1
|
Zhang H, Liu M, Liu Y, Xiao J, Ren Y, Gao X. Portable real-time determination of Escherichia coli O157:H7 and Staphylococcus aureus based on smartphones and hydrogels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125119. [PMID: 39276468 DOI: 10.1016/j.saa.2024.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The aptamers functionalized orange-emission carbon dots (OCDs) and green-emission carbon dots (GCDs) had dual-emission peaks with single excitation. Tungsten disulfide nanosheets (WS2 NSs)-triggered fluorescence quenching achieved the ratiometric fluorescence determination of Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S. aureus) with wide ranges of 18-1.8 × 106 and 37-3.7 × 107 CFU/mL and low detection limits of 8 and 20 CFU/mL, respectively. The results in real sample with recoveries of 90-101 % and RSD < 4.12 % were no significant difference from standard plate counting method. Meanwhile, the dual-color CDs were further adopted in the smartphone-assisted hydrogel platform and achieved speedy, sensitive, portable and real-time determination of E. coli O157:H7 and S. aureus in real samples. This work has not only developed ratiometric fluorescence detection and constructed a portable hydrogel platform, but also provided a unique strategy in developing a time-efficient and easy-to-use portable device in food safety monitoring.
Collapse
Affiliation(s)
- Hongmei Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Menglong Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Yiyao Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Jingyi Xiao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Yi Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
2
|
Xie M, Lv X, Wang K, Zhou Y, Lin X. Advancements in Chemical and Biosensors for Point-of-Care Detection of Acrylamide. SENSORS (BASEL, SWITZERLAND) 2024; 24:3501. [PMID: 38894291 PMCID: PMC11175246 DOI: 10.3390/s24113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Acrylamide (AA), an odorless and colorless organic small-molecule compound found generally in thermally processed foods, possesses potential carcinogenic, neurotoxic, reproductive, and developmental toxicity. Compared with conventional methods for AA detection, bio/chemical sensors have attracted much interest in recent years owing to their reliability, sensitivity, selectivity, convenience, and low cost. This paper provides a comprehensive review of bio/chemical sensors utilized for the detection of AA over the past decade. Specifically, the content is concluded and systematically organized from the perspective of the sensing mechanism, state of selectivity, linear range, detection limits, and robustness. Subsequently, an analysis of the strengths and limitations of diverse analytical technologies ensues, contributing to a thorough discussion about the potential developments in point-of-care (POC) for AA detection in thermally processed foods at the conclusion of this review.
Collapse
Affiliation(s)
| | | | | | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (M.X.); (X.L.); (K.W.)
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (M.X.); (X.L.); (K.W.)
| |
Collapse
|
3
|
Cheng B, Xia X, Han Z, Yu H, Xie Y, Guo Y, Yao W, Qian H, Cheng Y. A ratiometric fluorescent "off-on" sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin. Food Chem 2024; 437:137878. [PMID: 37913709 DOI: 10.1016/j.foodchem.2023.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Acrylamide, as a Class 2A carcinogen, poses serious threats to human health. To achieve rapid and accurate determination of acrylamide in food, a ratiometric fluorescent "off-on" sensor was designed by incorporating red-emitting copper nanoclusters and glutathione. Copper nanoclusters with bimodal emission at 395 nm and 650 nm (excited at 310 nm) were synthesized by using bovine serum albumin as the ligand and ascorbic acid as the reductant. With glutathione addition, the fluorescence intensity at 650 nm gradually decreased, while the case at 395 nm slightly increased. The quenched fluorescence at 650 nm was subsequently restored by acrylamide through thiol-ene Michael addition reaction between acrylamide and glutathione. The constructed sensor showed excellent performance towards acrylamide detection in the range of 5-300 μM with a detection limit of 1.48 μM, and was further applied to real-sample detection of acrylamide in toast and exhibited good recoveries (90.29-101.30 %), indicating potential applications of this sensor.
