1
|
Sarangi S, Srivastava R, Gogoi-Tiwari J, Kar RK. Electrochemical Sensing of Phenylalanine using Polyaniline-Based Molecularly Imprinted Polymers. J Phys Chem B 2024; 128:10258-10271. [PMID: 39315767 DOI: 10.1021/acs.jpcb.4c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Polyaniline (PANI)-based molecularly imprinted polymers were investigated for their efficacy in sensing phenylalanine (Phe) when fabricated on both glassy carbon electrode (GCE) and indium tin oxide (ITO) sheets. This study highlights the superior performance of PANI-MIP/ITO over PANI-MIP/GCE for sensing Phe, with clear and distinct redox responses. Molecular computation helps to understand the interaction mechanism between PANI and Phe, where molecular crowding, aggregated clusters, hydrogen bonding, and π-π stacking facilitate stable interactions. We tested the specificity of Phe sensing by PANI-MIP with different amino acids such as cysteine, tryptophan, and tyrosine as well as organic molecules such as ascorbic acid, allantoin, sucrose, and urea, confirming its remarkable electrochemical efficiency. The oxidation response curve yielded a limit of detection of 4.88 μM and a limit of quantification of 16.3 μM, comparable to or better than earlier reported sensors. This work demonstrates the promise of MIP-based electrochemical sensing. It also lays the groundwork for future investigations into optimizing PANI-MIPs with nanocomposites to develop more selective and stable sensors.
Collapse
Affiliation(s)
- Sonia Sarangi
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ravishankar Srivastava
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Jully Gogoi-Tiwari
- School of Veterinary Medicine, Murdoch University, Perth 6150, Western Australia, Australia
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Delbreil P, Dhondt S, Kenaan El Rahbani RM, Banquy X, Mitchell JJ, Brambilla D. Current Advances and Material Innovations in the Search for Novel Treatments of Phenylketonuria. Adv Healthc Mater 2024; 13:e2401353. [PMID: 38801163 DOI: 10.1002/adhm.202401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Phenylketonuria (PKU) is a genetically inherited disease caused by a mutation of the gene encoding phenylalanine hydroxylase (PAH) and is the most common inborn error of amino acid metabolism. A deficiency of PAH leads to increased blood and brain levels of phenylalanine (Phe), which may cause permanent neurocognitive symptoms and developmental delays if untreated. Current management strategies for PKU consist of early detection through neonatal screening and implementation of a restrictive diet with minimal amounts of natural protein in combination with Phe-free supplements and low-protein foods to meet nutritional requirements. For milder forms of PKU, oral treatment with synthetic sapropterin (BH4), the cofactor of PAH, may improve metabolic control of Phe and allow for more natural protein to be included in the patient's diet. For more severe forms, daily injections of pegvaliase, a PEGylated variant of phenylalanine ammonia-lyase (PAL), may allow for normalization of blood Phe levels. However, the latter treatment has considerable drawbacks, notably a strong immunogenicity of the exogenous enzyme and the attached polymeric chains. Research for novel therapies of PKU makes use of innovative materials for drug delivery and state-of-the-art protein engineering techniques to develop treatments which are safer, more effective, and potentially permanent.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - Sofie Dhondt
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - John J Mitchell
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Québec, H4A 3J1, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
3
|
Buglak AA, Kononov AI. Interactions of deprotonated phenylalanine with gold Clusters: Theoretical study with prospects for amino acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124004. [PMID: 38341933 DOI: 10.1016/j.saa.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Nanomaterials are widely used nowadays in industry and medicine. The specific properties of gold nanoclusters (Au NCs) are chemical stability, low cytotoxicity, low photobleaching, high sensitivity to the molecular environment. This set of properties allows to use Au NCs as nanosensors in bioimaging and diagnostics. We have investigated gold cluster complexes with proteinogenic amino acid phenylalanine (Phe). Detection of phenylalanine is essential for diagnostics of phenylketonuria, vitiligo, sclerosis, cancer, tuberculosis, etc. We have studied the complexes of Phe with Aunq clusters with atomic number equal 1-6, 8, 20 and a charge equal 0-2. We have established that the clusters Au40, Au21+ and Au32+ form the most stable complexes with Phe among NCs with charge 0, +1 and + 2, respectively. Intracomplex interactions have been studied using Atoms-In-Molecules (AIM) theory and Natural Bond Orbital (NBO) analysis. It has been shown that metal-ligand intracomplex interactions are partially covalent and partially electrostatic. Also, we have simulated the UV-vis absorption and Raman spectra of the Phe-Au NCs. We have established that the clusters possess prospective features if being used for colorimetric and Raman detection of Phe. Au20 cluster is remarkable for its six-times enhancement of the Raman signal. Moreover, our study provides insights into metal-ligand interactions for clusters synthesized inside a polypeptide globula. Hence, to the best of our knowledge this is a first attempt to perform a detailed analysis of Phe interactions with gold using quantum chemical calculations.
