1
|
Huang S, Xiang H, Lv J, Guo Y, Xu L. Propelling gold nanozymes: catalytic activity and biosensing applications. Anal Bioanal Chem 2024; 416:5915-5932. [PMID: 38748246 DOI: 10.1007/s00216-024-05334-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Recently, gold nanomaterials have been rapidly developed owing to their high stability, good biocompatibility, and multifunctionality. The unique catalytic activity of gold nanomaterials has driven the emergence of the concept for a "gold nanozyme." Understanding the characteristics of gold nanozymes is crucial for improving their catalytic performance as well as expanding their applications. In this review, we provide an overview of the intrinsic enzyme-like activities of gold nanozymes, including peroxidase-, catalase-, superoxide dismutase-, and glucose oxidase-like activities, and the catalytic mechanisms involved. In addition, strategies for modulating the catalytic activity of gold nanozymes and their applications in biosensing were discussed in detail. Moreover, we highlight the current challenges of gold nanozymes and look forward to attracting more attention for propelling the developments in this field.
Collapse
Affiliation(s)
- Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Henglong Xiang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Jiachen Lv
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
2
|
Ngernpradab P, Wongravee K, Srisa-Art M. A rapid and facile immunoassay for C-reactive protein using PDMS-based digital magnetofluidics. Anal Chim Acta 2024; 1321:343044. [PMID: 39155093 DOI: 10.1016/j.aca.2024.343044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND C-reactive protein has been reported as a biomarker of inflammation caused by acute injury, infection or tissue damage and also a prediction marker of cardiovascular diseases. Commonly, the gold standard for the detection of CRP is enzyme-linked immunosorbent assays (ELISAs). Normally, traditional immunoassays in multiwell plates typically suffer from prolonged assay time due to slow mass transport controlled by diffusion. Herein, a PDMS based magnetofluidic approach has been applied for a rapid and facile immunoassay using a sandwich enzyme-linked immunosorbent assay (ELISA) for the analysis of CRP. RESULTS Due to the superhydrophobic PDMS, droplets of reagent and sample solutions were obtained when pipetting all solutions onto the PDMS substrate. These droplets were individually controlled by an external magnet to perform the assays. Magnetic beads immobilized with a capture antibody were not only used for immunomagnetic separation (IMS) of the captured CRP from the sample matrix, but also used as a carrier for droplet movement on the magnetofluidic device, expediting the immunoassay procedure, especially washing steps. The immunoassay of CRP was successfully performed within 1 h with a limit of detection of 0.015 mg L-1 in the concentration range of 0.1-10 mg L-1. The recovery percentages of CRP spiked in human serum were found in the range of 90-114 % with %RSD of less than 5 %, indicating acceptable accuracy and precision. SIGNIFICANCE By individually controlling the droplet movement using an external magnet, all steps of immunoassays were simply and rapidly performed. In addition, the microfluidic format allows for small volumes of reagents and samples and rapid assay kinetics. Therefore, the proposed magnetofluidic approach has shown its potential of becoming a rapid, facile and cost-effective method to perform traditional immunoassays in a variety of applications. In addition, the proposed approach is also particularly well-suited for analyses/reactions with multiple steps.
Collapse
Affiliation(s)
- Pakakan Ngernpradab
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kanet Wongravee
- A Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Research Network NANOTEC-CU on Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Monpichar Srisa-Art
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Peng X, Wang S, Su K, Sun Y, Xu Z. Direct competitive immunoassay method for sensitive detection of the histamine in foods based on a MI-Cu-GMP nanozyme marker and molecularly imprinted biomimetic antibody. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39229821 DOI: 10.1002/jsfa.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/14/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Histamine may lead to low blood pressure, skin flushing and edema when it accumulates in large amounts in the body. Therefore, establishing sensitive methods for the detection of histamine in foods is extremely important to ensure food safety and human health. RESULTS The MI-Cu-GMP NPs (2-methylimidazole-copper-guanosine monophosphate nanozymes) with high laccase-like activity were synthesized. Using the prepared molecular imprinted membrane as biomimetic antibody and MI-Cu-GMP NPs as marker, a sensitive direct competitive biomimetic enzyme-linked immunoassay (BELISA) method for rapid detection of the histamine in foods was developed. Under optimal conditions, the limit of detection (LOD, IC15) and sensitivity (IC50) of the BELISA method for histamine was 0.05 mg L-1 and 1.22 mg L-1, respectively. The liquor samples spiked with histamine was detected by the BELISA method with satisfactory recoveries ranging from 90.00% to 116.00%. Further, the level of histamine in three samples (cooking wine, rice vinegar and soy sauce) was tested by the BELISA and high-performance liquid chromatography (HPLC), with no significant difference found between the two methods. CONCLUSION Given the advantages, the established BELISA method is expected to provide practical guidance for the monitoring of histamine in food and provides a foundation for the detection of other food hazards. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinli Peng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Siqi Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Kaiyue Su
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yufeng Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Wang Z, Liu S, Shi Z, Lu D, Li Z, Zhu Z. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024; 277:126318. [PMID: 38810381 DOI: 10.1016/j.talanta.2024.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shuyuan Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
5
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Epistatu D, Rădulescu M, Grumezescu AM, Nicolae CL. Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. J Funct Biomater 2024; 15:225. [PMID: 39194663 DOI: 10.3390/jfb15080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Chen SJ, Lu SY, Tseng CC, Huang KH, Chen TL, Fu LM. Rapid Microfluidic Immuno-Biosensor Detection System for the Point-of-Care Determination of High-Sensitivity Urinary C-Reactive Protein. BIOSENSORS 2024; 14:283. [PMID: 38920587 PMCID: PMC11201708 DOI: 10.3390/bios14060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic immuno-biosensor detection system consisting of a microfluidic spectrum chip and a micro-spectrometer detection device is presented for the rapid point-of-care (POC) detection and quantification of high-sensitivity C-reactive protein (hs-CRP) in urine. The detection process utilizes a highly specific enzyme-linked immunosorbent assay (ELISA) method, in which capture antibodies and detection antibodies are pre-deposited on the substrate of the microchip and used to form an immune complex with the target antigen. Horseradish peroxidase (HRP) is added as a marker enzyme, followed by a colorimetric reaction using 3,3',5,5'-tetramethylbenzidine (TMB). The absorbance values (a.u.) of the colorimetric reaction compounds are measured using a micro-spectrometer device and used to measure the corresponding hs-CRP concentration according to the pre-established calibration curve. It is shown that the hs-CRP concentration can be determined within 50 min. In addition, the system achieves recovery rates of 93.8-106.2% in blind water samples and 94.5-104.6% in artificial urine. The results showed that the CRP detection results of 41 urine samples from patients with chronic kidney disease (CKD) were highly consistent with the conventional homogeneous particle-enhanced turbidimetric immunoassay (PETIA) method's detection results (R2 = 0.9910). The experimental results showed its applicability in the detection of CRP in both urine and serum. Overall, the results indicate that the current microfluidic ELISA detection system provides an accurate and reliable method for monitoring the hs-CRP concentration in point-of-care applications.
