1
|
Jia M, Mi W, Guo X, Zhang M. A ratiometric fluorescent sensor based on dual-emitting carbon dots for the rapid detection of sulfite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125132. [PMID: 39303336 DOI: 10.1016/j.saa.2024.125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Sulfur dioxide (SO2) derivatives are typically employed as antioxidants in food and pharmaceutical processing. However, excessive sulfite intake could trigger serious health problems. Hence, it is urgent to establish a rapid and effective system for monitoring SO2. This study adopted a one-step hydrothermal method to synthesize dual-emitting nitrogen-doped carbon quantum dots (CECDs) and developed a ratiometric sensor for sulfite using CECDs-Cr (VI) composites. The emission intensity ratio (I440/I500) of the CECDs-Cr (VI) composites increased considerably with the addition of HSO3-. A method based on the ratiometric sensor was established for SO2 derivatives with advanced efficiency and excellent linearity over a broad concentration range of 0-500 μM (R2 = 0.9946). Four medicine-food homology materials (MFHMs) fumigated with sulfur have been accurately detected using this approach. Furthermore, a portable test tube was prepared to achieve rapid and semi-quantitative detection of SO2 residues and applied to real samples. This work presents an effective approach to develop a rapid on-site detection platform for sulfite residues in food and pharmaceuticals.
Collapse
Affiliation(s)
- Mingyan Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wenxing Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2024:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
3
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
4
|
Rahmatian N, Abbasi S, Abbasi N, Tavakkoli Yaraki M. Green-synthesized chitosan‑carbon dot nanocomposite as turn-on aptasensor for detection and quantification of Leishmania infantum parasite. Int J Biol Macromol 2024; 270:132483. [PMID: 38763252 DOI: 10.1016/j.ijbiomac.2024.132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach. The Chitosan-CD nanocomposite was optimized using several microscopic and spectroscopic techniques to possess a bright fluorescence emission before adding aptamer and totally quenched fluorescence after addition of aptamer. The designed probe was proficient in the detection and quantification Leishmania infantum parasite by selective targeting of poly(A) binding protein (PABP) on the surface of the parasite. The designed fluorescent biosensor with high sensitivity, excellent selectivity, and a limit of detection (LOD) of 94 cells/mL of the Leishmania infantum parasite as well as a linear response in the ranges of 188-750 cells/mL and 3000-6000 cells/mL (R2 ≥ 0.98 for both linear ranges). Additionally, the selectivity of the designed probe was evaluated in the presence of different pathogenic species such as Trypanosoma brucei parasite and Staphylococcus aureus bacteria, as well as LiIF2α and LiP2a and BSA proteins as interference substances. The results of this study shows that using Chitosan-CD nanocomposite is a great strategy for developing selective turn-on probes with extraordinary accuracy and sensitivity in identifying Leishmania infantum parasite, especially in the early stages of the disease, and it is promising for the future clinical applications.
Collapse
Affiliation(s)
| | | | - Naser Abbasi
- Department of Pharmacology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
5
|
Chen W, Yin H, Cole I, Houshyar S, Wang L. Carbon Dots Derived from Non-Biomass Waste: Methods, Applications, and Future Perspectives. Molecules 2024; 29:2441. [PMID: 38893317 PMCID: PMC11174087 DOI: 10.3390/molecules29112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| | - Hong Yin
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Ivan Cole
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Shadi Houshyar
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Lijing Wang
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| |
Collapse
|
6
|
Tripti T, Singh P, Rani N, Kumar S, Kumar K, Kumar P. Carbon dots as potential candidate for photocatalytic treatment of dye wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6738-6765. [PMID: 38157163 DOI: 10.1007/s11356-023-31437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Water is the utmost important element for the existence of life. In recent decades, water resources have become highly contaminated by a variety of pollutants, especially toxic dyes that are harmful to both living beings and environment. Hence, there is an urgent need to develop more effective methods than traditional wastewater treatment approaches for treatment of hazardous dyes. Herein, we have addressed the various aspects related to the effective and economically feasible method for photocatalytic degradation of these dyes employing carbon dots. The photocatalysts based on carbon dots including those mediated from biomass have many superiorities over conventional methods such as utilization of economically affordable, non-toxic, rapid reactions, and simple post-processing steps. The current study will also facilitate better insight into the understanding of photocatalytic treatment of dye-polluted wastewater for future wastewater treatment studies. Additionally, the possible mechanistic pathways of photocatalytic dye decontamination, several challenges, and future perspectives have also been summarized.
