1
|
Odoardi S, Mestria S, Valentini V, Biosa G, Rossi SS. Rapid and Effective Determination of Ethyl Glucuronide in Hair by Micro Extraction by Packed Sorbent (MEPS) and LC-MS/MS. Drug Test Anal 2024. [PMID: 39469804 DOI: 10.1002/dta.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Ethyl glucuronide (EtG) in hair is a reliable biomarker of alcohol consumption habits. Due to its small concentration incorporated into hair, analytical methods sensitive enough to reliably quantify EtG in this matrix are required. Sample preparation is critical in hair analysis, especially for EtG, for which extraction efficiency and matrix effect can strongly influence the results; furthermore, miniaturized methods are sought, to reduce solvent use and times of sample preparation. A micro extraction by packed sorbent (MEPS) procedure coupled to a high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for quantitation of EtG in human hair samples. Fifty milligrams of hair samples were cut into snippets and extracted in water. The cleanup of the extract was carried out by using a MEPS syringe packed with anion exchange sorbent (SAX); all parameters for conditioning, washing, loading and eluting steps were optimized and the eluted aqueous volume was directly injected in the LC-MS/MS system operating in the negative ionization mode. The method was fully validated assessing LOD, LOQ, calibration curve, repeatability, accuracy, matrix effect and carryover. The method was subsequently applied to QCs and authentic hair samples. The developed MEPS method is quick and effective, with low solvent purchase and discard costs, allowing the differentiation between social drinkers and chronic excessive alcohol consumers, according to the cut-offs established by the Society of Hair Testing (SoHT).
Collapse
Affiliation(s)
- Sara Odoardi
- Department of Healthcare Surveillance and Bioethics, Forensic Toxicology Laboratory, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, Rome, Italy
| | - Serena Mestria
- Department of Healthcare Surveillance and Bioethics, Forensic Toxicology Laboratory, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, Rome, Italy
| | - Valeria Valentini
- Department of Healthcare Surveillance and Bioethics, Forensic Toxicology Laboratory, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, Rome, Italy
| | - Giulia Biosa
- Department of Healthcare Surveillance and Bioethics, Forensic Toxicology Laboratory, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, Rome, Italy
| | - Sabina Strano Rossi
- Department of Healthcare Surveillance and Bioethics, Forensic Toxicology Laboratory, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Mahdavijalal M, Petio C, Staffilano G, Mandrioli R, Protti M. Innovative Solid-Phase Extraction Strategies for Improving the Advanced Chromatographic Determination of Drugs in Challenging Biological Samples. Molecules 2024; 29:2278. [PMID: 38792139 PMCID: PMC11124106 DOI: 10.3390/molecules29102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In the past few decades, considerable scientific strides have been made in the subject of drug analysis in human biological samples. However, the risk caused by incorrect drug plasma levels in patients still remains an important concern. This review paper attempts to investigate the advances made over the last ten years in common sample preparation techniques (SPT) for biological samples based on solid sorbents, including solid-phase extraction (SPE) and solid-phase micro-extraction (SPME), and in particular in the field of molecularly imprinted polymers (MIPs), including non-stimuli-responsive and stimuli-responsive adsorbents. This class of materials is known as 'smart adsorbents', exhibiting tailored responses to various stimuli such as magnetic fields, pH, temperature, and light. Details are provided on how these advanced SPT are changing the landscape of modern drug analysis in their coupling with liquid chromatography-mass spectrometry (LC-MS) analytical techniques, a general term that includes high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography (UHPLC), as well as any variation of MS, such as tandem (MS/MS), multiple-stage (MSn), and high-resolution (HRMS) mass spectrometry. Some notes are also provided on coupling with less-performing techniques, such as high-performance liquid chromatography with ultraviolet (HPLC-UV) and diode array detection (HPLC-DAD) detection. Finally, we provide a general review of the difficulties and benefits of the proposed approaches and the future prospects of this research area.
Collapse
Affiliation(s)
- Mohammadreza Mahdavijalal
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.M.); (M.P.)
| | - Carmine Petio
- Psychiatric Diagnosis and Care Services, Local Health Unit Company (AUSL) of Bologna—IRCCS St. Orsola-Malpighi, 40138 Bologna, Italy;
| | - Giovanni Staffilano
- Cardiology and Intensive Care Unit, Local Health Company (ASL) of Teramo, 64100 Teramo, Italy;
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum—University of Bologna, 47921 Rimini, Italy
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.M.); (M.P.)
| |
Collapse
|
3
|
Bocelli MD, Medina DAV, Lanças FM, Dos Santos-Neto ÁJ. Automated microextraction by packed sorbent of endocrine disruptors in wastewater using a high-throughput robotic platform followed by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023; 415:6165-6176. [PMID: 37532864 DOI: 10.1007/s00216-023-04888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.
Collapse
Affiliation(s)
- Marcio David Bocelli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
4
|
Samadifar M, Yamini Y, Khataei MM, Shirani M. Automated and semi-automated packed sorbent solid phase (micro) extraction methods for extraction of organic and inorganic pollutants. J Chromatogr A 2023; 1706:464227. [PMID: 37506462 DOI: 10.1016/j.chroma.2023.464227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, the packed sorbent solid phase (micro) extraction methods from manual to automated modes are reviewed. The automatic methods have several remarkable advantages such as high sample throughput, reproducibility, sensitivity, and extraction efficiency. These methods include solid-phase extraction, pipette tip micro-solid phase extraction, microextraction by packed sorbent, in-tip solid phase microextraction, in-tube solid phase microextraction, lab-on-a-chip, and lab-on-a-valve. The recent application of these methods for the extraction of organic and inorganic compounds are discussed. Also, the combination of novel technologies (3D printing and robotic platforms) with the (semi)automated methods are investigated as the future trend.