Collapse
Affiliation(s)
- Andrey A Buglak
- Saint-Petersburg State University, Faculty of Physics, Department of Molecular Biophysics and Polymer Physics 199034 St. Petersburg, Russia.
| | - Alexei I Kononov
- Saint-Petersburg State University, Faculty of Physics, Department of Molecular Biophysics and Polymer Physics 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Chen Q, Wen G, Liang A, Jiang Z. A Dimode Scattering Method for Ultratrace Dinitrofuran Detection with Nanopalladium Molecularly Imprinted Polymer Nanocatalytic Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5753-5763. [PMID: 38436581 DOI: 10.1021/acs.langmuir.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
With four nanoparticles as the nanomatrix, dinotefuran (DNF) as the template molecule, N-isopropylacrylamide as the functional monomer, trimethylolpropane and trimethacrylate as the cross-linker, four nanosurface molecularly imprinted polymer (MIP) bifunctional probes were prepared by microwave synthesis. It was found that palladium nanosurface MIP (Pd@MIP) not only recognized DNF but also had the strongest catalytic effect on the new nanogold indicator reaction of acrylic acid-HAuCl4, which was evaluated quickly with the slope procedure developed by us. The generated gold nanoparticles (AuNPs) not only possessed the resonance Rayleigh scattering (RRS) effect but also strong surface-enhanced Raman scattering (SERS) activity. The combination of Pd@MIP with DNF enhanced the catalytic effect by coupling the nanosurface electrons with π-electrons, thus enhancing both scattering signals. A new Pd@MIP nanoprobe catalytic-SERS/RRS dual-mode analytical platform was developed for the specific and sensitive detection of DNF. The linear ranges of the SERS and RRS methods were 0.075-0.75 and 0.1-0.75 nmol/L, and the limits of detection were 0.03 and 0.06 nmol/L, respectively. The standard deviations were 0.54-2.39%, and the recoveries were 93-105%.
Collapse
Affiliation(s)
- Qianmiao Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| |
Collapse
|
5
|
Ait Lahcen A, Lamaoui A, Amine A. Exploring the potential of molecularly imprinted polymers and metal/metal oxide nanoparticles in sensors: recent advancements and prospects. Mikrochim Acta 2023; 190:497. [PMID: 38040934 DOI: 10.1007/s00604-023-06030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/04/2023] [Indexed: 12/03/2023]
Abstract
Metal/metal oxide nanoparticles have gained increasing attention in recent years due to their outstanding features, including optical and catalytic properties, as well as their excellent conductivity. The implementation of metal/metal oxide nanoparticles, combined with molecularly imprinted polymers (MIPs) has paved the way for a new generation of building blocks to engineer and enhance the fascinating features of advanced sensors. This review critically evaluates the impact of combining metal/metal oxide nanoparticles with MIPs in sensors. It covers synthesis strategies, advantages of coupling these materials with MIPs, and addresses questions about the selectivity of these hybrid materials. In the end, the current challenges and future perspectives of this field are discussed, with a particular focus on the potential applications of these hybrid composites in the sensor field. This review highlights the exciting opportunities of using metal/metal oxide nanoparticles along with MIPs for the development of next-generation sensors.