Collapse
Affiliation(s)
- Tripti Tripti
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Permender Singh
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Neeru Rani
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Krishan Kumar
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parmod Kumar
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India.
| |
Collapse
|
7
|
Bhatnagar A, Mishra A. Development of Daruharidra ( Berberis aristata) Based Biogenic Cadmium Sulfide Nanoparticles: Their Implementation as Antibacterial and Novel Therapeutic Agents against Human Breast and Ovarian Cancer. Curr Pharm Biotechnol 2024; 25:1617-1628. [PMID: 39034838 DOI: 10.2174/0113892010244977231108043554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND This article presents a new and environmentally friendly method for generating DH-CdSNPs (cadmium sulfide nanoparticles) ranging from 5-10 nm in size. A green synthesis method for the development of inorganic nanoparticles was developed a few years back for their applications in diverse fields, such as medicine, bioimaging and remediation. The biogenic synthesis of these nanoparticles containing daruharidra (Berberis aristata) and cadmium sulfide is an effective alternative. AIMS By employing Daruharidra extract as a herbal analog, we aim to minimize the risks and adverse effects that come along with the use of other chemically synthesized nanoparticles. This study's main goal was to investigate the potential of these nanoparticles as powerful antibacterial and anticancer agents. METHODS We used a crude powdered daruharidra extract as a stabilizer ingredient to create CdSbased nanoformulations in an environmentally responsible way. By exposing the breast cancer cell line (MDAMB-231) and ovarian teratocarcinoma cell line (PA1) to these nanoformulations, we were able to evaluate their anticancer activities. Additionally, flow cytometry analysis was conducted to scrutinize the process of cell cycle arrest and apoptosis in reference to anticancer studies. Furthermore, DH-CdSNPs were applied on different gram-positive as well as gramnegative bacteria in a disc diffusion assay to ascertain their antibacterial activity. Nanoparticles were tested on bacterial strains to check if they were resistant after the MIC or minimum inhibitory concentration. RESULTS The cytotoxicity of nanoparticles was tested by MTT assay. The impact of increasing concentrations of NPs on cell lines was tested, revealing a cytotoxic effect. The half-maximal inhibitory concentration values for a 24-hour treatment were determined to be 95.74μg/ml for ovarian cancer cells and 796.25 μg/ml for breast cancer cells. Treatment with DH-CdSNP resulted in a noteworthy increase in early apoptotic cells, with percentages rising from approximately 3% to 14.5% in ovarian cancer cell lines and from 4% to 13.6% in breast cancer cell lines. Furthermore, the NPs induced arrest of the cell cycle, specifically in the interphase of G2 and mitosis phase, with DNA damage observed in sub G1 in ovarian cancer cells and G0/G1 arrest observed in breast cancer cells. Additionally, the NPs exhibited exceptional potency against both gram-positive as well as gram-negative bacteria. CONCLUSION Less research has been done on using bioinspired DH-CdSNP to deliver anticancer medications. The amalgamation of plant extract and the DH-CdSNP could cause a paradigm shift in the cancer therapy approach. The findings revealed that the biosynthesized DH-CdSNP limited the growth of human breast and ovarian cancer cells. This property can be further investigated against a variety of additional cell lines to determine whether this property makes the DH-CdSNP a promising treatment alternative. The results obtained from these nanoformulations exhibit faster efficacy compared to traditional medications.
