1
|
Nguyen HA, Anh Thi NP, Thien Trang NP, Ho TT, Trinh TND, Tran NKS, Trinh KTL. Recent advances in biosensors for screening plant pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4485-4495. [PMID: 38940060 DOI: 10.1039/d4ay00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Worldwide, plant pathogens have been a considerably important cause of economic loss in agriculture especially in the decades of agricultural intensification. The increasing losses in agriculture due to biotic plant diseases have drawn attention towards the development of plant disease analyzing methods. In this context, biosensors have emerged as significantly important tools which help farmers in on-field diagnosis of plant diseases. Compared to traditional methods, biosensors have outstanding features such as being highly sensitive and selective, cost-effective, portable, fast and user-friendly operation, and so on. There are three common types of biosensors including electrochemical, fluorescent, and colorimetric biosensors. In this review, some common biotic plant diseases caused by fungi, bacteria, and viruses are first summarized. Then, current advances in developing biosensors are discussed.
Collapse
Affiliation(s)
- Hanh An Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Anh Thi
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Thien Trang
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Biotechnology Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Vietnam
| | - Nguyen Khoi Song Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam.
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
2
|
Ayarnah K, Kaur M, Duanis-Assaf D, Alkan N, Eltzov E. High-Throughput Bioassay for Detection of Latent Fungi in Postharvest Produce. Appl Biochem Biotechnol 2024; 196:3844-3859. [PMID: 37787892 DOI: 10.1007/s12010-023-04726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Enormous fresh agricultural produce is wasted annually due to rots caused by pathogenic microorganisms. Most pathogenic fungi attack the harvested produce by penetrating the fruit at the field and remaining quiescent or latent until the fruit ripens or senescence. In this work, a recently developed simple, cost-effective, and high-throughput 96-well plate-based assay was applied to determine the presence of pathogenic fungi in their latent stage. The surface strands immobilized on the 96-well plate, only with the presence of the complementary RNA marker (enoyl-CoA hydratase (ECH)) of the latent fungal-pathogen Colletotrichum gloeosporioides will create a complex with the target and reporter (labeled with the horseradish peroxidase (HRP) enzyme) strands for positive signal generation. The developed assay demonstrated 3.1-fold higher specificity for the latent marker (ECH) of C. gloeosporioides compared to latent markers of other pathogenic fungi. A 2 nM detection limit of target strands was demonstrated, showing a high plate sensitivity, and was further validated with biological samples extracted from latent infection in tomato fruit. The developed assay provides a new economical tool for detecting the presence of latent RNA markers of pathogenic fungi in agricultural produce, ultimately improving postharvest decision-making and reducing postharvest losses.
Collapse
Affiliation(s)
- Khadijah Ayarnah
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Manpreet Kaur
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| | - Danielle Duanis-Assaf
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Noam Alkan
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel.
- Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, 7505101, Rishon LeZion, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel.
- Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
3
|
Kaur M, Ayarnah K, Duanis-Assaf D, Alkan N, Eltzov E. Paper-based colorimetric loop-mediated isothermal amplification (LAMP) assay for the identification of latent Colletotrichum in harvested fruit. Anal Chim Acta 2023; 1267:341394. [PMID: 37257967 DOI: 10.1016/j.aca.2023.341394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Paper-based analytical devices (PADs) have gained enormous attention because of their low-cost, simple fabrication, and portability. Here, we propose a paper-based device for performing reverse transcription loop-mediated isothermal amplification (RT-LAMP) with real-time simultaneous detection of C. gloeosporioides latent infections in tomatoes. RT-LAMP-based PAD platform comprises a paper substrate on which the DNA amplification reaction occurs. Among different types of tested papers, cellulose membrane (grade 4) enabled effective visualization of the amplification result. The assay was found highly selective for the latent stage of C. gloeosporioides with lower limit of detection (LOD) of 0.5 pg of total extracted RNA. The developed assay generated the results within 40 min and hence can be efficiently employed for identifying C. gloeosporioides in resource-limited settings.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Khadijah Ayarnah
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Danielle Duanis-Assaf
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noam Alkan
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
4
|
Rapid and simple colorimetric detection of quiescent Colletotrichum in harvested fruit using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) technology. Talanta 2023; 255:124251. [PMID: 36630787 DOI: 10.1016/j.talanta.2023.124251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the major causes of postharvest decay of fruits and vegetables. Detection of the pathogen at an early stage of infection is crucial to developing a disease management strategy. In this work, a loop-mediated isothermal amplification (LAMP) assay was developed for the rapid detection of C. gloeosporioides targeting the transcript enoyl-CoA hydratase (ECH) that significantly upregulates only during C. gloeosporioides quiescent stage. The assay enabled a naked-eye detection of C. gloeosporioides RNA within 23 min based on a color change of LAMP products from pink to yellow. The detection limit of the LAMP assay was 1 pg of total RNA extracted from fruit peel in a 25 μL reaction. Positive results were obtained only in samples carrying the ECH gene, whereas no cross-reaction was observed for a different quiescent marker (histone deacetylase (HDAC)) or an appressorium marker (scytalone dehydratase, (SD)), indicating the high specificity of the method. Hence, the results indicate that the developed LAMP assay is a rapid, highly sensitive, and specific tool for the early detection of quiescent C. gloeosporioides and could be employed to manage postharvest diseases.
Collapse
|
5
|
Bajaj A, Shrivastav AM, Eltzov E, Alkan N, Abdulhalim I. Detection of necrotrophic DNA marker of anthracnose causing Colletotrichum gloeosporioides fungi in harvested produce using surface plasmon resonance. Talanta 2021; 235:122776. [PMID: 34517633 DOI: 10.1016/j.talanta.2021.122776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 01/18/2023]
Abstract
Agriculture and food crops monitoring is extremely important for securing the food supply chain to human society. Here, we developed a highly specific detection method for monitoring pathogenic fungus Colletotrichum gloeosporioides using necrotrophic DNA biomarker as the recognition element and surface plasmon resonance (SPR) as transducing mechanism in the prism coupling configuration. The sensor shows its response for a wide range of concentrations from pM to μM of target DNA sequence using a complementary DNA probe immobilized on the sensor surface, which could detect concentrations as low as 7 pM. The detection limit is found to be comparable with conventional molecular-based detection platforms, achieved due to optimized spectral SPR bimetallic substrate with subpixel resolution obtained by post processing. The response time of the sensor for detection is less than 30 min at room temperature. The quick detection scheme of the sensor may facilitate the screening of a large number of samples acquired for the sorting of harvested produce. This sensor is fast, reliable, cost-effective, and can be miniaturized for portability for the screening of real samples (mRNA) in the field and packaging house.
Collapse
Affiliation(s)
- Aabha Bajaj
- Department of Electro-optics and Photonics Engineering and the Ilse-Katz Center for Nanoscale Science and Technology, ECE-School, Ben Gurion University, Beer Sheva, 84105, Israel.
| | - Anand M Shrivastav
- Department of Electro-optics and Photonics Engineering and the Ilse-Katz Center for Nanoscale Science and Technology, ECE-School, Ben Gurion University, Beer Sheva, 84105, Israel.
| | - Evgeny Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology Research Center, Agriculture Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel.
| | - Noam Alkan
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| | - Ibrahim Abdulhalim
- Department of Electro-optics and Photonics Engineering and the Ilse-Katz Center for Nanoscale Science and Technology, ECE-School, Ben Gurion University, Beer Sheva, 84105, Israel.
| |
Collapse
|