Collapse
Affiliation(s)
- Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Song-Yu Lu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan;
- College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - To-Lin Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| |
Collapse
|
7
|
Liu X, Wang C, Bai Y, Wang W, Han Y, Cai S, An J, Qu G. Development of a double antibody sandwich ELISA method for the quantitative detection of serum C-reactive protein based on nanobody. Microb Pathog 2024; 190:106615. [PMID: 38521472 DOI: 10.1016/j.micpath.2024.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
In this study, we successfully developed a nanobody-based double antibody sandwich ELISA kit for the detection of clinical serum C-reactive protein (CRP) by using two novel CRP specific nanobodies. The developed method exhibited a linear detection range of approximately 6-200 ng/mL, with a detection limit of 1 ng/mL. Furthermore, the method demonstrated excellent specificity, as there was no cross-reactivity with interfering substances such as total bilirubin and hemoglobin and so on. To assess reproducibility, independent measurements of the samples were conducted under experimental conditions, resulting in intra- and inter-batch coefficients of variation below 10% and a recovery rate of 93%-102%. These results indicate robust reproducibility of the method. To evaluate the performance of the developed kit, we collected 90 clinical samples for correlation analysis with commercial kits. The results showed a high correlation coefficient value (R2) of 0.98, indicating accurate concordance between the developed and commercial kits. In conclusion, our study successfully developed a nanobody-based double antibody sandwich ELISA kit to detect clinical serum CRP. The utilization of nanobodies represents a significant advancement in the field of CRP immunoassay development. The developed kit demonstrates excellent performance characteristics and holds promise for clinical applications.
Collapse
Affiliation(s)
- Xin Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, PR China
| | - Yu Bai
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Weichen Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Yuchen Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Shu Cai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China.
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, PR China.
| |
Collapse
|
8
|
Zhang Y, Yu W, Zhang L, Li P. Nanozyme-based visual diagnosis and therapeutics for myocardial infarction: The application and strategy. J Adv Res 2024:S2090-1232(24)00162-0. [PMID: 38657902 DOI: 10.1016/j.jare.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a heart injury caused by ischemia and low oxygen conditions. The occurrence of MI lead to the activation of a large number of neutrophils and macrophages, inducing severe inflammatory injury. Meanwhile, the inflammatory response produces much more free radicals, further exacerbating the inflammatory response and tissue damage. Efforts are being dedicated to developing antioxidants and enzymes, as well as small molecule drugs, for treating myocardial ischemia. However, poor pharmacokinetics and potential side effects limit the clinical application of these drugs. Recent advances in nanotechnology have paved new pathways in biomedical and healthcare environments. Nanozymes exhibit the advantages of biological enzymes and nanomaterials, including with higher catalytic activity and stability than natural enzymes. Thus, nanozymes provide new possibilities for the diagnosis and treatment of oxidative stress and inflammation-related diseases. AIM OF REVIEW We describe the application of nanozymes in the diagnosis and therapy of MI, aiming to bridge the gap between the diagnostic and therapeutic needs of MI. KEY SCIENTIFIC CONCEPTS OF REVIEW We describe the application of nanozymes in the diagnosis and therapy of MI, and discuss the new strategies for improving the diagnosis and treatment of MI. We review in detail the applications of nanozymes to achieve highly sensitive detection of biomarkers of MI. Due to their unique enzyme catalytic capabilities, nanozymes have the ability to sensitively detect biomolecules through colorimetric, fluorescent, and electrochemical assays. In addition, nanozymes exhibit excellent antioxidase-mimicking activity to treat MI by modulating reduction/oxidation (REDOX) homeostasis. Nanozymes can also passively or actively target MI tissue sites, thereby protecting ischemic myocardial tissue and reducing the infarct area. These innovative applications of nanozymes in the field of biomedicine have shown promising results in the diagnosis and treatment of MI, offering a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Davydova AS, Vorobyeva MA. Aptasensors Based on Non-Enzymatic Peroxidase Mimics: Current Progress and Challenges. BIOSENSORS 2023; 14:1. [PMID: 38275302 PMCID: PMC10813519 DOI: 10.3390/bios14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Immunoassays based on antibodies as recognizing elements and enzymes as signal-generating modules are extensively used now in clinical lab diagnostics, food, and environmental analyses. However, the application of natural enzymes and antibodies has some drawbacks, such as relatively high manufacturing costs, thermal instability, and lot-to-lot variations that lower the reproducibility of results. Oligonucleotide aptamers are able to specifically bind their targets with high affinity and selectivity, so they represent a prospective alternative to protein antibodies for analyte recognition. Their main advantages include thermal stability and long shelf life, cost-efficient chemical synthesis, and negligible batch-to-batch variations. At the same time, a wide variety of non-protein peroxidase mimics are now available that show strong potential to replace protein enzymes. Here, we review and analyze non-protein biosensors that represent a nexus of these two concepts: aptamer-based sensors (aptasensors) with optical detection (colorimetric, luminescent, or fluorescent) based on different peroxidase mimics, such as DNAzymes, nanoparticles, or metal-organic frameworks.
