1
|
Kiuchi S, Otoguro Y, Nitta T, Chung MH, Nakaya T, Matsuzawa Y, Ohbuchi K, Sasaki K, Yamamoto H, Tsugawa H. Using Variable Data-Independent Acquisition for Capillary Electrophoresis-Based Untargeted Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2118-2127. [PMID: 39136275 DOI: 10.1021/jasms.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. We assessed the mass spectral quality using two DIA techniques, namely, all-ion fragmentation (AIF) and variable DIA (vDIA), to isolate 60-800 Da precursor ions with respect to annotation rates. Our findings indicate that vDIA, coupled with the updated MS-DIAL chromatogram deconvolution algorithm, yields higher spectral matching scores and annotation rates compared to AIF. Additionally, we evaluated a linear migration time (MT) correction method using internal standards to accurately align chromatographic peaks in a data set. Postcorrection, the data set exhibited less than 0.1 min MT drifts, a difference mostly equivalent to that of conventional reverse-phase liquid chromatography techniques. Moreover, we conducted MT prediction for metabolites recorded in mass spectral libraries and metabolite structure databases containing a total of 469,870 compounds, achieving an accuracy of less than 1.5 min root mean squares. Our platform provides a peak annotation platform utilizing MT information, accurate precursor m/z, and the MS/MS spectrum recommended by the metabolomics standards initiative. Applying this procedure, we investigated metabolic alterations in lipopolysaccharide (LPS)-induced macrophages, characterizing 170 metabolites. Furthermore, we assigned metabolite information to unannotated peaks using an in silico structure elucidation tool, MS-FINDER. The results were integrated into the nodes in the molecular spectrum network based on the MS/MS similarity score. Consequently, we identified significantly altered metabolites in the LPS-administration group, where glycinamide ribonucleotide, not present in any spectral libraries, was newly characterized. Additionally, we retrieved metabolites of false-negative hits during the initial spectral annotation procedure. Overall, our study underscores the potential of CE-MS/MS with DIA and computational mass spectrometry techniques for metabolic profiling.
Collapse
Affiliation(s)
- Saki Kiuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuhiro Otoguro
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoaki Nitta
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Mi Hwa Chung
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | - Yuki Matsuzawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | - Kazunori Sasaki
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Yamamoto
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Huang Z, Tan J, Li Y, Miao S, Scotland KB, Chew BH, Lange D, Chen DDY. Migration time correction for dual pressure capillary electrophoresis in semi‐targeted metabolomics study. Electrophoresis 2022; 43:1626-1637. [DOI: 10.1002/elps.202100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Ao Huang
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Jiahua Tan
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Yueyang Li
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Siyu Miao
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Kymora B. Scotland
- Department of Urology University of California, Los Angeles Los Angeles California USA
| | - Ben H. Chew
- Department of Urologic Sciences The Stone Centre at Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - Dirk Lange
- Department of Urologic Sciences The Stone Centre at Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - David D. Y. Chen
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
4
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
5
|
Abstract
该文为2020年毛细管电泳(capillary electrophoresis, CE)技术年度回顾。归纳总结了以“capillary electrophoresis-mass spectrometry”或“capillary isoelectric focusing”或“micellar electrokinetic chromatography”或“capillary electrophoresis”为关键词在ISI Web of Science数据库中进行主题检索得到的2020年CE技术相关研究论文222篇,以及中文期刊《分析化学》和《色谱》中CE技术相关的研究论文37篇。对2020年影响因子(IF)≥5.0的Analytical Chemistry, Food Chemistry, Analytica Chimica Acta和Talanta等13本期刊的38篇文章报道的科研工作作了逐一介绍;对IF<5.0的期刊中CE技术报道较为集中的Journal of Chromatography A和Electrophoresis两本分析化学类期刊发表40篇文章中的代表性内容作了综合介绍;对重要的中文期刊《分析化学》出版的“核酸适配体专刊”和《色谱》出版的2期CE技术专刊所收录的37篇文章中的工作作了总体介绍。总体来说,2020年CE技术发展趋势仍以毛细管电泳-质谱(CE-MS)的新方法和新应用最为突出,主要集中在CE-MS与电化学检测、固相萃取以及多种毛细管电泳模式的联用方面,CE-MS接口相关的报道较前几年有所减少;常规CE技术则以胶束电动毛细管色谱(MEKC)在复杂样本分析、浓缩富集应用为主,尤其在食品和药品等复杂基质样本分析方面的报道较为集中;此外,我国CE相关领域专家学者的科研成果涵盖了CE在生命科学、临床医学、医药研发、环境科学、天然产物、食品分析等领域的应用,代表了国内CE科研应用水平和现状。