Collapse
Affiliation(s)
- Aditi Bhatnagar
- School of Biochemical Engineering, IIT (BHU)-Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT (BHU)-Varanasi-221005, India
| |
Collapse
|
8
|
Wang C, Chen L, Tan R, Li Y, Zhao Y, Liao L, Ge Z, Ding C, Xing Z, Zhou P. Carbon dots and composite materials with excellent performances in cancer-targeted bioimaging and killing: a review. Nanomedicine (Lond) 2023. [PMID: 37965983 DOI: 10.2217/nnm-2023-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs) are nanomaterials with excellent properties, including good biocompatibility, small size, ideal photoluminescence and surface modification, and are becoming one of the most attractive nanomaterials for the imaging, detection and treatment of tumors. Based on these advantages, CDs can be combined other materials to obtain composite particles with improved, even new, performance, mainly in photothermal and photodynamic therapies. This paper reviews the research progress of CDs and their composites in targeted tumor imaging, detection, diagnosis, drug delivery and tumor killing. It also discusses and proposes the challenges and perspectives of their future applications in these fields. This review provides ideas for future applications of novel CD-based materials in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Chenggang Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, PR China
| | - Lixin Chen
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rongshuang Tan
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuchen Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yiqing Zhao
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Lingzi Liao
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhangjie Ge
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Chuanyang Ding
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhankui Xing
- The Second Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
9
|
Zhao Y, Cheng G, Gao Y, Cui L, Zhao Y, Zhang Y, Tian Y, Zhao Y, Zhang Y, Qu H, Kong H. Green synthetic natural carbon dots derived from Fuligo Plantae with inhibitory effect against alcoholic gastric ulcer. Front Mol Biosci 2023; 10:1223621. [PMID: 37484528 PMCID: PMC10360179 DOI: 10.3389/fmolb.2023.1223621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Fuligo Plantae (FP), the ash that sticks to the bottom of pots or chimneys after weeds burn, has long been used for its hemostatic effects and treatment of gastrointestinal bleeding. Nevertheless, the active ingredient of FP still needs to be further explored. Methods: The microstructure, optical and chemical properties of FP-CDs were characterized. An alcohol-induced gastric ulcer model was utilized to evaluate whether pre-administration of FP-CDs alleviated gastric bleeding symptoms and ameliorated gastric mucosal barrier disruption. In addition, the feces of each group of rats were extracted for 16S rDNA genome sequencing of intestinal flora. Results: FP-CDs with a diameter ranging from 1.4-3.2 nm had abundant chemical groups, which may be beneficial to the exertion of inherent activity. FP-CDs alleviated alcohol-induced gastric ulcer, as demonstrated by activating the extrinsic coagulation pathway, alleviating inflammation, and suppressing oxidative stress levels. More interestingly, FP-CDs can improve the diversity and dysbiosis of intestinal flora in rats with alcohol-induced gastric ulcer. Conclusion: These comes about illustrate the momentous inhibitory effects of FP-CDs on alcoholic gastric ulcer in rats, which give a modern methodology for investigating the effective ingredient of FP, and lay an experimental basis for the application of FP-CDs in the clinical treatment of alcoholic gastric ulcer.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Luming Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Amal NM, Shiddiq M, Armynah B, Tahir D. High reactive oxygen species produced from fluorescence carbon dots for anticancer and photodynamic therapies: A review. LUMINESCENCE 2022; 37:2006-2017. [PMID: 36136299 DOI: 10.1002/bio.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
High-photoluminescence carbon dots (CDs) were synthesized from various sources and various methods using two approaches, namely bottom up and top down, with emission-dependent excitation wavelength. Electronic transition from the higher-occupied molecular orbital (HOMO) state to the lowest-unoccupied molecular orbital(LUMO) state, surface defect states, wider excitation spectrum, higher quantum yield, efficient energy transfer, and element doping affected the fluorescence properties of CDs. Using 102 references listed in this review, the authors studied the relationship between fluorescence mechanism and reactive oxygen species (ROS) produced for photodynamic therapy (PDT) and materials anticancer applications. We described how the radical atom or ROS work as anticancer therapy and PDT and described the chemical reaction of high-resolution fluorescence CDs. We summarized experimental techniques that are used for producing CDs and discussed their characteristics. Finally, conclusions and future prospects in this field are also discussed. The important characteristics of CD-based design for high ROS may usher in new prospects and challenges for high efficiency and stability of PDT and anticancer therapy. In conclusion, we have provided perspectives and challenges of the future development of CD s.