Collapse
Affiliation(s)
- Baoxin Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuhua Xia
- Wuxi Vocational Institute of Commerce, Wuxi 214122, China
| | - Zhiqiang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yufei Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Jia Z, Shi C, Yang X, Zhang J, Sun X, Guo Y, Ying X. QD-based fluorescent nanosensors: Production methods, optoelectronic properties, and recent food applications. Compr Rev Food Sci Food Saf 2023; 22:4644-4669. [PMID: 37680064 DOI: 10.1111/1541-4337.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Food quality and safety are crucial public health concerns with global significance. In recent years, a series of fluorescence detection technologies have been widely used in the detection/monitoring of food quality and safety. Due to the advantages of wide detection range, high sensitivity, convenient and fast detection, and strong specificity, quantum dot (QD)-based fluorescent nanosensors have emerged as preferred candidates for food quality and safety analysis. In this comprehensive review, several common types of QD production methods are introduced, including colloidal synthesis, self-assembly, plasma synthesis, viral assembly, electrochemical assembly, and heavy-metal-free synthesis. The optoelectronic properties of QDs are described in detail at the electronic level, and the effect of food matrices on QDs was summarized. Recent advancements in the field of QD-based fluorescent nanosensors for trace level detection and monitoring of volatile components, heavy metal ions, food additives, pesticide residues, veterinary-drug residues, other chemical components, mycotoxins, foodborne pathogens, humidity, and temperature are also thoroughly summarized. Moreover, we discuss the limitations of the QD-based fluorescent nanosensors and present the challenges and future prospects for developing QD-based fluorescent nanosensors. As shown by numerous publications in the field, QD sensors have the advantages of strong anti-interference ability, convenient and quick operation, good linear response, and wide detection range. However, the reported assays are laboratory-focused and have not been industrialized and commercialized. Promising research needs to examine the potential applications of bionanotechnology in QD-based fluorescent nanosensors, and focus on the development of smart packaging films, labeled test strips, and portable kits-based sensors.
Collapse
Affiliation(s)
- Zhixin Jia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jiaran Zhang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Daxing District, Beijing, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoguo Ying
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
5
|
Li Y, Ren Y, Yi Z, Han S, Liu S, Long F, Zhu A. Detection of SARS-CoV-2 S protein based on FRET between carbon quantum dots and gold nanoparticles. Heliyon 2023; 9:e22674. [PMID: 38034625 PMCID: PMC10687278 DOI: 10.1016/j.heliyon.2023.e22674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 virus brings nasty crisis for public health in the world. Until now, the virus has caused multiple infections in many people. Detecting antigen to SARS-CoV-2 is a powerful method for the diagnosis of COVID-19 and is helpful for controlling and stopping the pandemic. Herein, a rapid and quantitative detection method of SARS-CoV-2 spike(S) protein was built based on the fluorescence resonance energy transfer (FRET) phenomenon without complicated steps. In the process of detecting, the carbon quantum dots (CQDs) and gold nanoparticles (AuNPs) act as donor and acceptor. By modifying the SARS-CoV-2 antibodies on the surface of CQDs and AuNPs, we achieved S protein specific detection using the distance-based FRET phenomenon. Through the electric charge regulation, the limit of detection (LOD) is 0.05 ng/mL, the linear range is 0.1-100 ng/mL, and the detection process only takes 12 min. The proposed method exhibits several advantages such as be available for variants (B.1.1.529 and B.1.617.2) and be suitable for human serum, which is of significance for detecting viral in time and prevention the viral transmission.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yashuang Ren
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhihao Yi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
6
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
7
|
Bachir N, Haddarah A, Sepulcre F, Pujola M. Study the interaction of amino acids, sugars, thermal treatment and cooking technique on the formation of acrylamide in potato models. Food Chem 2023; 408:135235. [PMID: 36549166 DOI: 10.1016/j.foodchem.2022.135235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
This study unveiled the effect of the suspected precursors of acrylamide (asparagine, glutamine) combined/separated with different formulations of glucose, fructose, and sucrose. To better understand the interaction between acrylamide precursors, cooking technique (deep vs air frying), and temperature (170 °C vs 190 °C), seven potato models from starch, sugars, amino acids, water and hydrocolloids (alginate and agar) were formulated. In line with previous findings, the present results showed that asparagine, glucose and fructose played an important role in acrylamide formation in these synthetic potato models. Furthermore, glutamine and sodium alginate might have an inhibitory effect on acrylamide formation. A significant impact of frying technique was also revealed. On the other hand, GC-FID analysis detected acrylamide in only these three models, (glucose-fructose, sucrose and asparagine-glucose/fructose/sucrose models > LOD 333.33 µg.kg-1).