Collapse
|
6
|
Investigating the position of the separation capillary and emitter tube tips in a nanoflow sheath-liquid CE-ESI-MS interface to decouple the ESI potential. Talanta 2021; 228:122212. [PMID: 33773698 DOI: 10.1016/j.talanta.2021.122212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Robust decoupling of the ESI potential from the separation potential in CE-ESI-MS interfaces is very important for the high performance of the CE-ESI-MS devices and their applications for highly sensitive analyses of ionogenic compounds. In this study, we utilize a nanoflow sheath-liquid CE-ESI-MS interface composed of a quartz emitter and a separation fused silica capillary treated by etching, which are threaded to cross coupling for sheath liquid and electrode connection. Specifically, we have tested the ability of the interface to decouple the ESI potential from the separation potential at different positions of the separation capillary and ESI emitter tube tips. The interface with the separation capillary tip protruding the emitter tip by 20 μm did not provide sufficient robustness. The real ESI potential (delivered as 2.0 kV from the independent high voltage power supply HV2) ranged from 2.1 kV to 4.5 kV depending on the applied separation voltage (12.0-20.0 kV, provided by the power supply HV1) and electric conductivity of the background electrolyte (BGE) used. The interface robustness was partially improved when the capillary tip was aligned with the emitter tip. However, the complete decoupling of the spray and separation potentials was achieved only when the capillary tip was retracted 20 μm inside the emitter. In this arrangement, the ESI potential was stable and independent of both the separation potential (voltage) and the BGE conductivity. Moreover, this setting provided better sensitivity for the CE-ESI-MS analysis of selected drugs and benzylpyridinium cations than the setup with the capillary tip aligned with or protruding the emitter tip.
Collapse
|
7
|
Sherman LM, Petrov AP, Karger LFP, Tetrick MG, Dovichi NJ, Camden JP. A surface-enhanced Raman spectroscopy database of 63 metabolites. Talanta 2020; 210:120645. [PMID: 31987216 DOI: 10.1016/j.talanta.2019.120645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Metabolomics, the study of metabolic profiles in a biological sample, has seen rapid growth due to advances in measurement technologies such as mass spectrometry (MS). While MS metabolite reference libraries have been generated for metabolomics applications, mass spectra alone are unable to unambiguously identify many metabolites in a sample; these unidentified compounds are typically annotated as "features". Surface-enhanced Raman spectroscopy (SERS) is an interesting technology for metabolite identification based on vibrational spectra. However, no reports have been published that present SERS metabolite spectra from chemical libraries. In this paper, we demonstrate that an untargeted approach utilizing citrate-capped silver nanoparticles yields SERS spectra for 20% of 80 compounds chosen randomly from a commercial metabolite library. Furthermore, prescreening of the metabolites according to chemical functionality allowed for the efficient identification of samples within the library that yield distinctive SERS spectra under our experimental conditions. Last, we present a reference database of 63 metabolite SERS spectra for use as an identification tool in metabolomics studies; this set includes 30 metabolites that have not had previously published SERS spectra.
Collapse
Affiliation(s)
- Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, United States.
| | - Alexander P Petrov
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, United States
| | - Leonhard F P Karger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, United States
| | - Maxwell G Tetrick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, United States
| |
Collapse
|