Collapse
Affiliation(s)
| | - Muhandis Shiddiq
- Research Center for Physics, Indonesia Institute of Sciences, Puspiptek, Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
11
|
Wang Q, Zhu B, Han Y, Yang X, Xu Y, Cheng Y, Liu T, Wu J, Li S, Ding L, Bai J, Niu Y. Metal ions mediated carbon dots nanoprobe for fluorescent turn-on sensing of N-acetyl-L-cysteine. LUMINESCENCE 2022; 37:1267-1274. [PMID: 35608368 DOI: 10.1002/bio.4292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022]
Abstract
Carbon dots (CDs) was facilely synthesized from aspartic acid through a pyrolysis method in this work. Based on their favorable fluorescence property, CDs was utilized to design a metal ions-mediated fluorescent probe for N-acetyl-L-cysteine (NAC) detection. The fluorescence intensity of CDs was firstly quenched by manganese ion (Mn2+ ) through static quenching effect and subsequently restored by NAC via the combination with Mn2+ owing to the coordination effect. Therefore, the fluorescent turn-on sensing of NAC was actuated based on the fluorescence quenching stimulated by Mn2+ and recovery induced by coordination. The fluorescence recovery efficiencies showed a proportional range to the concentration of NAC in the range of 0.04-5 mmol L-1 and the detection limit was 0.03 mmol L-1 . Further, this metal ions-mediated fluorescent nanoprobe was applied to human urine sample detection and the standard recovery rates were located in the range of 97.62-102.34 %. It was the first time that Mn2+ was used to construct fluorescent nanoprobe for NAC. Compared to other heavy metal ions, Mn2+ with good biosecurity prevented the risk of application, which made the nanoprobe green and bio-practical. The facile synthesis of CDs and novel metal ions-mediated sensing mode made it a promising method for pharmaceutical analysis.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Bin Zhu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Yejiao Han
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Xin Yang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Yanan Xu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Ying Cheng
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Taotao Liu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Jiana Wu
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Shengling Li
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Lifeng Ding
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Jingjing Bai
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Yulan Niu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| |
Collapse
|
12
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Krystyjan M, Khachatryan G, Khachatryan K, Krzan M, Ciesielski W, Żarska S, Szczepankowska J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers (Basel) 2022; 14:948. [PMID: 35267771 PMCID: PMC8912318 DOI: 10.3390/polym14050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Nanotechnology is a dynamically developing field of science, due to the unique physical, chemical and biological properties of nanomaterials. Innovative structures using nanotechnology have found application in diverse fields: in agricultural and food industries, where they improve the quality and safety of food; in medical and biological sciences; cosmetology; and many other areas of our lives. In this article, a particular attention is focused on carbon nanomaterials, especially graphene, as well as carbon nanotubes and carbon quantum dots that have been successfully used in biotechnology, biomedicine and broadly defined environmental applications. Some properties of carbon nanomaterials prevent their direct use. One example is the difficulty in synthesizing graphene-based materials resulting from the tendency of graphene to aggregate. This results in a limitation of their use in certain fields. Therefore, in order to achieve a wider use and better availability of nanoparticles, they are introduced into matrices, most often polysaccharides with a high hydrophilicity. Such composites can compete with synthetic polymers. For this purpose, the carbon-based nanoparticles in polysaccharides matrices were characterized. The paper presents the progress of ground-breaking research in the field of designing innovative carbon-based nanomaterials, and applications of nanotechnology in diverse fields that are currently being developed is of high interest and shows great innovative potential.
