs) have a promising application prospect in the field of chromatographic stationary phases. Hydrogels are new functional polymer materials with three-dimensional network structure that have excellent hydrophilicity, high porosity and unique mechanical properties, which are also good candidate materials for liquid chromatography. Nevertheless, a review of the literature reveals that CDs based nanocomposite hydrogels have not yet been reported as HPLC stationary phases. RESULTS In this work, amphiphilic CDs with multiple functional groups and polyacrylic acid hydrogel were grafted to the surface of silica gel by an in-situ polymerization method, and a CDs/polyacrylic acid nanocomposite hydrogel stationary phase (CDs/hydrogel@SiO2) was prepared. CDs act as the macroscopic cross-linking agents to form a cross-linked network with polyacrylic acid chains through physical cross-linking by hydrogen bonding and chemical cross-linking by amidation and esterification reactions, which not only improve the swelling property of the hydrogel but also increase its stability. Additionally, the introduction of CDs with multifunctional groups modulates the hydrophilic-hydrophobic balance of the hydrogel that also imparts good hydrophobicity to the composite hydrogel. Through the study of retention mechanism and influencing factors, it is certificate that the CDs/hydrogel@SiO2 has mixed-mode chromatographic performance. Furthermore, the CDs/hydrogel@SiO2 column shows great potential for the determination of organic contaminants in environmental water samples. SIGNIFICANCE This work confirms the potential application of CDs/hydrogel composite for the separation of various samples and provides the possibility of developing CDs based nanocomposite hydrogel in the field of liquid chromatography. Introducing CDs into hydrogel can open up a new way for nanocomposite hydrogels to be used in HPLC, which expands the advance of hydrogel and CDs in separation field.
Collapse
Affiliation(s)
- Qiaoling Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kunming Zhou
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
7
|
Liu Y, Shang S, Wei W, Zhang Y, Chen W, Tang S. Ionic liquid/covalent organic framework/silica composite material: Green synthesis and chromatographic evaluation. Anal Chim Acta 2023; 1283:341992. [PMID: 37977797 DOI: 10.1016/j.aca.2023.341992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Due to their large surface area and distinctive adsorption affinity, covalent organic frameworks (COFs) appear to be good candidates as liquid chromatographic separation materials with good application prospect. The development of COF materials in chromatographic science is currently in an exploratory stage. Especially, the practicability of COF@silica composite materials as liquid chromatographic stationary phases needs further exploration. Reasonably integrating a functional component such as ionic liquid (IL) into the COF@silica composite materials may provide customized functionality to achieve the purpose of synthesizing multi-functional COF based stationary phases. RESULTS In this study, an IL modified COF bonded silica composite material (IL-COF@SiO2) was successfully synthesized by using an environmentally friendly deep eutectic solvent as the reaction medium instead of the frequently-used organic solvent. The synthesized IL-COF@SiO2 composite material combines the excellent separation ability of COF and the excellent mass transfer function of spherical porous silica microsphere, and meanwhile, the introduction of IL endows COF@SiO2 with preferable separation performance. The slurry-packed IL-COF@SiO2 liquid chromatographic column could be applied to effectively separate hydrophobic and hydrophilic compounds with preferable separation selectivity and high column efficiency. By investigating the retention behavior and influencing factors, a mixed-mode retention mechanism was found. Multiple interaction forces endow the IL-COF@SiO2 with a hydrophilic-hydrophobic balance performance, demonstrating a good application prospect as a versatile liquid chromatographic separation material. SIGNIFICANCE In this study, a new strategy is proposed for greenly synthesizing a novel IL-COF@SiO2 composite material under mild conditions, which expands the potential application of COF materials in chromatographic science. One particular point to note is that the reaction medium in each step of the preparation process is low toxic and degradable deep eutectic solvent, which conforms to the concept of green chemistry.