Collapse
Affiliation(s)
- Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Akad. Lavrentiev, 8, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
10
|
Yadoung S, Shimizu S, Hongsibsong S, Nakano K, Ishimatsu R. Dopamine as a polymerizable reagent for enzyme-linked immunosorbent assay using horseradish peroxidase. Heliyon 2023; 9:e21722. [PMID: 38027909 PMCID: PMC10654240 DOI: 10.1016/j.heliyon.2023.e21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
We demonstrate that dopamine can be used as a reagent for colorimetric enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase (HRP). Dopamine was able to be polymerized in the presence of HRP and H2O2, and black polydopamine was obtained after the enzymatic reaction. Because of the black color, the absorbance was significantly changed in the whole range of the visible light region. Here, an indirect competitive ELISA based on the polymerization of dopamine was performed to detect a fluoroquinolone antibiotic, enrofloxacin. The antibiotic is commonly used in livestock farming. The anti-antibiotics antibody was produced from egg yolk from chicken hens. In the visible range, sufficient absorbance changes of ∼0.4∼0.5 and a low background level for the ELISA response were obtained, and the 50 % inhibitory concentration value at 450 nm was determined to be 26 ppb. The performance of the indirect competitive ELISA based on the polymerization of dopamine was compared to that based on the oxidation of catechol because dopamine has a catechol skeleton. By the complex of HRP and H2O2, catechol can be oxidized to o-benzoquinone having a maximum absorption wavelength of 420 nm. It was shown that the absorbance change in the case of polydopamine was about 2.5 times higher than that of catechol, where the background levels were similar. This confirms that the polymerization of dopamine significantly enhanced the photosignal.
Collapse
Affiliation(s)
- Sumed Yadoung
- Environmental Science Program, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Shinichi Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Surat Hongsibsong
- Environmental Science Program, Faculty of Science, Chiang Mai University, 50200, Thailand
- School of Health Sciences Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
11
|
Komova NS, Serebrennikova KV, Berlina AN, Zherdev AV, Dzantiev BB. Sensitive Silver-Enhanced Microplate Apta-Enzyme Assay of Sb 3+ Ions in Drinking and Natural Waters. Molecules 2023; 28:6973. [PMID: 37836816 PMCID: PMC10574334 DOI: 10.3390/molecules28196973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.
Collapse
Affiliation(s)
| | | | - Anna N. Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (N.S.K.); (K.V.S.); (A.V.Z.); (B.B.D.)
| | | | | |
Collapse
|
12
|
Khanmiri HH, Yazdanfar F, Mobed A, Rezamohammadi F, Rahmani M, Haghgouei T. Biosensors; noninvasive method in detection of C-reactive protein (CRP). Biomed Microdevices 2023; 25:27. [PMID: 37498420 DOI: 10.1007/s10544-023-00666-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Early diagnosis of C reactive protein (CRP) is critical to applying effective therapies for related diseases. Diagnostic technology in today's healthcare systems is mostly deployed in central laboratories, involves expensive and time-consuming processes, and is operated by specialized personnel. For example, the enzyme-linked immunosorbent assay (ELISA), considered the gold standard diagnostic method, is labor-intensive and requires complex procedures such as multiple washing and labeling steps. Due to these limitations of current diagnostic techniques, it is difficult for people to regularly monitor their health and ultimately the disease is more likely to be diagnosed at a later stage. The problem is exacerbated for economically disadvantaged people living in underdeveloped countries. To address these challenges in the traditional diagnostic field, point-of-care (POC) biosensors have emerged as a promising alternative. This allows patients to have their health checked regularly at or near their bedside without resorting to laboratory tests. Nanotechnology-based methods such as biosensors have been extensively researched and developed. Among biosensors, there are also label-free biosensors with high sensitivity that do not require complicated procedures and reduce test time. However, some drawbacks such as high cost, bulky size and need for trained personnel to operate have not been improved. In this review article, we provide an overview of routine methods in CRP diagnosis and then introduce biosensors as a modern, advanced alternative to older methods. Readers of this article can learn about biosensing and its benefits while being aware of the limitations of routine methods.
Collapse
Affiliation(s)
| | - Fatemeh Yazdanfar
- Department of Basic Sciences, Maragheh Branch, Islamic Azad University, Maragheh, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mehrnoush Rahmani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Haghgouei
- Division of Pharmacology and Toxicology Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Polonschii C, Potara M, Iancu M, David S, Banciu RM, Vasilescu A, Astilean S. Progress in the Optical Sensing of Cardiac Biomarkers. BIOSENSORS 2023; 13:632. [PMID: 37366997 PMCID: PMC10296523 DOI: 10.3390/bios13060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Biomarkers play key roles in the diagnosis, risk assessment, treatment and supervision of cardiovascular diseases (CVD). Optical biosensors and assays are valuable analytical tools answering the need for fast and reliable measurements of biomarker levels. This review presents a survey of recent literature with a focus on the past 5 years. The data indicate continuing trends towards multiplexed, simpler, cheaper, faster and innovative sensing while newer tendencies concern minimizing the sample volume or using alternative sampling matrices such as saliva for less invasive assays. Utilizing the enzyme-mimicking activity of nanomaterials gained ground in comparison to their more traditional roles as signaling probes, immobilization supports for biomolecules and for signal amplification. The growing use of aptamers as replacements for antibodies prompted emerging applications of DNA amplification and editing techniques. Optical biosensors and assays were tested with larger sets of clinical samples and compared with the current standard methods. The ambitious goals on the horizon for CVD testing include the discovery and determination of relevant biomarkers with the help of artificial intelligence, more stable specific recognition elements for biomarkers and fast, cheap readers and disposable tests to facilitate rapid testing at home. As the field is progressing at an impressive pace, the opportunities for biosensors in the optical sensing of CVD biomarkers remain significant.