Collapse
Affiliation(s)
| | - Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
6
|
Chen GY, Chen LX, Gao J, Chen C, Guan J, Cao Z, Hu Y, Yang FQ. A Novel Molecularly Imprinted Sensor Based on CuO Nanoparticles with Peroxidase-like Activity for the Selective Determination of Astragaloside-IV. BIOSENSORS 2023; 13:959. [PMID: 37998134 PMCID: PMC10669883 DOI: 10.3390/bios13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
In this work, dopamine (DA) was polymerized on the surface of CuO nanoparticles (CuO NPs) to form a molecularly imprinted polymer (MIP@PDA/CuO NPs) for the colorimetric detection of astragaloside-IV (AS-IV). The synthesis process of MIP is simple and easy to operate, without adding other monomers or initiators. CuO NPs has high peroxidase (POD)-like activity that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate oxidized TMB (OxTMB) in the presence of H2O2, having a maximum ultraviolet-visible (UV-Vis) absorption peak at 652 nm. The AS-IV can specifically bind to the surface imprinted cavities and prevent the entry of TMB and H2O2, which will lead to the inhibition of the catalytic reaction. Therefore, a new approach based on the POD-like activity of MIP@PDA/CuO NPs for AS-IV detection was developed with a linear range from 0.000341 to 1.024 mg/mL. The LOD and LOQ are 0.000991 and 0.000341 mg/mL, respectively. The developed method can accurately determine AS-IV in Huangqi Granules and different batches of Ganweikang Tablets, which are similar to the results measured by HPLC-ELSD and meet the requirements of Chinese Pharmacopoeia (2020 edition) for the amount of AS-IV in Huangqi Granules. The combination of MIP with CuO NPs not only endows the detection of AS-IV with high selectivity and reliability, but also expands the application of nanozymes in the detection of small-molecule compounds that have weak UV absorption, and do not have reducibility or oxidation properties.
Collapse
Affiliation(s)
- Guo-Ying Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (G.-Y.C.); (L.-X.C.)
| | - Ling-Xiao Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (G.-Y.C.); (L.-X.C.)
| | - Jin Gao
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China; (J.G.); (C.C.); (J.G.); (Z.C.)
| | - Chengyu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China; (J.G.); (C.C.); (J.G.); (Z.C.)
| | - Jianli Guan
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China; (J.G.); (C.C.); (J.G.); (Z.C.)
| | - Zhiming Cao
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China; (J.G.); (C.C.); (J.G.); (Z.C.)
- Henan Fusen Pharmaceutical Co., Ltd., Nanyang 473000, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Feng-Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (G.-Y.C.); (L.-X.C.)
| |
Collapse
|
7
|
Balcer E, Sobiech M, Giebułtowicz J, Sochacka M, Luliński P. Molecularly Imprinted Polymers Specific towards 4-Borono-L-phenylalanine-Synthesis Optimization, Theoretical Analysis, Morphology Investigation, Cytotoxicity, and Release Studies. Polymers (Basel) 2023; 15:3149. [PMID: 37514538 PMCID: PMC10386447 DOI: 10.3390/polym15143149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to create molecularly imprinted polymers (MIPs) that are specific towards 4-borono-L-phenylalanine (BPA) to serve as boron compound carriers. The honeycomb-like MIPs were characterized in the matter of adsorption properties, morphology, structure, and cytotoxicity towards A549 and V79-4 cell lines. The honeycomb-like MIP composed from methacrylic acid and ethylene glycol dimethacrylate was characterized by a binding capacity of 330.4 ± 4.6 ng g-1 and an imprinting factor of 2.04, and its ordered, porous morphology was confirmed with scanning electron microscopy. The theoretical analysis revealed that the coexistence of different anionic forms of the analyte in basic solution might lower the binding capacity of the MIP towards BPA. The release profiles from the model phosphate buffer saline showed that only 0 to 4.81% of BPA was released from the MIP within the time frame of two hours, furthermore, the obtained material was considered non-cytotoxic towards tested cell lines. The results prove that MIPs can be considered as effective BPA delivery systems for biomedical applications and should be investigated in further studies.
Collapse
Affiliation(s)
- Emilia Balcer
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Radiochemistry Team, Reactor Research Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, Sołtana 7, Świerk, 05-400 Otwock, Poland
| | - Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Sochacka
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Li Y, Xu G, Chen J, Yu T, Miao P, Du Y. One-step synthesis of chiral molecularly imprinted polymer TiO 2 nanoparticles for enantioseparation of phenylalanine in coated capillary electrochromatography. Mikrochim Acta 2023; 190:279. [PMID: 37391671 DOI: 10.1007/s00604-023-05854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/02/2023]
Abstract
A novel chiral molecularly imprinted polymer TiO2 nanoparticle was synthesized in one step for the enantioseparation of phenylalanine in coated capillary electrochromatography. To the author's knowledge, the chiral molecularly imprinted nanomaterials have still not been reported, to date. Chiral molecularly imprinted TiO2 nanomaterials (L-PHE@MIP(APTES-TEOS)@TiO2) were used as a chiral stationary phase to separate the phenylalanine enantiomers in coated capillary electrochromatography (CEC). The imprinted coating was prepared from L-phenylalanine (L-PHE) as the template, TiO2 nanoparticles (NPs) as the support substrate, 3-aminopropyltriethoxysilane (APTES) as the functional monomer, and tetraethyl silicate (TEOS) as the cross-linker. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2@capillary. Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were employed for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2. The effects of the applied voltage, pH value, buffer concentration, and acetonitrile content were investigated experimentally to determine the optimum conditions for CEC. The best resolution for phenylalanine enantiomers by CEC reached a value of 3.48. In addition, the specific recognition effect of L-PHE@MIP(APTES-TEOS)@TiO2 on PHE enantiomers was studied by selective experiment. Finally, adsorption kinetic research, adsorption equilibrium isotherm study, and adsorption thermodynamic experiment were carried out to investigate the separation mechanism of PHE enantiomers with the L-PHE@MIP (APTES-TEOS)@TiO2@capillary, and the results were consistent with those of CEC experiments.