Collapse
Affiliation(s)
- Nivine Bachir
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, BarcelonaTech, Spain Campus del Baix Llobregat, Carrer Esteve Terradas 8, 08860 Castelldefels, Spain; Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon.
| | - Amira Haddarah
- Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon
| | - Franscesc Sepulcre
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, BarcelonaTech, Spain Campus del Baix Llobregat, Carrer Esteve Terradas 8, 08860 Castelldefels, Spain
| | - Montserrat Pujola
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, BarcelonaTech, Spain Campus del Baix Llobregat, Carrer Esteve Terradas 8, 08860 Castelldefels, Spain
| |
Collapse
|
8
|
Pattnayak BC, Mohapatra S. A smartphone-assisted ultrasensitive detection of acrylamide in thermally processed snacks using CQD@Au NP integrated FRET sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122009. [PMID: 36279796 DOI: 10.1016/j.saa.2022.122009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Selective, sensitive, and accurate detection of acrylamide (AA) in thermally processed food is a great challenge for food safety. This paper describes a "turn-on" fluorescence strategy to detect AA in real samples. Herein, the fluorescence intensity of glutathione-modified carbon quantum dots (GSHCQDs) was quenched initially upon the addition of gold nanoparticles (Au NPs) via fluorescence resonance electron transfer (FRET) to form a quenched GSHCQD-Au nanoprobe. When AA was introduced to the quenched GSHCQD-Au nanoprobe, the strong thiol-ene Michael addition (M-A) reaction among the -SH group of GSHCQD and AA occurred which releases GSHCQD to the medium and FL intensity at 520 nm is regained. The GSHCQD-Au nanoprobe can detect the AA in a normal aqueous solution (pH 7) selectively over a short response time of 5 min. Under the optimized conditions, the detection limit of AA was obtained to be 0.12 pM, over a wide linear range of 0-200 nM. Especially, this FRET-based sensing method was utilized successfully for the sensitive detection of AA using an RGB app installed on a smartphone, opening a new approach for the smart sensing of food contaminants.
Collapse
Affiliation(s)
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology Rourkela, India.
| |
Collapse
|
9
|
Sáez-Hernández R, Ruiz P, Mauri-Aucejo AR, Yusa V, Cervera M. Determination of acrylamide in toasts using digital image colorimetry by smartphone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials. Polymers (Basel) 2022; 14:polym14173578. [PMID: 36080657 PMCID: PMC9460073 DOI: 10.3390/polym14173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The residual acrylamide in food paper packaging can be transferred into water and food, which will cause harmful effects on human beings. In this paper, a rapid and easily available fluorescent probe based on carboxymethyl cellulose (CMC)/Eu (Ⅲ) nanocomposites was designed to detect the residue acrylamide with high sensibility. The probe could respond in 1 min. The concentration of acrylamide was linearly correlated to the fluorescence intensity of the probe at the emission wavelength of 615 nm in the concentration range of 0.1–100 μmol/L. The limit of detection (LOD) of the probe was 0.085 μg/L, which is lower than the guideline value of the European Union, the U.S. EPA, and the WHO. An experiment was performed to simulate the acrylamide migrating from food-contacting paper materials to different foods, including waterborne food, alcohol beverage, acidic food, and greasy food. The recoveries and RSDs of acrylamide in all samples indicated that the CMC/Eu (Ⅲ) fluorescent probe was efficient for acrylamide detection. The possible mechanism of the probe for acrylamide detection involved both dynamically quenching and static quenching by forming of non-fluorescent substances.
Collapse
|
11
|
Gan Z, Zhang W, Arslan M, Hu X, Zhang X, Li Z, Shi J, Zou X. Ratiometric Fluorescent Metal-Organic Framework Biosensor for Ultrasensitive Detection of Acrylamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10065-10074. [PMID: 35939824 DOI: 10.1021/acs.jafc.2c04756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acrylamide is a neurotoxin and carcinogen that forms during the thermal processing of food, inflicting irreversible harm to human health. Herein, a ratiometric fluorescence biosensor based on a 6-carboxyfluorescein-labeled aptamer (FAM-ssDNA) and porphyrin metal-organic framework (PCN-224) was developed. PCN-224 exhibits strong adsorption capacity for FAM-ssDNA and also quenches the fluorescence of FAM-ssDNA via fluorescence resonance energy transfer and photoinduced electron transfer. FAM-ssDNA hybridizes with complementary DNA to form double-stranded DNA (FAM-dsDNA), which is liberated from the PCN-224 surface, resulting in fluorescence recovery. However, the intrinsic fluorescence of the ligand remains unchanged. Acrylamide can create an adduct with FAM-ssDNA and inhibit the hybridization of FAM-dsDNA, thus realizing ratiometric sensing of acrylamide. The proposed biosensor displays excellent detection performance from 10 nM∼0.5 mM with a limit of detection of 1.9 nM. In conclusion, a fabricated biosensor was successfully applied to detect acrylamide in thermally processed food, and the results were consistent with those of high-performance liquid chromatography.