Collapse
Affiliation(s)
- Cristina Polonschii
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| | - Madalina Iancu
- “Professor Dr. Agrippa Ionescu” Clinical Emergency Hospital, 7 Architect Ion Mincu Street, 011356 Bucharest, Romania;
| | - Sorin David
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
- Faculty of Chemistry, University of Bucharest, 4-12 “Regina Elisabeta” Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| |
Collapse
|
14
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
15
|
Gold Nanozymes: Smart Hybrids with Outstanding Applications. Catalysts 2022. [DOI: 10.3390/catal13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanozymes are nanostructured artificial enzymes that have attracted great attention among researchers because of their ability to mimic relevant biological reactions carried out by their natural counterparts, but with the capability to overcome natural enzymes’ drawbacks such as low thermostability or narrow substrate scope. The promising enzyme-like properties of these systems make nanozymes excellent candidates for innovative solutions in different scientific fields such as analytical chemistry, catalysis or medicine. Thus, nanozymes with different type of activities are of special interest owing to their versatility since they can reproduce several biological reactions according to the substrates and the environmental conditions. In this context, gold-based nanozymes are a representative example of multifunctional structures that can perform a great number of enzyme-like activities. In addition, the combination of gold-based materials with structures of organic and inorganic chemical nature yields even more powerful hybrid nanozymes, which enhance their activity by providing improved features. This review will carry out a deep insight into gold-based nanozymes, revisiting not only the different type of biological enzymatic reactions that can be achieved with these kinds of systems, but also structural features of some of the most relevant hybrid gold-based nanozymes described in the literature. This literature review will also provide a representative picture of the potential of these structures to solve future technological challenges.
Collapse
|
16
|
Development of an Immunoassay Method for the Sensitive Detection of Histamine and Tryptamine in Foods Based on a CuO@Au Nanoenzyme Label and Molecularly Imprinted Biomimetic Antibody. Polymers (Basel) 2022; 15:polym15010021. [PMID: 36616370 PMCID: PMC9823797 DOI: 10.3390/polym15010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, a novel biomimetic enzyme-linked immunoassay method (BELISA) was successfully established for the detection of histamine and tryptamine, based on catalytically active cupric oxide@gold nanoparticles (CuO@Au NPs) as a marker and a molecularly imprinted polymer (MIP) as the biomimetic antibody. Under optimized conditions, the detection limitations of the BELISA method for histamine and tryptamine were 0.04 mg L-1 and 0.14 mg L-1, respectively. For liquor spiked with histamine and tryptamine, the BELISA method delivered satisfactory recoveries ranging from 89.90% to 115.00%. Furthermore, the levels of histamine and tryptamine in fish, soy sauce, and rice vinegar samples were detected by the BELISA method and a high performance liquid chromatography method, with no significant difference between the two methods being found. Although the catalytic activity of nanozymes is still lower than that of natural enzymes, the BELISA method could still sensitively determine the histamine and tryptamine levels in food samples.
Collapse
|
17
|
Zhou L, Liu Y, Lu Y, Zhou P, Lu L, Lv H, Hai X. Recent Advances in the Immunoassays Based on Nanozymes. BIOSENSORS 2022; 12:1119. [PMID: 36551085 PMCID: PMC9776222 DOI: 10.3390/bios12121119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
As a rapid and simple method for the detection of multiple targets, immunoassay has attracted extensive attention due to the merits of high specificity and sensitivity. Notably, enzyme-linked immunosorbent assay (ELISA) is a widely used immunoassay, which can provide high detection sensitivity since the enzyme labels can promote the generation of catalytically amplified readouts. However, the natural enzyme labels usually suffer from low stability, high cost, and difficult storage. Inspired by the advantages of superior and tunable catalytic activities, easy preparation, low cost, and high stability, nanozymes have arisen to replace the natural enzymes in immunoassay; they also possess equivalent sensitivity and selectivity, as well as robustness. Up to now, various kinds of nanozymes, including mimic peroxidase, oxidase, and phosphatase, have been incorporated to construct immunosensors. Herein, the development of immunoassays based on nanozymes with various types of detection signals are highlighted and discussed in detail. Furthermore, the challenges and perspectives of the design of novel nanozymes for widespread applications are discussed.
Collapse
|
18
|
Recent advances in gold nanoparticle-based colorimetric aptasensors for chemical and biological analyses. Bioanalysis 2022; 14:1509-1524. [PMID: 36799230 DOI: 10.4155/bio-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Aptasensors are amazing among many currently formed procedures due to their excellent particularity, selectivity and responsiveness. These biosensors get more popular in combination with gold nanoparticles (AuNPs) to detect chemical and biological molecules. The response of AuNPs by changing color provides a simple explanation of outcomes. The authors review the recent developments in AuNP-based colorimetric aptasensors designed to sense different chemical and biological molecules. They summarize the procedure of AuNP-based detection and the ordinary instances of currently formed AuNP-based colorimetric procedures. Furthermore, their uses for detecting different analytes based on analyte types are given and the present challenges, overview, and positive views for forming new aptasensors are also regarded.
Collapse
|
19
|
Davydova A, Vorobyeva M. Aptamer-Based Biosensors for the Colorimetric Detection of Blood Biomarkers: Paving the Way to Clinical Laboratory Testing. Biomedicines 2022; 10:biomedicines10071606. [PMID: 35884911 PMCID: PMC9313021 DOI: 10.3390/biomedicines10071606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical diagnostics for human diseases rely largely on enzyme immunoassays for the detection of blood biomarkers. Nevertheless, antibody-based test systems have a number of shortcomings that have stimulated a search for alternative diagnostic assays. Oligonucleotide aptamers are now considered as promising molecular recognizing elements for biosensors (aptasensors) due to their high affinity and specificity of target binding. At the moment, a huge variety of aptasensors have been engineered for the detection of various analytes, especially disease biomarkers. However, despite their great potential and excellent characteristics in model systems, only a few of these aptamer-based assays have been translated into practice as diagnostic kits. Here, we will review the current progress in the engineering of aptamer-based colorimetric assays as the most suitable format for clinical lab diagnostics. In particular, we will focus on aptasensors for the detection of blood biomarkers of cardiovascular, malignant, and neurodegenerative diseases along with common inflammation biomarkers. We will also analyze the main obstacles that have to be overcome before aptamer test systems can become tantamount to ELISA for clinical diagnosis purposes.