Collapse
Affiliation(s)
- Yuanfei Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sunqi Shang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
8
|
Chai P, Geng X, Zhu R, Wu W, Wang X, Li J, Fu L, Wang H, Liu W, Chen L, Song Z. Fabrication and application of molecularly imprinted polymer doped carbon dots coated silica stationary phase. Anal Chim Acta 2023; 1275:341611. [PMID: 37524474 DOI: 10.1016/j.aca.2023.341611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Facing the difficulties in chromatographic separation of polar compounds, this investigation devotes to developing novel stationary phase. Molecularly imprinted polymers (MIPs) have aroused wide attention, owing to their outstanding selectivity, high stability, and low cost. In this work, a novel stationary phase based on carbon dots (CDs), MIP layer, and silica beads was synthesized to exploit high selectivity of MIPs, excellent physicochemical property of CDs, and outstanding chromatographic performances of silica microspheres simultaneously. The MIP doped CDs coated silica (MIP-CDs/SiO2) stationary phase was systematically characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurement, and carbon elemental analysis. Furthermore, the chromatographic performance of the MIP-CDs/SiO2 column was thoroughly assessed by using a wide variety of compounds (including nucleosides, sulfonamides, benzoic acids, and some other antibiotics). Meanwhile, the separation efficiency of the MIP-CDs/SiO2 stationary phase was superior to other kinds of stationary phases (e.g. nonimprinted NIP-CDs/SiO2, MIP/SiO2, and C18-SiO2). The results demonstrated that MIP-CDs/SiO2 column exhibited best performance in terms of chromatographic separation. For all tested compounds, the resolution value was not less than 1.60, and the column efficiency of MIP-CDs/SiO2 for thymidine was 22,740 plates/m. The results further indicate that the MIP-CDs/SiO2 column can combine the good properties of MIP, CDs, with those of silica microbeads. Therefore, the developed MIP-CDs/SiO2 stationary phase can be applied in the separation science and chromatography-based techniques.
Collapse
Affiliation(s)
- Peijun Chai
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xuhui Geng
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Ruirui Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Wenpu Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xuesong Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
9
|
Luo K, Zhao L, Liu Y, Zhang Y, Chen W, Tang S. Hydrophobic/hydrophilic separation performance evaluation of a mixed-mode ionic liquid embedded stearyl thioglycolate functionalized silica stationary phase. J Chromatogr A 2023; 1706:464279. [PMID: 37567003 DOI: 10.1016/j.chroma.2023.464279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
In this work, a novel imidazolium ionic liquid embedded multifunctional chromatographic stationary phase (Sil-AVI-ST) was synthesized by the radical-mediated thiol-ene click reaction. A wide range of samples including hydrophilic sulfonamides, vitamins and nucleosides/bases as well as hydrophobic phthalates, bisphenols, alkylphenols and steroid hormones were selected to evaluate the separation ability of the newly obtained Sil-AVI-ST. As expected, an efficient separation of the above tested analytes was successfully achieved in different chromatographic modes. It was proved that multiple stationary phase-analyte interaction forces promoted the selective separation. The Sil-AVI-ST column provided multiple retention mechanisms, enabling the efficient separation of diverse analytes with different polarity. More importantly, embedding a polar ligand (1-allyl-3-vinyl-imidazolium) could improve the separation efficiency of long-chain alkyl bonded stationary phases for hydrophilic analytes, and the developed Sil-AVI-ST column could also realize the detection of hydrophobic analytes under water-rich conditions, which is impossible for the conventional hydrophobic columns. Therefore, the newly prepared Sil-AVI-ST stationary phase has a good practical application potential.