Collapse
Affiliation(s)
- Ziyu Gan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| |
Collapse
|
12
|
Liu Y, Meng S, Qin J, Zhang R, He N, Jiang Y, Chen H, Li N, Zhao Y. A fluorescence biosensor based on double-stranded DNA and a cationic conjugated polymer coupled with exonuclease III for acrylamide detection. Int J Biol Macromol 2022; 219:346-352. [PMID: 35934078 DOI: 10.1016/j.ijbiomac.2022.07.251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
As a toxic substance on human health produced in food thermal treatment, simple analytical approaches are highly desired for the detection of acrylamide (ACR) in foods. With the aid of exonuclease III (Exo III), a simple fluorescence sensor was proposed based on carboxyfluorescein-labeled double-stranded DNA (FAM-dsDNA) and a cationic conjugated polymer (PFP). Fluorescence resonance energy transfer (FRET) efficiency between FAM and PFP was changed with and without ACR. When ACR was present, ACR and single-stranded DNA (P1, ssDNA) formed an adduct, allowing free FAM-labeled complementarity strand DNA (P2, FAM-csDNA) to appear in the solution and avoiding the digestion of P2 by Exo III. After the addition of PFP, the interaction of PFP and FAM induced strong FRET. Under optimized conditions, ACR was detected with a limit of detection (LOD) of 0.16 μM. According to this biosensor, a LOD of 1.3 μM in water extract samples was observed with a good recovery rate (95-110 %).
Collapse
Affiliation(s)
- Yufei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Suyu Meng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jingjing Qin
- School of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453513, PR China
| | - Ruiying Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ningning He
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, PR China
| | - Yaoyao Jiang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hong Chen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Na Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang 453003, PR China
| |
Collapse
|
13
|
Zhuang YT, Ma L, Huang H, Han L, Wang L, Zhang Y. A portable kit based on thiol-ene Michael addition for acrylamide detection in thermally processed foods. Food Chem 2022; 373:131465. [PMID: 34741969 DOI: 10.1016/j.foodchem.2021.131465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Accurate, sensitive, and selective analysis of acrylamide generated in thermally processed foods is of great significance for food safety. Herein, a novel acrylamide sensing platform is designed for both sensitive on-site colorimetric analysis and accurate UV-vis spectroscopy quantification, by integrating thiol-ene Michael addition with gold nanoparticles-mediated catalytical oxidation. The Michael addition reaction between acrylamide and glutathione efficiently alleviates glutathione-induced catalytic activity inhibition of gold nanoparticles, evoking the chromogenic reaction of H2O2-mediated 3,3',5,5'-tetramethylbenzidine. With increasing the concentration of acrylamide, the oxidation of 3,3',5,5'-tetramethylbenzidine is accelerated, presenting a series of shades from colorless to blue. The sensing platform exhibits excellent detection performance of acrylamide in the range of 0.5-175 μM with a detection limit of 0.16 μM, and is successfully employed in food samples. Especially, a portable assay kit based on the proposed platform is developed for visual determination of acrylamide, opening an avenue for smart sensors of food safety hazards.
Collapse
Affiliation(s)
- Yu-Ting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Liuyimai Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Han
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
A fluorescence aptasensor based on carbon quantum dots and magnetic Fe 3O 4 nanoparticles for highly sensitive detection of 17β-estradiol. Food Chem 2022; 373:131591. [PMID: 34823936 DOI: 10.1016/j.foodchem.2021.131591] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Trace amounts of 17β-estradiol (E2) in food and the environment poses a threat to human health, which has created the demand for sensitive analytical methods to detect E2. In this study, a novel fluorescent aptasensor was developed for sensitive detection of E2 based on double-chain hybridization between carbon quantum dots-labelled with E2 aptamer (CQDs-aptamer) and Fe3O4 nanoparticles modified by complementary DNA (Fe3O4-cDNA). Under the optimal conditions, the aptasensor displayed a good linear range of 10-11-10-6 M for E2 with the coefficient of determination (R2) of 0.996, and a low detection limit of 3.48 × 10-12 M was obtained. Besides, the aptasensor showed high selectivity and good reproducibility for E2 detection, which was successfully applied to the sensitive detection of E2 in milk as compared with tap water and lake water with satisfactory recoveries from 85.21% to 114.80%, suggesting the great significance of this aptasensor for detecting food contaminants in the food industry.