Collapse
|
20
|
Wang Y, Du X, Wang X, Yan T, Yuan M, Yang Y, Jurado-Sánchez B, Escarpa A, Xu LP. Patterned Liquid-Infused Nanocoating Integrating a Sensitive Bacterial Sensing Ability to an Antibacterial Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23129-23138. [PMID: 35537039 DOI: 10.1021/acsami.1c24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The slippery liquid-infused surfaces show a great antibacterial property. However, most liquid-infused surfaces cannot detect whether or not the unknown aqueous samples contain microorganisms. Therefore, it is highly necessary but a challenge to integrate bacterial sensing capability into antibacterial surface. In this work, we prepared a slippery patterned liquid-infused nanocoating on the glass substrate for integrating bacterial sensing capability into the bacterial repellence surface. Dendritic mesoporous silica nanoparticles (DMSNs) with a suitable particle size of ca. 128 nm were employed as a building block to fabricate the multifunctional nanocoating with a superhydrophilic microwell and hydrophobic periphery by a dip-coating strategy, hydrophobic treatment, photomask-mediated plasma etching, and liquid infusion. Dendritic porous silica nanoparticles (DPSNs) with a larger particle size of ca. 260 nm were uniformly loaded with Au nanoparticles (NPs), providing large surface area for the modification of Raman reporter (4-mercaptobenzoic acid (4-MBA)) and aptamer. Thus, as a Raman tag, the formed DPSNs-Au-MBA-aptamer could achieve sensitive surface-enhanced Raman spectroscopy (SERS) detection of target bacteria. Combined with the Raman tag, the patterned liquid-infused nanocoating not only completely repelled bacteria on the hydrophobic area but also enabled sensitive SERS detection of Staphylococcus aureus in a very low sample volume (1 μL) with a low detection limit of 2.6 colony formation units (CFU)/mL on the antibody-modified superhydrophilic microwell. This research provided a novel and reliable strategy to construct a multifunctional nanocoating with microbial repellence and sensing capabilities.
Collapse
Affiliation(s)
- Yulu Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Madrid 28805, Spain
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xuan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Tingxiu Yan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengqi Yuan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Madrid 28805, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Madrid 28805, Spain
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
21
|
Daramola OB, Omole RK, Akinwale IV, Otuyelu FO, Akinsanola BA, Fadare TO, George RC, Torimiro N. Bio-Receptors Functionalized Nanoparticles: A Resourceful Sensing and Colorimetric Detection Tool for Pathogenic Bacteria and Microbial Biomolecules. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pathogenic bacteria and several biomolecules produced by cells and living organisms are common biological components posing a harmful threat to global health. Several studies have devised methods for the detection of varying pathogenic bacteria and biomolecules in different settings such as food, water, soil, among others. Some of the detection studies highlighting target pathogenic bacteria and biomolecules, mechanisms of detection, colorimetric outputs, and detection limits have been summarized in this review. In the last 2 decades, studies have harnessed various nanotechnology-based methods for the detection of pathogenic bacteria and biomolecules with much attention on functionalization techniques. This review considers the detection mechanisms, colorimetric prowess of bio-receptors and compares the reported detection efficiency for some bio-receptor functionalized nanoparticles. Some studies reported visual, rapid, and high-intensity colorimetric detection of pathogenic bacteria and biomolecules at a very low concentration of the analyte. Other studies reported slight colorimetric detection only with a large concentration of an analyte. The effectiveness of bio-receptor functionalized nanoparticles as detection component varies depending on their selectivity, specificity, and the binding interaction exhibited by nanoparticles, bio-receptor, and analytes to form a bio-sensing complex. It is however important to note that the colorimetric properties of some bio-receptor functionalized nanoparticles have shown strong and brilliant potential for real-time and visual-aided diagnostic results, not only to assess food and water quality but also for environmental monitoring of pathogenic bacteria and a wide array of biomolecules.
Collapse
|
22
|
Aptamer labeled nanozyme-based ELISA for ampicillin residue detection in milk. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Dega NK, Ganganboina AB, Tran HL, Kuncoro EP, Doong RA. BSA-stabilized manganese phosphate nanoflower with enhanced nanozyme activity for highly sensitive and rapid detection of glutathione. Talanta 2022; 237:122957. [PMID: 34736682 DOI: 10.1016/j.talanta.2021.122957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
The development of an efficient protein-inorganic nanohybrid with superior nanozyme activity for highly sensitive detection of glutathione (GSH) is essential for early diagnosis of human diseases. Herein, a rapid and highly sensitive colorimetric assay using self-assembled bovine serum albumin-hydrated manganese phosphate nanoflowers (MnPNF) as a biomimic oxidase is developed for GSH detection in human serum. The BSA can complex with Mn2+ to serve the nucleation center to produce MnPNF in the presence of phosphate-buffered saline (PBS). The morphology and surface characterization results show that the MnPNF is assembled with hierarchical nanoplates to form 500 nm nanoflowers. The oxidase-like activity of MnPNF is based on the redox reaction with 3,3',5,5'-tetramethylbenzidine. However, the addition of GSH can reduce MnPNF to Mn2+, and subsequently supresses the oxidase-like activity and a yellow color at 450 nm is observed in the presence of H2SO4. The MnPNF-based nanozyme exhibits excellent sensing ability toward GSH detection, and a good linear relationship between the change in absorbance at 450 nm and the added amounts of GSH at 50 nM-10 μM with low limits of detection of 20 and 26.6 nM in the PBS and diluted human serum, respectively, is observed. Moreover, the sensing probe shows a superior selectivity over the other 16 interferences, which drive the determination of GSH feasible in real human serum. Since the MnPNF can be simply prepared at room temperature and no functionalization is required, this assay can be used to design the highly efficient biomimic oxidase for effective sensing of GSH and other disease-related biomolecules in biological fluid samples.