Collapse
Affiliation(s)
- Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Wojciech Ciesielski
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Sandra Żarska
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
14
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
|
16
|
Gao X, Qin J, Liu J, Yang Z, Zhang G, Hou J. Bioinspired Carbon Dots as an Effective Fluorescent Sensing Platform for Tetracycline Detection and Bioimaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202104030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xu Gao
- Department of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Jing Qin
- Department of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Jingyi Liu
- Department of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Zhen Yang
- Department of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Guoliang Zhang
- Department of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Juan Hou
- Department of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| |
Collapse
|
17
|
Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02759-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Qi H, Sun X, Jing T, Li J, Li J. Integration detection of mercury(ii) and GSH with a fluorescent "on-off-on" switch sensor based on nitrogen, sulfur co-doped carbon dots. RSC Adv 2022; 12:1989-1997. [PMID: 35425249 PMCID: PMC8979007 DOI: 10.1039/d1ra08890d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Using aurine and citric acid as precursors, we have synthesized stable blue-fluorescent nitrogen and sulfur co-doped carbon dots (NS-CDs), with a high quantum yield of up to 68.94% via a thermal lysis method. The fluorescent NS-CDs were employed as a sensitive sensor for the integration detection of Hg2+ and glutathione (GSH). This was attributed to Hg2+ effectively quenching the fluorescence of the NS-CDs by static quenching, and then GSH was able to recover the fluorescence owing to the stronger binding between Hg2+ and the sulfhydryl of GSH. Based on the "on-off-on" tactic, the detection limits of Hg2+ ions and GSH were 50 nM and 67 nM respectively. The fluorescence sensor was successfully applied to detect Hg2+ ions and GSH in actual samples (tap water and fetal bovine serum). Furthermore, we have proved that the sensor had good reversibility. Overall, our NS-CDs can serve as effective sensors for environmental and biological analysis in the future.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 P. R. China +86-452-2738214
| | - Xiaona Sun
- College of Chemistry and Chemical Engineering, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 P. R. China +86-452-2738214
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 P. R. China +86-452-2738214
| | - Jinlong Li
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 P. R. China
| | - Jun Li
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 P. R. China
| |
Collapse
|
19
|
Moradi M, Molaei R, Kousheh SA, T Guimarães J, McClements DJ. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Crit Rev Food Sci Nutr 2021; 63:1943-1959. [PMID: 34898337 DOI: 10.1080/10408398.2021.2015283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanotechnology is rapidly becoming a commercial reality for application in food packaging. In particular, the incorporation of nanoparticles into packaging materials is being used to increase the shelf life and safety of foods. Carbon dots (C-dots) have a diverse range of potential applications in food packaging. They can be synthesized from environmentally friendly sources such as microorganisms, food by-products, and waste streams, or they may be generated in foods during normal processing operations, such as cooking. These processes often produce nitrogen- and sulfur-rich heteroatom-doped C-dots, which are beneficial for certain applications. The incorporation of C-dots into food packaging materials can improve their mechanical, barrier, and preservative properties. Indeed, C-dots have been used as antioxidant, antimicrobial, photoluminescent, and UV-light blocker additives in food packaging materials to reduce the chemical deterioration and inhibit the growth of pathogenic and spoilage microorganisms in foods. This article reviews recent progress on the synthesis of C-dots from microorganisms and food by-products of animal origin. It then highlights their potential application for the development of active and intelligent food packaging materials. Finally, a discussion of current challenges and future trends is given.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
20
|
Wareing TC, Gentile P, Phan AN. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS NANO 2021; 15:15471-15501. [PMID: 34559522 DOI: 10.1021/acsnano.1c03886] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carbon dots have been considered as a solution to the challenges that semiconductor quantum dots have encountered because they are more biocompatible and can be synthesized from abundant and nontoxic materials such as biomass. This review will highlight the advantages of these biomass-based carbon dots in terms of synthesis, properties, and applications in the biomedical field. Furthermore, future applications especially in the biomedical field of biomass-based carbon dots as well as the challenges of semiconductor quantum dots such as biocompatibility, photobleaching, environmental challenges, toxicity, and poor solubility will be discussed in detail. Biomass-derived quantum dots, a subsection of carbon dots that are the most desirable for future research, will be focused upon including from synthesis to applications. Finally, the future development of biomass derived quantum dots in the biomedical field will be discussed and evaluated to unlock the potential for their applications.