Collapse
|
15
|
Bachir N, Haddarah A, Sepulcre F, Pujola M. Formation, Mitigation, and Detection of Acrylamide in Foods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02239-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Hoang VT, Ngo XD, Le Nhat Trang N, Thi Nguyet Nga D, Khi NT, Trang VT, Lam VD, Le AT. Highly selective recognition of acrylamide in food samples using colorimetric sensor based on electrochemically synthesized colloidal silver nanoparticles: Role of supporting agent on cross-linking aggregation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
He H, Sun DW, Wu Z, Pu H, Wei Q. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Rayappa MK, Viswanathan PA, Rattu G, Krishna PM. Nanomaterials Enabled and Bio/Chemical Analytical Sensors for Acrylamide Detection in Thermally Processed Foods: Advances and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4578-4603. [PMID: 33851531 DOI: 10.1021/acs.jafc.0c07956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrylamide, a food processing contaminant with demonstrated genotoxicity, carcinogenicity, and reproductive toxicity, is largely present in numerous prominent and commonly consumed food products that are produced by thermal processing methods. Food regulatory bodies such as the U.S. Food and Drug Administration (U.S. FDA) and European Union Commission regulations have disseminated various acrylamide mitigation strategies in food processing practices. Hence, in the wake of such food and public health safety efforts, there is a rising demand for economic, rapid, and portable detection and quantification methods for these contaminants. Since conventional quantification techniques like liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods are expensive and have many drawbacks, sensing platforms with various transduction systems have become an efficient alternative tool for quantifying various target molecules in a wide variety of food samples. Therefore, this present review discusses in detail the state of robust, nanomaterials-based and other bio/chemical sensor fabrication techniques, the sensing mechanism, and the selective qualitative and quantitative measurement of acrylamide in various food materials. The discussed sensors use analytical measurements ranging from diverse and disparate optical, electrochemical, as well as piezoelectric methods. Further, discussions about challenges and also the potential development of the lab-on-chip applications for acrylamide detection and quantification are entailed at the end of this review.
Collapse
Affiliation(s)
- Mirinal Kumar Rayappa
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Priyanka A Viswanathan
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Gurdeep Rattu
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - P Murali Krishna
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| |
Collapse
|
19
|
Wei Q, Zhang P, Liu T, Pu H, Sun DW. A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chem 2021; 356:129668. [PMID: 33827044 DOI: 10.1016/j.foodchem.2021.129668] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/27/2022]
Abstract
As a potential carcinogen produced in food thermal processing, acrylamide (AM) can cause irreversible harm to human health. For the detection of AM in food products, a simple fluorescent biosensor based on single-stranded DNA (ssDNA) and carbon quantum dots (CQDs) was developed. Reduced fluorescence intensity of CQDs at 445 nm (excitation at 350 nm) was induced by the attachment of ssDNA. In the presence of AM, ssDNA was preferentially bound to AM by hydrogen bonding and the degree of fluorescence reduction was smaller than that without AM. Under optimized conditions, results showed that the sensing approach for detecting AM had a low detection limit of 2.41 × 10-8 M in the standard solution, and a linear relationship ranging from 5 × 10-3 to 1 × 10-7 M with the determination coefficient (R2) of 0.9895 was obtained. Furthermore, a good recovery percentage (91.36-98.11%) in bread crust showed the potential for practical applications of this proposed biosensor.
Collapse
Affiliation(s)
- Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Peiyao Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ting Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland.
| |
Collapse
|
20
|
Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem 2020; 52:814-847. [PMID: 33054365 DOI: 10.1080/10408347.2020.1828029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since carbon quantum dots have high photoluminescent efficiency, it has been a desired material in sensor and bioimaging applications. In recent years, the green chemistry approach has been preferred and the production of quantum dots has been reported in many studies using different precursors from natural, abundant, or waste sources. Hydrothermal, chemical oxidation, microwave supported, ultrasonic, solvothermal, pyrolysis, laser etching, solid-state, plasma, and electrochemical methods have been reported in the literature. In this review article, green chemistry strategies for carbon quantum dot synthesis is summarized and compared with conventional methods using methodologic and statistical data. Furthermore, a detailed discussion on sensor and bioimaging applications of carbon quantum dots produced with green synthesis approaches are presented with a special focus on the last decade.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ferda Mindivan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|