Collapse
Affiliation(s)
- Yuchen Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Jiangsu, 210009, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, People's Republic of China
| | - Guangfu Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Jiangsu, 210009, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, People's Republic of China
| | - Jiaquan Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Jiangsu, 210009, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, People's Republic of China
| | - Tao Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Jiangsu, 210009, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, People's Republic of China
| | - Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Jiangsu, 210009, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Jiangsu, 210009, Nanjing, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Zhang X, Peng J, Xi L, Lu Z, Yu L, Liu M, Huo D, He H. Molecularly imprinted polymers enhanced peroxidase-like activity of AuNPs for determination of glutathione. Mikrochim Acta 2022; 189:457. [DOI: 10.1007/s00604-022-05576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
|
10
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
11
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
12
|
Orbay S, Kocaturk O, Sanyal R, Sanyal A. Molecularly Imprinted Polymer-Coated Inorganic Nanoparticles: Fabrication and Biomedical Applications. MICROMACHINES 2022; 13:1464. [PMID: 36144087 PMCID: PMC9501141 DOI: 10.3390/mi13091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) continue to gain increasing attention as functional materials due to their unique characteristics such as higher stability, simple preparation, robustness, better binding capacity, and low cost. In particular, MIP-coated inorganic nanoparticles have emerged as a promising platform for various biomedical applications ranging from drug delivery to bioimaging. The integration of MIPs with inorganic nanomaterials such as silica (SiO2), iron oxide (Fe3O4), gold (Au), silver (Ag), and quantum dots (QDs) combines several attributes from both components to yield highly multifunctional materials. These materials with a multicomponent hierarchical structure composed of an inorganic core and an imprinted polymer shell exhibit enhanced properties and new functionalities. This review aims to provide a general overview of key recent advances in the fabrication of MIPs-coated inorganic nanoparticles and highlight their biomedical applications, including drug delivery, biosensor, bioimaging, and bioseparation.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Rana Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
13
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
14
|
Li H, Xu H, Zhang J, Li Y, Yu H, Zhao Y, Wang D, Li Y, Zhu J. Synthesis of an organic phosphoric acid-based multilayered SERS imprinted sensor for selective detection of dichlorophenol. NEW J CHEM 2022. [DOI: 10.1039/d2nj01637k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel SERS imprinted sensor (AIM@MIPs) was prepared, which could improve the detection ability of analysis detection. The AIM@MIPs presented sensitive and selective detection property to 2,6-DCP.
Collapse
Affiliation(s)
- Hongji Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education), Jilin Normal University, Changchun, 130103, China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hongda Xu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Jinyue Zhang
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yi Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Haochen Yu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yibo Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Dandan Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education), Jilin Normal University, Changchun, 130103, China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Zhong shan Institute of Changchun University of Science and Technology, Zhongshan, 528403, China
| | - Jianwei Zhu
- Zhong shan Institute of Changchun University of Science and Technology, Zhongshan, 528403, China
| |
Collapse
|
15
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
16
|
Zhao Z, Zhao X, Zhang M, Sun X. Charge-Transfer Process in Surface-Enhanced Raman Scattering Based on Energy Level Locations of Rare-Earth Nd 3+-Doped TiO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2063. [PMID: 34443894 PMCID: PMC8400391 DOI: 10.3390/nano11082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Surface-enhanced Raman scattering (SERS) for semiconductor nanomaterial systems is limited due to weak Raman signal intensity and unclear charge-transfer (CT) processes for chemical enhancement. Here, rare-earth element neodymium-doped titanium dioxide (Nd-TiO2) nanoparticles (NPs) were synthesized by the sol-gel method. The characterizations show that the doping of Nd ions causes TiO2 NPs to show an increase in the concentration of defects and change in the energy level structure. The CT process between Nd-TiO2 NPs substrate and probe molecule 4-Mercaptopyridine (4-Mpy) was innovatively analyzed using the relative energy level location relationship of the Dorenbos model. The SERS signal intensity exhibits an exponential enhancement with increasing Nd doping concentration and reaches its optimum at 2%, which is attributed to two factors: (1) The increase in the defect concentration is beneficial to the CT process between the TiO2 and the probe molecule; (2) the introduction of 4f electron orbital energy levels of rare-earth ions created unique CT process between Nd3+ and 4-Mpy. Moreover, the Nd-TiO2 NPs substrate shows excellent SERS performance in Raman signal reproducibility (RSD = 5.31%), the limit of detection (LOD = 10-6 M), and enhancement factor (EF = 3.79 × 104). Our work not only improves the SERS performance of semiconductor substrates but also provides a novel approach to the development of selective detection of probe molecules.