Collapse
Affiliation(s)
- Naresh Kumar Dega
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | | | - Hai Linh Tran
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Eko Prasetyo Kuncoro
- Environmental Engineering Program, Faculty of Science and Technology, University of Airlangga, Surabaya, 60115, Indonesia
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan; Environmental Engineering Program, Faculty of Science and Technology, University of Airlangga, Surabaya, 60115, Indonesia.
| |
Collapse
|
24
|
Fatrekar AP, Morajkar R, Krishnan S, Dusane A, Madhyastha H, Vernekar AA. Delineating the Role of Tailored Gold Nanostructures at the Biointerface. ACS APPLIED BIO MATERIALS 2021; 4:8172-8191. [PMID: 35005942 DOI: 10.1021/acsabm.1c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold (Au) has emerged as a superior element, because of its widespread applications in electronic and medical fields. The desirable physical, chemical, optical, and inherent enzyme-like properties of Au are efficiently exploited for detection, diagnostic, and therapeutic purposes. Au offers a unique advantage of fabricating gold nanostructures (GNS) having exact physical, chemical, optical, and enzyme-like properties required for the specific biomedical application. In this Review, the emerging trend of GNS for various biomedical applications is highlighted. Some notable structural and chemical modifications achieved for the detection of biomolecules, pathogens, diagnosis of diseases, and therapeutic applications are discussed in brief. The limitations of GNS during biomedical usage are highlighted and the way forward to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | | | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
25
|
Advances in aptamer-based sensing assays for C-reactive protein. Anal Bioanal Chem 2021; 414:867-884. [PMID: 34581827 DOI: 10.1007/s00216-021-03674-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022]
Abstract
C-reactive protein (CRP), a non-specific acute-phase indicator of inflammation, has been widely recognized for its value in clinical diagnostic applications. With the advancement of testing technologies, there have been many reports on fast, simple, and reliable methods for CRP testing. Among these, the aptamer-based biosensors are the focus and hotspot of research for achieving high-sensitivity analysis of CRP. This review summarizes the progress of in vitro aptamer screening for CRP and the recent advances in aptamer-based CRP sensor applications, thus developing insight for the new CRP aptasensor design strategy.
Collapse
|
26
|
Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. NANO-MICRO LETTERS 2021; 13:193. [PMID: 34515917 PMCID: PMC8438099 DOI: 10.1007/s40820-021-00717-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/13/2021] [Indexed: 05/19/2023]
Abstract
Nanomaterial-based artificial enzymes (or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes. Numerous advantages of nanozymes such as diverse enzyme-mimicking activities, low cost, high stability, robustness, unique surface chemistry, and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal, metal oxide, metal-organic framework-based nanozymes have been exploited for the development of biosensing systems, which present the potential for point-of-care analysis. To highlight recent progress in the field, in this review, more than 260 research articles are discussed systematically with suitable recent examples, elucidating the role of nanozymes to reinforce, miniaturize, and improve the performance of point-of-care diagnostics addressing the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical, colorimetric, fluorescent, and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However, basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size, shape, composition, surface charge, surface chemistry as well as external parameters such as pH or temperature, these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore, it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.
Collapse
Affiliation(s)
- Bhaskar Das
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Javier Lou Franco
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Natasha Logan
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Paramasivan Balasubramanian
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, Korea
| | - Cuong Cao
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
27
|
Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Mikrochim Acta 2021; 188:309. [PMID: 34453188 DOI: 10.1007/s00604-021-04968-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Platinum-containing nanozymes with peroxidase-mimicking activity (PMA) have found a broad application in bioanalytical methods and are potentially able to compete with enzymes as the labels. However, traditionally used methods for the synthesis of nanozymes result in only a small fraction of surface-exposed Pt atoms, which participate in catalysis. To overcome this limitation, we propose a new approach for the synthesis of nanozymes with the efficient dispersion of Pt atoms on particles' surfaces. The synthesis of nanozymes includes three steps: the synthesis of gold nanoparticles (Au NPs), the overgrowth of a silver layer over Au NPs (Au@Ag NPs, 6 types of NPs with different thicknesses of Ag shell), and the galvanic replacement of silver with PtCl62- leading to the formation of trimetallic Au@Ag-Pt NPs with uniformly deposited catalytic sites and high Pt-utilization efficiency. Au@Ag-Pt NPs (23 types of NPs with different concentrations of Pt) with various sizes, morphology, optical properties, and PMA were synthesized and comparatively tested. Using energy-dispersive spectroscopy mapping, we confirm the formation of core@shell Au@Ag NPs and dispersion of surface-exposed Pt. The selected Au@Ag-Pt NPs were conjugated with monoclonal antibodies and used as the colorimetric and catalytic labels in lateral flow immunoassay of the inflammation biomarker: C-reactive protein (CRP). The colorimetric signal enhancement was achieved by the oxidation of 3,3'-diaminobenzidine by H2O2 catalyzed by Au@Ag-Pt NPs directly on the test strip. The use of Au@Ag-Pt NPs as the catalytic label produces a 65-fold lower limit of CRP detection in serum (15 pg mL-1) compared with Au NPs and ensures the lowest limit of detection for equipment-free lateral flow immunoassays. The assay shows a high correlation with data of enzyme-linked immunosorbent assay (R2 = 0.986) and high recovery (83.7-116.2%) in serum and plasma. The assay retains all the benefits of lateral flow immunoassay as a point-of-care method.