Collapse
Affiliation(s)
- Kaixing Luo
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
10
|
Zeng L, Xie W, Jiang L, Yao X, Li H, Shi B, Lei F. Fabrication and evaluation of dodecyl imide maleopimaric acid glycidyl methacrylate ester modified silica with multiple retention mechanisms for reversed phase liquid chromatography. J Chromatogr A 2023; 1689:463747. [PMID: 36621106 DOI: 10.1016/j.chroma.2022.463747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
As green, less toxic, and abundant ligands with rich functional groups, natural products are widely used in synthesis of chromatographic stationary phases. In this work, dodecyl imide maleopimaric acid glycidyl methacrylate ester (C12-MPAGN) was prepared from maleopimaric acid through the imidization and ring-opening based esterification reaction. By using "thiol-ene" click chemistry, it was chemically bonded to the silica and (3-mercaptopropyl) trimethoxysilane (γ-MPS) was used as the coupling agent to obtain dodecyl imide maleopimaric acid glycidyl methacrylate ester bonded silica stationary phase (Sil-C12-MPAGN). Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopies (SEM), and elemental analysis (EA) were utilized to verify that the Sil-C12-MPAGN stationary phase was successfully prepared with C12-MPAGN immobilized on the silica surface. In order to evaluate the chromatographic performance and retention mechanisms of the Sil-C12-MPAGN column and compared with C18 column, a variety of compounds were used, including stander mixture of Tanaka, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), phenols and flavonoids. Based on these multiple interactions, including hydrophobic, hydrogen-bonding, and π-π interactions, high selectivity and superior separation performance were demonstrated by the Sil-C12-MPAGN column for probe molecules what had previously been mentioned. In addition, the quantitative determination of paclitaxel content in Yew bark extract was conducted with this column, which was found that the concentration was 83.67 mg/L, respectively. In short, the present study proposes a new strategy for introducing rosin to liquid chromatography with high selectivity and separation performance.
Collapse
Affiliation(s)
- Lei Zeng
- Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Wenbo Xie
- Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Lijuan Jiang
- Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Xingdong Yao
- Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Hao Li
- Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Boan Shi
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| |
Collapse
|
11
|
Wang D, Li H, Qiu H, Chen J. Preparation and Evaluation of Silicon Quantum Dots-Bonded Silica Stationary Phase for Reversed-Phase Chromatography. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Richu, Sharmhal A, Kumar A, Kumar A. Insights into the applications and prospects of ionic liquids towards the chemistry of biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Fu G, Gao C, Quan K, Li H, Qiu H, Chen J. Phosphorus-doped deep eutectic solvent-derived carbon dots-modified silica as a mixed-mode stationary phase for reversed-phase and hydrophilic interaction chromatography. Anal Bioanal Chem 2022:10.1007/s00216-022-04405-9. [PMID: 36350343 DOI: 10.1007/s00216-022-04405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
In this work, phosphorus-doped carbon dots (P-DESCDs) were successfully prepared using choline chloride/lactic acid type deep eutectic solvent and phosphoric acid as ingredients, and (3-aminopropyl) trimethoxysilane was used as a bridge to graft P-DESCDs onto the silica surface to obtain a new mixed-mode stationary phase (Sil-P-DESCDs) for reversed-phase and hydrophilic interaction liquid chromatography. The successful preparation of the stationary phase was confirmed by laser scanning confocal microscopy, elemental analysis, and Fourier transform infrared spectrometry. Interestingly, the doping of phosphorus greatly improved the separation performance and hydrophilicity of the Sil-P-DESCDs column. The Sil-P-DESCDs column was found to have certain hydrophobicity, hydrogen bonding ability and shape selectivity by Tanaka and Engelhardt standard test mixtures, and a series of hydrophilic and hydrophobic compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, sulfonamides, aromatic amines, phenols, flavonoids, nucleoside bases, and alkaloids. In addition, the effects of mobile phase ratio, column temperature, flow rate, salt concentration, and pH on the retention of analytes on Sil-P-DESCDs columns were investigated. Finally, the Sil-P-DESCDs column was applied to the qualitative and quantitative analysis of calcein-7-glucoside in the real sample of medicinal Astragalus pellets, and it was found at a concentration of 0.02 mg/mL.