Collapse
Affiliation(s)
- Thomas C Wareing
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
21
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
22
|
Salimi F, Moradi M, Tajik H, Molaei R. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3439-3447. [PMID: 33289129 DOI: 10.1002/jsfa.10974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Carbon dots (C-dots) with antimicrobial activity were synthesized from the white mulberry extract with the aim of fabricating anti-listeria nanopaper using bacterial nanocellulose (BNC). Highly dispersed synthesized C-dots with a size smaller than 10 nm (approximately 4.9 nm) were impregnated into BNC by an ex situ coating method and then mechanical, morphological, UV-protectant and antibacterial activity were assessed. Randomized response surface methodology using a central composite design was applied to investigate the optimized concentration of C-dots in the BNC membrane. RESULTS An optimized nanopaper including C-dots at a concentration of 530 g L-1 and an impregnation time of 14 h at 30 °C with significant antimicrobial activity on Listeria monocytogenes was designed. The addition of C-dots into BNC significantly increased ultimate tensile strength and decreased strain with respect to breaking BNC. A BNC sheet with high-efficient UV-blocking property was prepared using C-dots. CONCLUSION Based on the results, the designed nanopaper shows a substantial capacity with respect to the fabrication of antimicrobial/UV-blocking sheets for food active packaging. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
23
|
Singh B, Bahadur R, Rangara M, Gandhi MN, Srivastava R. Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS APPLIED BIO MATERIALS 2021; 4:4641-4651. [DOI: 10.1021/acsabm.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Misah Rangara
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Maharashtra 400614, India
| | - Mayuri N. Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Sekar A, Vadivel R, Munuswamy RG, Yadav R. Fluorescence spotting of latent sweat fingerprints with zinc oxide carbon dots embedded in a silica gel nanopowder: a green approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj03901f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this research article, the green synthesized CZnO-dots/Si nanopowder is expended as the LFs fluorescent tagging agent by the dust blowing method.
Collapse
Affiliation(s)
- Anithadevi Sekar
- Department of Chemistry, Madras Christian College, affiliated to University of Madras, Tambaram, Chennai, Tamil Nadu 600 059, India
| | - Ramanan Vadivel
- Forensic Sciences Department, Government of Tamil Nadu, Chennai 600 004, India
| | - Ramanujam Ganesh Munuswamy
- Immuno-Biology Department, Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | - Rakhi Yadav
- Department of Chemistry, Madras Christian College, affiliated to University of Madras, Tambaram, Chennai, Tamil Nadu 600 059, India
| |
Collapse
|
25
|
Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020; 13:E24. [PMID: 33374391 PMCID: PMC7823416 DOI: 10.3390/pharmaceutics13010024] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Early detection, right therapeutic intervention, and simultaneous effectiveness mapping are considered the critical factors in successful cancer therapy. Nevertheless, these factors experience the limitations of conventional cancer diagnostics and therapeutics delivery approaches. Along with providing the targeted therapeutics delivery, advances in nanomedicines have allowed the combination of therapy and diagnostics in a single system (called cancer theranostics). This paper discusses the progress in the pre-clinical and clinical development of therapeutics, diagnostics, and theranostics cancer nanomedicines. It has been well evident that compared to the overabundance of works that claimed success in pre-clinical studies, merely 15 and around 75 cancer nanomedicines are approved, and currently under clinical trials, respectively. Thus, we also brief the critical bottlenecks in the successful clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; or
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK;
| | - Wael Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
26
|
Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed Pharmacother 2020; 132:110834. [PMID: 33035830 PMCID: PMC7537666 DOI: 10.1016/j.biopha.2020.110834] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Natural carbon based quantum dots (NCDs) are an emerging class of nanomaterials in the carbon family. NCDs have gained immense acclamation among researchers because of their abundance, eco-friendly nature, aqueous solubility, the diverse functionality and biocompatibility when compared to other conventional carbon quantum dots (CDs).The presence of different functional groups on the surface of NCDs such as thiol, carboxyl, hydroxyl, etc., provides improved quantum yield, physicochemical and optical properties which promote bioimaging, sensing, and drug delivery. This review provides comprehensive knowledge about NCDs for drug delivery applications by outlining the source and rationale behind NCDs, different routes of synthesis of NCDs and the merits of adopting each method. Detailed information regarding the mechanism behind the optical properties, toxicological profile including biosafety and biodistribution of NCDs that are favourable for drug delivery are discussed. The drug delivery applications of NCDs particularly as sensing and real-time tracing probe, antimicrobial, anticancer, neurodegenerative agents are reviewed. The clinical aspects of NCDs are also reviewed as an initiative to strengthen the case of NCDs as potent drug delivery agents.