Collapse
|
28
|
Pang R, Zhu Q, Wei J, Wang Y, Xu F, Meng X, Wang Z. Development of a gold-nanorod-based lateral flow immunoassay for a fast and dual-modal detection of C-reactive protein in clinical plasma samples. RSC Adv 2021; 11:28388-28394. [PMID: 35480760 PMCID: PMC9038069 DOI: 10.1039/d1ra04404d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Fast and simple detection of C-reactive protein (CRP) is highly significant for the diagnosis and prognosis of inflammatory or infectious diseases. Lateral flow immunoassay has the advantages of rapid detection, simple operation and low cost, but it is usually limited by the quantitative ability and speed of data extraction. Herein, a gold-nanorod-based lateral flow immunoassay was developed to rapidly detect CRP by simultaneously monitoring the colorimetric and temperature signals. In this method, anti-CRP antibody-modified gold nanorods (GNRs) were designed as colorimetric and photothermal conversion probes. A mouse anti-CRP monoclonal antibody and goat anti-mouse IgG were used as test and control lines, respectively. Then, a lateral flow immunochromatographic strip was constructed by a sandwich-type method for detecting CRP by introducing antibody-modified GNRs, and this procedure needed less than 15 min. Finally, the detection signals can be directly observed by eyes and directly read using a thermal imager. The as-synthesized GNR showed high photothermal conversion efficiency (η = 39%) and strong localized surface plasmon resonance (LSPR) absorption. For CRP detection, the proposed immunochromatographic strip exhibited good specificity, high sensitivity, good linearity within the range of 50-10 000 ng mL-1 and a low limit of detection (LOD, 1.3 ng mL-1). This method was successfully applied for CRP detection in clinical plasma samples, and it correlated very well with the diagnostic kit of immunoturbidimetry (r = 0.96). The results indicated that the developed GNR-based immunochromatographic strip has immense potential for use as a rapid and cost-effective in vitro diagnostic kit.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Yaoqi Wang
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Fengqin Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei 230026 P. R. China
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei 230026 P. R. China
| |
Collapse
|
29
|
Hou Y, Zhu L, Hao H, Zhang Z, Ding C, Zhang G, Bi J, Yan S, Liu G, Hou H. A novel photoelectrochemical aptamer sensor based on rare-earth doped Bi2WO6 and Ag2S for the rapid detection of Vibrio parahaemolyticus. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Chen L, Li Y, Miao L, Pang X, Li T, Qian Y, Li H. "Lighting-up" curcumin nanoparticles triggered by pH for developing improved enzyme-linked immunosorbent assay. Biosens Bioelectron 2021; 188:113308. [PMID: 34030097 DOI: 10.1016/j.bios.2021.113308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
In the field of precision medicine, the anticipated features of ideal drug delivery systems (DDS) have high drug loading capacity and effective stimuli-triggered mechanism, which are fitting well with the expected merits of signal labels for enhanced enzyme-linked immunosorbent assay (ELISA). Inspired by this, poly (diallyldimethylammonium chloride)-capped curcumin nanoparticles (PDDA@CUR NPs) with high loading capacity were synthesized as signal labels and further applied to dual-model colorimetric and fluorescence ELISA for the detection of C-reactive protein (CRP). Curcumin (CUR) was elaborately selected as report molecule similar to the roles of drugs in DDS, which dispersed in neutral water exhibits a negligible fluorescence response due to the aggregation of CUR molecules induced quenching effect, stimulated by basic water (BW, pH 12.36), the allochroic effect from colorless to orange occurred and fluorescence restored because of the keto-enol tautomerism in the molecular structure of CUR, just like lighting-up (from signal "OFF" to signal "ON"), yielded a dual-model colorimetric and fluorescent signal readout. PDDA, as a polycationic electrolyte, provided a biological platform that is capable of interacting with CRP label antibodies by virtue of its positive centers. The results show that "lighting-up" CUR NPs-based dual-modal colorimetric and fluorescent ELISA for CRP detection has the merits of easy-to-use, good enough sensitivity and reliability. And more importantly, it brings innovative ideas for the precise identification and quantification of protein biomarkers.
Collapse
Affiliation(s)
- Lei Chen
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yan Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Luyang Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Xiaolong Pang
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China.
| |
Collapse
|
31
|
WEI F, HAN XJ. Nanozymes and Their Application Progress in Biomedical Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Gupta PK, Son SE, Seong GH. Functionalized ultra-fine bimetallic PtRu alloy nanoparticle with high peroxidase-mimicking activity for rapid and sensitive colorimetric quantification of C-reactive protein. Mikrochim Acta 2021; 188:119. [PMID: 33751231 DOI: 10.1007/s00604-021-04775-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Abstract
The in situ synthesis is reported of citric acid-functionalized ultra-fine bimetallic PtRu alloy nanoparticles (CA@PtRu ANPs) through a simple one-pot wet chemical method. The cost-efficient CA@PtRu ANPs with an average diameter of 3.2 nm revealed to have enhanced surface area, peroxidase-like activity, high stability, and adequate availability of functional groups to bind biomolecules. Along with nanoparticle surface area, the surface charge has also significantly affected the peroxidase-like activity and the colloidal suspension stability. As an excellent immobilization matrix and peroxidase mimic, the CA@PtRu ANPs were utilized to develop non-enzymatic colorimetric immunoassay for rapid, selective, and sensitive quantification of C-reactive protein (CRP) biomarkers. In this immunoassay, CA@PtRu ANPs serve as enzyme mimic that significantly amplifies the color signals, and amine-functionalized silica-coated magnetic microbeads (APTES/SiO2@Fe3O4) act as CRP-recognizing capture probes. The absorbance curves of colorimetric immunoassay were measured in wavelengths between 550 and 750 nm, and the maximum absorbance at 652 nm was used to establish a linear relationship between absorbance and CRP concentrations. The developed colorimetric immunoassay showed rapid and sensitive quantification of CRP levels from 0.01 to 180 μg mL-1 with a LOD of 0.01 μg mL-1. Moreover, the mean recovery of CRP from spiked human serum samples lies between 97 and 109% (n = 3), which indicates that the proposed nanozyme-linked immunoassay has the potential to be used in rapid point-of-care applications.