Collapse
|
14
|
Effect of spacer alkyl chain length on retention among three imidazolium stationary phases under various modes in high performance liquid chromatography. J Chromatogr A 2022; 1685:463646. [DOI: 10.1016/j.chroma.2022.463646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
15
|
Yang JC, Gao S, Zhang JH, Lv HT, Wu Q. Ionic liquid and octadecylamine co-derived carbon dots for multi-mode high performance liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Deep eutectic solvents-derivated carbon dots-decorated silica stationary phase with enhanced separation selectivity in reversed-phase liquid chromatography. J Chromatogr A 2022; 1681:463425. [PMID: 36054993 DOI: 10.1016/j.chroma.2022.463425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023]
Abstract
In this work, deep eutectic solvents-based carbon dots (DESCDs) were prepared and bonded to the silica surface for the first time to form a new hydrophobic chromatographic stationary phase (Sil-DESCDs). The successful preparation of DESCDs and Sil-DESCDs were demonstrated by a series of characterizations including transmission electron microscopies, laser scanning confocal microscope, Fourier transform infrared spectrometry, elemental analysis, etc. Retention behavior of Sil-DESCDs was evaluated using Tanaka and Engelhardt standard test mixtures. The results showed that this new stationary phase had excellent separation performance for polycyclic aromatic hydrocarbons, flavonoids, aromatic amines and phenolic compounds. Excellent separation selectivity for the 3-phenylene ring isomers including phenanthrene and anthracene, the 4-phenylene ring isomers including pyrene, triphenylene, chrysene and 1,2-benzanthracene was also obtained. Especially, prednisolone and hydrocortisone, which have very similar structures, can be separated using pure water as the mobile phase. In addition, the flavonoids in Astragalus extracts including calycosin-7-glucoside, ononin, calycosin and formononetin were determined using this new column, their concentrations were 0.050, 0.031, 0.023 and 0.034 mg/mL, respectively.
Collapse
|
17
|
Lis H, Paszkiewicz M, Godlewska K, Maculewicz J, Kowalska D, Stepnowski P, Caban M. Ionic liquid-based functionalized materials for analytical chemistry. J Chromatogr A 2022; 1681:463460. [DOI: 10.1016/j.chroma.2022.463460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
18
|
Recent advances of innovative and high-efficiency stationary phases for chromatographic separations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
|
20
|
Preparation and evaluation of a double-hydrophilic interaction stationary phase based on bovine serum albumin and graphene quantum dots modified silica. J Chromatogr A 2022; 1669:462933. [DOI: 10.1016/j.chroma.2022.462933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
|
21
|
Design and fabrication of reusable core–shell composite microspheres based on nanodiamond for selective enrichment of phosphopeptides. Mikrochim Acta 2022; 189:124. [DOI: 10.1007/s00604-022-05234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
22
|
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022; 36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Various polar stationary phases have become available for hydrophilic interaction chromatography (HILIC) and help drive continuous applications in biomedical, environmental and pharmaceutical areas in the past decade. Although the stationary phases for HILIC have been reviewed previously, it is an appropriate time to take another look at the progresses during the past five years. The current review provides an overview of the polar stationary phases commercially available for HILIC applications in an effort to assist scientists in selecting suitable columns. New types of stationary phase that were published in literature in the past five years are summarized and discussed. The trend in stationary phase research and development is also highlighted. Of particular interest is the experimental evidence for direct interactions of polar analytes with the ligands of the stationary phases under HILIC conditions. In addition, two different approaches have been developed to delineate the relative significance of the partitioning and adsorption mechanisms in HILIC, representing an important advancement in our understanding of the retention mechanisms in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, New Jersey, USA
| |
Collapse
|
23
|
Song Z, Song Y, Wang Y, Liu J, Wang Y, Lin W, Wang Y, Li J, Ma J, Yang G, Chen L. Chromatographic performance of zidovudine imprinted polymers coated silica stationary phases. Talanta 2021; 239:123115. [PMID: 34890940 DOI: 10.1016/j.talanta.2021.123115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 01/16/2023]
Abstract
Nowadays, molecularly imprinted polymers (MIPs) coated silica stationary phases (SPs) have aroused great attention, owing to their good properties of high selectivity, good stability, facile synthesis procedure and low cost. In this study, zidovudine imprinted polymers coated silica stationary phases (MIPs/SiO2 SPs) were synthesized by surface imprinting technique using zidovudine as the template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and bare silica spheres (particle size, 5 μm; pore size, 20 nm) as substrates. In the process, reagents with low concentration were used to prepare thin layer of MIPs coating on the surface of silica microbeads. The properties of the materials were characterized by scanning electron microscope (SEM), fourier transform infrared spectrometer (FT-IR), carbon elemental analysis and N2 adsorption-desorption experiment. The obtained SPs were packed into stainless steel columns (2.1 mm × 150 mm) via a slurry method. The prepared columns were applied for separation of nucleoside analogues with similar chemical structures and strong polarity. The retention mechanism of MIPs/SiO2 SPs for nucleoside analogues was investigated carefully. And the chromatographic performances of the resulting MIPs based SPs were superior to those of the commercial SPs. Furthermore, the synthesized MIPs/SiO2 SPs possessed great potentials in separation of ginsenosides. This investigation demonstrated that MIPs based SPs were successfully synthesized and provided a new approach to polar compounds separation and analysis.