Collapse
Affiliation(s)
- Zihao Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; (Z.Z.); (M.Z.)
| | - Xiang Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; (Z.Z.); (M.Z.)
- Laboratory of Advanced Ceramics, Foshan Graduate School, Northeastern University, Foshan 528311, China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; (Z.Z.); (M.Z.)
- Laboratory of Advanced Ceramics, Foshan Graduate School, Northeastern University, Foshan 528311, China
| | - Xudong Sun
- Laboratory of Advanced Ceramics, Foshan Graduate School, Northeastern University, Foshan 528311, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
| |
Collapse
|
17
|
Alışık F, Burç M, Titretir Duran S, Güngör Ö, Cengiz MA, Köytepe S. Development of Gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03605-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Alipanahpour Dil E, Ghaedi M, Mehrabi F, Tayebi L. Highly selective magnetic dual template molecularly imprinted polymer for simultaneous enrichment of sulfadiazine and sulfathiazole from milk samples based on syringe-to-syringe magnetic solid-phase microextraction. Talanta 2021; 232:122449. [PMID: 34074433 DOI: 10.1016/j.talanta.2021.122449] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Antibiotics, such as sulfadiazine and sulfathiazole, are widely used in veterinary applications which can result in remains in edible animal products. Therefore, there is an immense need for a reliable, selective, sensitive, and simple analytical technique for monitoring the concentration of sulfadiazine (SDZ) and sulfathiazole (STZ) in edible animal products. In this regard, we developed a magnetic dual template molecularly imprinted polymer (MMIP) to determine the SDZ and STZ in milk samples. For the sensitive and selective extraction and determination of target analytes, MMIPs have been combined with the syringe-to-syringe magnetic solid-phase microextraction (SS-MSPME) method. In addition, we used central composite design (CCD) for the extraction of SDZ and STZ. With optimum conditions, an efficient, rapid, and convenient technique for the preconcentration and determination of SDZ and STZ in milk samples by SS-MSPME coupling with HPLC-UV was developed. Using our combined approach, the limits of detection are 0.9 and 1.3 ng mL-1 for SDZ and STZ, respectively, along with good linearity and determination coefficients higher than 0.98. Our method demonstrates a practical approach for the deduction of antibiotics in milk samples with high recoveries and selectivity.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| | - Fatemeh Mehrabi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Khan SA, Choudhury R, Majumdar M, Nandi NB, Roy S, Misra TK. Gluconate‐Stabilized Silver Nanoparticles as pH Dependent Dual‐Nanosensor for Quantitative Evaluation of Methionine and Cysteine. ChemistrySelect 2020. [DOI: 10.1002/slct.202001654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shamim Ahmed Khan
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Rupasree Choudhury
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Moumita Majumdar
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Shaktibrata Roy
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| |
Collapse
|
21
|
Ranc V, Chaloupková Z. Perspectives of DCDR-GERS in the analysis of amino acids. Analyst 2020; 145:7701-7708. [DOI: 10.1039/d0an01564d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene-enhanced Raman scattering (GERS) has attracted increasing attention from many scientists in recent years as a novel and potentially strong analytical technique since its discovery in 2010.
Collapse
Affiliation(s)
- Václav Ranc
- Regional Centre of Advanced Technologies and Materials
- Palacky University Olomouc
- 771 46 Olomouc
- Czech Republic
| | - Zuzana Chaloupková
- Regional Centre of Advanced Technologies and Materials
- Palacky University Olomouc
- 771 46 Olomouc
- Czech Republic
| |
Collapse
|