Collapse
Affiliation(s)
- Akhila Nair
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jozef T Haponiuk
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Sreeraj Gopi
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
27
|
Guo Y, Li T, Xie L, Tong X, Tang C, Shi S. Red pitaya peels-based carbon dots for real-time fluorometric and colorimetric assay of Au 3+, cellular imaging, and antioxidant activity. Anal Bioanal Chem 2020; 413:935-943. [PMID: 33210176 DOI: 10.1007/s00216-020-03049-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
The synthesis of fascinating multifunctional carbon dots (CDs) attracted immense attention. Here, a facile solvothermal treatment of red pitaya peels in acetic acid produced CDs (designated as ACDs, excitation/emission wavelengths at 357/432 nm). ACDs with high sp2-hybridized carbon and carboxylic group contents can rapidly and selectively reduce Au3+ to Au0, and stabilize produced Au nanoparticles (AuNPs). The synergetic effect of electron transfer from ACDs to Au3+ and inner filter effect (IFE) from ACDs to AuNPs quenches the fluorescence within 30 s. Simultaneously, the resulting AuNPs have a purple color with a maximum absorption at 545 nm for visual detection. Therefore, for the first time, we reported a fluorometric and colorimetric dual-mode sensing system for real-time, highly sensitive and selective detection of Au3+. The fluorescence quenching ratio and absorbance change linearly with the increase of Au3+ concentration in the range of 0.3-8.0 μM and 3.3-60.0 μM with limits of detection (LODs) at 0.072 μM and 2.2 μM, respectively. The assay was applied for Au3+ determination in spiked real water samples with recoveries from 95.5 to 105.0%, and relative standard deviation (RSD) of less than 6.5%. Furthermore, ACDs with good photostability, low cytotoxicity, and excellent biocompatibility were successfully applied for intracellular Au3+ sensing and imaging. In addition, ACDs exhibited an extraordinarily high antioxidant activity, with an IC50 value for DPPH radical scavenging (0.70 μg mL-1) much lower than that of ascorbic acid (4.34 μg mL-1). The proposed strategy demonstrates the outstanding properties of ACDs in chemical and biomedical analysis. Graphical abstract.
Collapse
Affiliation(s)
- Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Yunnan Provincial Energy Research Institute Co., Ltd, Kunming, 650000, Yunnan, China.