Collapse
Affiliation(s)
- Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Yanqin Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China; Yantai Center for Food and Drug Control, Yantai, 264000, PR China
| | - Yinghao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jinqiu Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Yumeng Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Wen Lin
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Yaqi Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
24
|
Preparation and evaluation of a bacitracin-bonded silica stationary phase for hydrophilic interaction liquid chromatography. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Wu Q, Hou X, Lv H, Li H, Zhao L, Qiu H. Synthesis of octadecylamine-derived carbon dots and application in reversed phase/hydrophilic interaction liquid chromatography. J Chromatogr A 2021; 1656:462548. [PMID: 34537657 DOI: 10.1016/j.chroma.2021.462548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
In order to make up for the deficiencies of traditional C18 column for separating strong polar compounds, combined with the good hydrophilicity of carbon dots (CDs), novel octadecylamine-derived CDs denoted as C18-CDs are designed, synthesized and applied in RPLC/HILIC mixed-mode chromatography with good separation performance towards both hydrophobic and hydrophilic compounds. C18-CDs are synthesized by simple one-step solvothermal method using octadecylamine and citric acid as carbon sources, and C18-CDs with proper polarity are collected through column chromatography purification. This C18-CDs decorated silica column showed good separation performance for polycyclic aromatic hydrocarbons and alkylbenzenes under RPLC mode. Hydrophilic compounds including sulfonamides, nucleosides and nucleobases also achieved good resolution in HILIC mode. Hydrophobic and π-π stacking interactions play major retaining roles in RPLC, whereas hydrophilic partitioning and hydrogen bond interactions turn to the main retention interactions under HILIC mode. This C18-CDs/SiO2 column was applied for the fast detection of chloramphenicol in milk without complex sample pretreatment process. Quantitative relationship between the peak area and the concentration of chloramphenicol was established with linear equation of A = 1677c + 173. Satisfactory spiked recoveries in the range of 94.1-109.0% were obtained. This work not only proposes a simple method for improving the polarity of C18 column through forming octadecane into CDs, but also provides novel CDs with certain hydrophobicity/hydrophily suitable for mixed-mode chromatography.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Haitao Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Hui Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liang Zhao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
26
|
Jiang D, Chen J, Guan M, Qiu H. Octadecylimidazolium ionic liquids-functionalized carbon dots and their precursor co-immobilized silica as hydrophobic chromatographic stationary phase with enhanced shape selectivity. Talanta 2021; 233:122513. [PMID: 34215128 DOI: 10.1016/j.talanta.2021.122513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
In this work, 1-vinyl-3-octadecylimidazolium bromide ionic liquids ([C18VIm]Br) and their derived carbon dots (ImC18CDs) were prepared, [C18VIm]Br and ImC18CDs were grafted on the silica to obtain Sil-ImC18 and Sil-ImC18CDs, respectively, and they were also co-grafted on silica which named Sil-ImC18/CDs. Compared with Sil-ImC18 and Sil-ImC18CDs columns, Sil-ImC18/CDs column exhibited enhanced selectivity for separation of tetracyclic/tricyclic polycyclic aromatic hydrocarbon (PAH) isomers, and butylbenzene isomers in reversed-phase liquid chromatography, which may be due to the synergistic effect between ImC18CDs and [C18VIm]Br, the π-π interaction between imidazolium and analytes, etc. Meanwhile, the retention behavior of Sil-ImC18/CDs was further evaluated and compared with the commercial C18 column using different classes of analytes, including standard test mixtures of Tanaka, Engelhardt, SRM869b, SRM870. The results demonstrated that co-grafted column exhibited superior separation performance. And this column was applied to determine the contents of calycosin-7-glucoside, ononin, calycosin and formononetin in the extract of Radix Astragali, which were found that the concentration was 0.25 mg mL-1, 0.15 mg mL-1, 0.13 mg mL-1 and 0.30 mg mL-1, respectively.