Collapse
Affiliation(s)
- Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| |
Collapse
|
33
|
AuPeroxidase nanozymes: Promises and applications in biosensing. Biosens Bioelectron 2021; 175:112882. [DOI: 10.1016/j.bios.2020.112882] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
|
34
|
Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021; 223:121722. [DOI: 10.1016/j.talanta.2020.121722] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
|
35
|
Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E. From Small Molecules Toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:724. [PMID: 33494499 PMCID: PMC7866209 DOI: 10.3390/s21030724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
This paper focuses on the current state of art as well as on future trends in electrochemical aptasensors application in medical diagnostics. The origin of aptamers is presented along with the description of the process known as SELEX. This is followed by the description of the broad spectrum of aptamer-based sensors for the electrochemical detection of various diagnostically relevant analytes, including metal cations, abused drugs, neurotransmitters, cancer, cardiac and coagulation biomarkers, circulating tumor cells, and viruses. We described also possible future perspectives of aptasensors development. This concerns (i) the approaches to lowering the detection limit and improvement of the electrochemical aptasensors selectivity by application of the hybrid aptamer-antibody receptor layers and/or nanomaterials; and (ii) electrochemical aptasensors integration with more advanced microfluidic devices as user-friendly medical instruments for medical diagnostic of the future.
Collapse
Affiliation(s)
- Robert Ziółkowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Marta Jarczewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Łukasz Górski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Elżbieta Malinowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
36
|
Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. J Biomed Sci 2021; 28:6. [PMID: 33413364 PMCID: PMC7790597 DOI: 10.1186/s12929-020-00702-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis, a dysregulated immune response due to life-threatening organ dysfunction, caused by drug-resistant pathogens, is a major global health threat contributing to high disease burden. Clinical outcomes in sepsis depend on timely diagnosis and appropriate early therapeutic intervention. There is a growing interest in the evaluation of nanotechnology-based solutions for sepsis management due to the inherent and unique properties of these nano-sized systems. This review presents recent advancements in nanotechnology-based solutions for sepsis diagnosis and management. Development of nanosensors based on electrochemical, immunological or magnetic principals provide highly sensitive, selective and rapid detection of sepsis biomarkers such as procalcitonin and C-reactive protein and are reviewed extensively. Nanoparticle-based drug delivery of antibiotics in sepsis models have shown promising results in combating drug resistance. Surface functionalization with antimicrobial peptides further enhances efficacy by targeting pathogens or specific microenvironments. Various strategies in nanoformulations have demonstrated the ability to deliver antibiotics and anti-inflammatory agents, simultaneously, have been reviewed. The critical role of nanoformulations of other adjuvant therapies including antioxidant, antitoxins and extracorporeal blood purification in sepsis management are also highlighted. Nanodiagnostics and nanotherapeutics in sepsis have enormous potential and provide new perspectives in sepsis management, supported by promising future biomedical applications included in the review.
Collapse
Affiliation(s)
- Amit Pant
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
37
|
Liu W, Wang X, Tai C, Yan W, Yu R, Li Y, Zhao H, Zhou F. Four-Channel Photothermal Plate Reader for High-Throughput Nanoparticle-Amplified Immunoassay. Anal Chem 2020; 92:15705-15710. [PMID: 33270418 DOI: 10.1021/acs.analchem.0c03555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We enhanced the sample throughput of microplate-based photothermal detection by using a semicylindrical prism to expand a point laser source to a long beam for illuminating multiple wells. Coupled with four epoxy-coated thermocouples in alignment with wells on a 96-well microplate, four parallel immunoassays of C-reaction protein (CRP) with antibody-conjugated gold nanoparticles can be simultaneously performed. The sample throughput is further increased by mounting the Styrofoam-enclosed microplate onto a translational/elevator stage so that immunoassays and thermocouple rinse/drying cycles can be implemented in a programmed fashion. The automated assay with three rinse/drying cycles takes only 34.5 min for four samples or 8.62 min/sample, whereas the manual mode with a single thermocouple and a point light source requires at least 66 min for just one sample. With careful calibration of the energy distribution of the expanded laser beam and controllable immersion of the thermocouples, excellent well-to-well (RSD = 1.3%) and cycle-to-cycle (RSD = 4.0%) reproducibility can be attained. The temperature changes can be correlated with the CRP concentration by the Langmuir isotherm, and the low limit of detection, 0.52 ng/mL or 4.33 pM, is well below the plasma CRP levels of both healthy people (<5 μg/mL) and patients (10-500 μg/mL). The serum CRP concentrations quantified by our plate reader are in excellent agreement with the immunoturbidimetric results, demonstrating that this cost-effective, robust, and high-throughput mode for microplate-based immunoassays is amenable to detecting biomarkers in many clinical samples.
Collapse
Affiliation(s)
- Wenwen Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P. R. China
| | - Chuanqi Tai
- Department of Interventional Therapy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 25001, P. R. China
| | - Wenyuan Yan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Ruichuang Yu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanan Li
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Hui Zhao
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
38
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
39
|
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta 2020; 1143:250-266. [PMID: 33384122 DOI: 10.1016/j.aca.2020.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Development of state-of-the-art assays for sensitive and specific detection of disease biomarkers has received significant interest for early detection and prevention of various diseases. Enzyme Linked Immunosorbent assays (ELISA) and Polymerase Chain Reaction (PCR) are two examples of proteins and nucleic acid detection assays respectively, which have been widely used for the sensitive detection of target analytes in biological fluids. Recently, immuno-PCR has emerged as a sensitive detection method, where high specificity of sandwich ELISA assays is combined with high sensitivity of PCR for trace detection of biomarkers. However, inherent disadvantages of immuno-PCR assays limit their application as rapid and sensitive detection method in clinical settings. With advances in nanomaterials, nanoparticles-based immunoassays have been widely used to improve the sensitivity and simplicity of traditional immunoassays. Owing to facile synthesis, surface functionalization, and superior optical and electronic properties, gold nanoparticles have been at the forefront of sensing and detection technologies and have been extensively studied to improve the efficacies of immunoassays. This review provides a brief history of immuno-PCR assays and specifically focuses on the role of gold nanoparticles to improve the sensitivity and specificity of ELISA, PCR and immuno-PCR assays.
Collapse
Affiliation(s)
| | - Rafiq Islam
- Somru BioScience Inc., 19 Innovation Way, BioCommons Research Park.Charlottetown, PE, C1E 0B7, Canada
| | - Marya Ahmed
- Department of Chemistry, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
40
|
|