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
28
|
Xu F, Tang H, Yu J, Ge J. A Cu 2+-assisted fluorescence switch biosensor for detecting of coenzyme A employing nitrogen-doped carbon dots. Talanta 2020; 224:121838. [PMID: 33379056 DOI: 10.1016/j.talanta.2020.121838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
Herein, a simple and sensitive Cu2+-assisted fluorescence switch biosensor for the detection of coenzyme A (CoA) was proposed by employing nitrogen-doped carbon dots (N-CDs). N-CDs were successfully synthesized by sodium alginate and melatonin via pyrolysis. The as-prepared N-CDs were spherical with an average diameter of 2.8 nm and exhibited blue emission (λem = 480 nm, λex = 360 nm) with a high fluorescence quantum yield of 50.2%. The intense blue emission of the N-CDs could be effectively quenched by copper ions through the formation of the N-CDs/Cu2+ complex. With the introduction of CoA, a more stable CoA/Cu2+ complex formed, leading to the fluorescence recovery of N-CDs. Based on this strategy, CoA could be sensitively and selectively detected with a good linear relationship in the range of 0.02-5.00 μM and with a detection limit of 12 nM. In addition, this sensor was applied for CoA detection in human serum samples with satisfactory recovery. The results showed great potential towards advancing applications in CoA-dependent bioresearch.
Collapse
Affiliation(s)
- Fengzhou Xu
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, PR China.
| | - Huaying Tang
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, PR China
| | - Jianhua Yu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jia Ge
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
29
|
Ren W, Nan F, Li S, Yang S, Ge J, Zhao Z. Red Emissive Carbon Dots Prepared from Polymers as an Efficient Nanocarrier for Coptisine Delivery in vivo and in vitro. ChemMedChem 2020; 16:646-653. [PMID: 32959534 DOI: 10.1002/cmdc.202000420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/22/2020] [Indexed: 01/05/2023]
Abstract
Negatively charged fluorescent carbon dots (CDs, Em =608 nm) were hydrothermally prepared from thiophene phenylpropionic acid polymers and then successfully loaded with the positively charged anticancer cargo coptisine, which suffers from poor bioavailability. The formed CD-coptisine complexes were thoroughly characterized by particle size, morphology, drug loading efficiency, drug release, cellular uptake and cellular toxicity in vitro and antitumor activities in vivo. In this nano-carrier system, red emissive CDs possess multiple advantages as follows: 1) high drug loading efficiency (>96 %); 2) sustained drug release; 3) enhanced drug efficacy towards cancer cells; 4) EPR effect; 5) drug release tracing with near-infrared imaging. These properties indicated that red emissive CDs prepared from polymers could be used as a novel drug delivery system with integrated therapeutic and imaging functions in cancer therapy, which are expected to have great potential in future clinical applications.
Collapse
Affiliation(s)
- Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuchun Nan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
30
|
Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111944. [DOI: 10.1016/j.jphotobiol.2020.111944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
|
31
|
Hashemi F, Heidari F, Mohajeri N, Mahmoodzadeh F, Zarghami N. Fluorescence Intensity Enhancement of Green Carbon Dots: Synthesis, Characterization and Cell Imaging. Photochem Photobiol 2020; 96:1032-1040. [PMID: 32187697 DOI: 10.1111/php.13261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
The hydrothermal treatment of green carbon dots (CDs) is an appropriate fluorescent probe synthesis method. CDs are exploited as biological staining agents, especially for cellular detection and imaging. The nitrogen-doped green carbon dots (N-CDs) formation can improve the fluorescence intensity property in a one-step process. Here, we report two N-CDs from lemon and tomato extraction in the presence of hydroxylamine. Lemon and tomato N-CDs showed the blue fluorescence under ultraviolet radiation of about 360 nm. The characterization of CDs and N-CDs showed the presence of N-H and C-N bonds which enhanced the fluorescence efficiency. The mean size of lemon and tomato N-CDs were about 2 and 3 nm with an increased quantum yield (QY) of 5% and 3.38%, respectively. The CDs and N-CDs cytotoxicity assay exhibited high cell viability approximately 85% and 73%, respectively. N-CDs show superior fluorescent intensity in different solvents and significant stability under long-time UV irradiation, different PH and high ionic strength. Our results indicated that the use of N-CDs in cell imaging can lead to fluorescence intensity enhancement as well as proper biocompatibility. Therefore, the safe and high fluorescence intensity of green N-CDs can be utilized for fluorescent probes in biolabeling and bioimaging applications.
Collapse
Affiliation(s)
- Fatemeh Hashemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Heidari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|