Collapse
Affiliation(s)
- Danni Jiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Ming Guan
- Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
27
|
Qiao L, Sun R, Tao Y, Yu C, Yan Y. Surface-confined guanidinium ionic liquid as a new type of stationary phase for hydrophilic interaction liquid chromatography. J Sep Sci 2021; 44:3357-3365. [PMID: 34270174 DOI: 10.1002/jssc.202100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
Guanidinium-based ionic liquids possess lower toxicity and greater designability than commonly used species and have presented good performances in liquid-phase extraction and stationary phase for capillary gas chromatography. In the present work, a novel type of surface-confined guanidinium ionic liquid stationary phase was developed by bonding a hexaalkylguanidinium ionic liquid N,N,N',N'-tetramethyl-N",N"-diallylguanidinium bromide onto the surface of 3-mercaptopropyl modified silica. The obtained surface-confined guanidinium ionic liquid silica materials were characterized by elemental analysis, infrared spectroscopy and thermogravimetric analysis, and then packed as a high-performance liquid chromatography column for the evaluation of chromatographic retention behavior. Typical polar compounds were used to evaluate the separation performances, and the changes of retention with water content in mobile phase further suggested the hydrophilic interaction liquid chromatography retention mechanism. Moreover, the effect of different chromatographic factors (salt concentration, mobile phase pH, and column temperature) on retention was investigated with a series of compounds as test solutes to gain insights into the retention mechanism. The results indicated that the surface-confined guanidinium ionic liquid stationary phase exhibited a hydrophilic interaction liquid chromatography/anion-exchange mixed-mode retention behavior and possessed promising potential in separating a wide range of compounds as an alternative stationary phase for high-performance liquid chromatography.
Collapse
Affiliation(s)
- Lizhen Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Ruiting Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Yuan Tao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Chunmei Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Yang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China.,School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| |
Collapse
|
28
|
Amphipathic carbon quantum dots-functionalized silica stationary phase for reversed phase/hydrophilic interaction chromatography. Talanta 2021; 226:122148. [PMID: 33676698 DOI: 10.1016/j.talanta.2021.122148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/24/2022]
Abstract
Carbon quantum dots (CQDs) are considered as good chromatographic separation materials. However, due to the hydrophily of the synthesized CQDs, their applications in HPLC are limited to HILIC for separating strong polar compounds only. In this work, a novel amphipathic CQDs with both hydrophobicity and hydrophily is developed as mixed-mode stationary phase for RPLC/HILIC. To give CQDs certain hydrophobicity, 1,8-diaminooctane is chosen as one of the carbon sources for introducing alkyl chain into CQDs. The amphipathic CQDs modified silica (CQDs/SiO2) stationary phase has typical characteristic of RPLC/HILIC. Both hydrophobic and hydrophilic compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and bases, amino acids, β-adrenoceptor blockers and agonists, sulfonamides, antibiotics and alkaloids obtain satisfactory separation on this CQDs/SiO2 column. 14 nucleosides and bases commonly existing in living organisms achieve good separation on this amphipathic CQDs/SiO2 column within 25 min and the resolutions reach 1.33-13.83 with an average column efficiency of 18,800. The retention mechanism of this novel CQDs/SiO2 column is investigated by linear solvation energy relationship model. It is found that hydrophobic interaction, π-π stacking, hydrogen-bonding and electrostatic interactions are main retention interactions under RPLC mode. This work provides a new approach for synthesis of amphipathic CQDs. Also, it indicates that amphipathic CQDs with versatile functional properties have great prospect in separation science.
Collapse
|
29
|
Guo T, Wang X, Zhao C, Shu Y, Wang J. Precise regulation of the properties of hydrophobic carbon dots by manipulating the structural features of precursor ionic liquids. Biomater Sci 2021; 9:3127-3135. [PMID: 33710222 DOI: 10.1039/d1bm00090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To prepare carbon dots (CDs), there are numerous protocols that use a wide variety of carbon sources, which results in properties of CDs that are unpredictable and highly variable. Therefore, the development of reliable approaches for precisely regulating the nature of CDs is urgently required. Herein, a series of organophilic/hydrophobic CDs (OCDs) were prepared under microwave agitation with ionic liquid 1-alkyl-3-methylimidazolium dicyanamide as the precursor, by varying the alkyl chain linked in the cationic imidazolium moiety. The physicochemical, optical and biological properties, and imaging performance of OCDs were exploited to elucidate the structure-activity relationship, and it was discovered that the alkyl chain plays key roles in governing the properties of OCDs. The increase in the alkyl chain length, from ethyl, butyl, hexyl, and octyl to decyl, led to a remarkable variation in the properties of the OCDs, i.e., a reduction in nitrogen doping from 40.71 to 20.75%, a decrease in binding affinity with bovine serum albumin (BSA), and an increase in cytotoxicity. The interaction of OCDs with BSA and the formation of a 'protein corona' substantially increased the biocompatibility of the OCDs. The OCDs penetrated into MCF-7 human breast cancer cells in 10 min and demonstrated bright fluorescence imaging.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Chenxi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
30
|
Preparation of Silica-Based Superficially Porous Silica and its Application in Enantiomer Separations: a Review. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00155-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Luo Q, Zhong Z, Zheng Y, Gao D, Xia Z, Wang L. Preparation and evaluation of a poly(N-isopropylacrylamide) derived graphene quantum dots based hydrophilic interaction and reversed-phase mixed-mode stationary phase for complex sample analysis. Talanta 2021; 224:121869. [DOI: 10.1016/j.talanta.2020.121869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022]
|
32
|
Wang Y, Liu L. [Research progress in application of immobilized ionic liquid materials to separation by solid-phase extraction]. Se Pu 2021; 39:241-259. [PMID: 34227306 PMCID: PMC9403816 DOI: 10.3724/sp.j.1123.2020.08002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Ionic liquids are low-temperature molten salts with almost no vapor pressure, and they are composed of organic cations and inorganic anions. Ionic liquids are characterized by the properties of good chemical stability, high solubility, designable structure, high conductivity and so on. The physicochemical properties of an ionic liquid depend on the nature and size of the cation and anion, which confer unique characteristics; hence, these reagents are also termed "designed extractants." As a new class of green solvents, ionic liquids are potential replacements to traditional volatile organic solvents used for extraction; for this reason, ionic liquids have attracted the attention of scientists. Research on the methods of preparation and applications of ionic liquids is being diversified, and they are extensively used in catalytic chemistry, photoelectron chemistry, materials chemistry, analytical chemistry, etc. By functional guiding design, the structures of ionic liquids, especially the imidazole ring cations, can be easily grafted with active groups such as hydroxyl, amino, carboxyl, and cyano groups, so that interactions between the ionic liquids and target molecules can be promoted via the formation of π-π bonds, hydrogen bonds, ionic bonds, and van der Waals forces. In addition, ionic liquids can be readily immobilized on solid carriers by physical or chemical means in order to obtain a new solid material with ionic liquids embedded internally or decorated on the surface. Furthermore, ionic liquids could be converted into ionic liquid-immobilized composite materials by impregnation, grafting, etc. The resulting composites not only suffer minimal loss of ionic liquids but also retain the typical characteristics of the ionic liquids and solid materials, thus showing improved mass transfer performance and better adsorption performance. Immobilized materials are characterized by high enrichment efficiency, high adsorption capacity, good stability, and strong extraction selectivity, as well as the presence of numerous recognition sites and high utilization rate of ionic liquids. In recent years, they have been widely used as solid-phase extraction adsorption materials for the separation of small organic molecules. This review introduces common immobilization methods and the characteristics of ionic liquid-immobilized materials, as well as their application in solid-phase extraction. In this paper, methods for the immobilization of ionic liquids with solid carriers such as silica gel, molecular sieves, molecularly imprinted polymers, graphene oxide, and magnetic nanomaterials are summarized, and the application of ionic liquid-immobilized materials in solid-phase extraction is reviewed. The target substances include alkaloids, flavonoids, polyphenols, and other natural active components as well as common drug molecules, organic pesticides, and other organic small molecular compounds. The properties, applications, and separation mechanisms of ionic liquids immobilized with various carriers are systematically introduced. Literature survey shows that the distribution of the binding active sites of ionic liquid-immobilized materials to the target molecules is more uniform, which increases the adsorption capacity of the materials. The adsorption efficiency of ionic liquid-immobilized materials is related to the type of ionic liquid, amount of adsorption material, concentration of the sample solution, adsorption temperature, solution pH, flow rate of the eluent, and type and amount of the eluting solvent. The existing disadvantages of ionic liquids, such as simple structures, insufficient basic theoretical research, and unsatisfactory extraction degree in complex matrixes would also be discussed. The corresponding solutions would be presented with the aim of providing guidance for the application of ionic liquid-immobilized materials in the separation and analysis of targets in complex matrices, thus paving the way for a new direction in the field of extraction and separation.
Collapse
Affiliation(s)
- Yicong Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| | - Leilei Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| |
Collapse
|
33
|
Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Chen J, Gong Z, Tang W, Row KH, Qiu H. Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Li H, Li T, Shi X, Xu G. Recent development of nanoparticle-assisted metabolites analysis with mass spectrometry. J Chromatogr A 2020; 1636:461785. [PMID: 33340742 DOI: 10.1016/j.chroma.2020.461785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metabolomics systematically studies the changes of metabolites in biological systems in the temporal or spatial dimensions. It is a challenging task for comprehensive analysis of metabolomics because of diverse physicochemical properties and wide concentration distribution of metabolites. Used as enrichment sorbents, chemoselective probes, chromatographic stationary phases, MS ionization matrix, nanomaterials play excellent roles in improving the selectivity, separation performance, detection sensitivity and identification efficiency of metabolites when mass spectrometry is employed as the detection technique. This review summarized the recent development of nanoparticle-assisted metabolites analysis in terms of assisting the pretreatment of biological samples, improving the separation performance and enhancing the MALDI-MS detection.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ting Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
36
|
Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta 2020; 218:121140. [DOI: 10.1016/j.talanta.2020.121140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
|
37
|
Li C, Zhang J, Jiang H, Wang X, Liu J. Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2474-2481. [PMID: 32069412 DOI: 10.1021/acs.langmuir.9b03960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon dots (CDs) are highly fluorescent nanomaterials with surface carboxyl and amino groups. However, their exact structure remains under debate. In this work, we probed the surface properties of CDs by physically adsorbing them onto various nanomaterials. Three types of nanomaterials, including CeO2 nanoparticles (nanoceria), gold nanoparticles, and graphene oxide were tested. Among them, nanoceria strongly adsorbed the CDs and quenched their fluorescence. For the tested anions to compete with the CDs for adsorption, only phosphate and F- induced desorption of the CDs from nanoceria, and the phosphate-induced desorption was less compared to that by F-. This was opposite to the desorption of DNA from nanoceria, where phosphate induced more DNA desorption. Furthermore, using calcein and fluorescein as representative dyes for comparison, we conclude that the CDs might use their carboxyl groups to adsorb on nanoceria, while DNA uses its phosphate backbone for adsorption. This difference may explain their occupying different surface sites on nanoceria and different displacement by phosphate and F-. Using nanomaterials as probes to understand the surface properties of CDs is effective, and such understanding might in turn be used for building hybrid materials for applications.
Collapse
Affiliation(s)
- Chunmei Li
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|