Collapse
Affiliation(s)
- Mahsa Samadifar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mahboue Shirani
- Department of Chemistry, Faculty of Sciences, University of Jiroft, Jiroft, Iran
| |
Collapse
|
5
|
Medina DAV, Lozada-Blanco A, Rodríguez JPG, Lanças FM, Santos-Neto ÁJ. An open-source smart fraction collector for isocratic preparative liquid chromatography. HARDWAREX 2023; 15:e00462. [PMID: 37600064 PMCID: PMC10432948 DOI: 10.1016/j.ohx.2023.e00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Preparative liquid chromatography is a technique for separating complex samples or isolating pure compounds from complex extracts. It involves eluting samples through a packed column and selectively collecting or isolating the separated bands in a sequence of fractions. Depending on the column length and the sample complexity, a large number of fractions may be obtained, making fraction collection a laborious and time-consuming process. Manual fraction collection is also tedious, error-prone, less reproducible, and susceptible to contamination. Several commercial and lab-made solutions are available for automated fraction collection, but most systems do not synchronize with the instrument detector and collect fractions at fixed volumes or time intervals. We have assembled a low-cost Arduino-based smart fraction collector that can record the signal from the UV-vis detector of the chromatography instrument and enable the automated selective collection of the targeted bands. The system consists of a robot equipped with position sensors and a 3-way solenoid valve that switches the column effluent between the waste or collection positions. By proper programming, an Arduino board records the detector response and actuates the solenoid valve, the position sensors, and the stepper motors to collect the target chromatographic bands.
Collapse
|
6
|
Sartore DM, Vargas Medina DA, Bocelli MD, Jordan-Sinisterra M, Santos-Neto ÁJ, Lanças FM. Modern automated microextraction procedures for bioanalytical, environmental, and food analyses. J Sep Sci 2023; 46:e2300215. [PMID: 37232209 DOI: 10.1002/jssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.
Collapse
Affiliation(s)
- Douglas M Sartore
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Deyber A Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcio D Bocelli
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcela Jordan-Sinisterra
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Álvaro J Santos-Neto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Fernando M Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
7
|
Li L, Li Y, Zhang S, Wang T, Hou X. Monolithic and compressible MIL-101(Cr)/cellulose aerogel/melamine sponge based microextraction in packed syringe towards trace nitroimidazoles in water samples prior to UPLC-MS/MS analysis. Talanta 2023; 253:123935. [PMID: 36122434 DOI: 10.1016/j.talanta.2022.123935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
In this study, MIL-101(Cr)/cellulose aerogel/melamine sponge composite was fabricated through a simple soaking method. The composite was packed in the syringe barrel and used as the sorbent for microextraction in packed syringe. Coupled to UPLC-MS/MS, the proposed method was employed for the analysis of trace nitroimidazoles in water samples. The parameters affecting the extraction efficiency, including sorbent type, pH value of sample solution, sample solution volume and elution solvent were optimized. Under the optimal conditions, good linearity (r > 0.99 for five analytes), high sensitivity (limit of detection: 8.250-16.33 ng L-1), ideal precision (intra-day precision: 1.1%-5.3%, inter-day precision: 1.8%-6.7%) and satisfactory accuracy (recovery: 70.4%-96.7%) were achieved. The proposed method was proved to be efficient, easily operative and environmentally friendly.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Ting Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China.
| |
Collapse
|
8
|
Antunes M, Barroso M, Gallardo E. Analysis of Cannabinoids in Biological Specimens: An Update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2312. [PMID: 36767678 PMCID: PMC9915035 DOI: 10.3390/ijerph20032312] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Cannabinoids are still the most consumed drugs of abuse worldwide. Despite being considered less harmful to human health, particularly if compared with opiates or cocaine, cannabis consumption has important medico-legal and public health consequences. For this reason, the development and optimization of sensitive analytical methods that allow the determination of these compounds in different biological specimens is important, involving relevant efforts from laboratories. This paper will discuss cannabis consumption; toxicokinetics, the most detected compounds in biological samples; and characteristics of the latter. In addition, a comprehensive review of extraction methods and analytical tools available for cannabinoid detection in selected biological specimens will be reviewed. Important issues such as pitfalls and cut-off values will be considered.
Collapse
Affiliation(s)
- Mónica Antunes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilha, Portugal
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Rua Manuel Bento de Sousa 3, 1169-201 Lisboa, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Rua Manuel Bento de Sousa 3, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilha, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-284 Covilha, Portugal
| |
Collapse
|
9
|
Merib J. High-throughput platforms for microextraction techniques. Anal Bioanal Chem 2023:10.1007/s00216-022-04504-7. [PMID: 36598538 DOI: 10.1007/s00216-022-04504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
The proposal of high-throughput platforms in microextraction-based approaches is important to offer sustainable and efficient tools in analytical chemistry. Particularly, automated configurations exhibit enormous potential because they provide accurate and precise results in addition to less analyst intervention. Recently, significant achievements have been obtained in proposing affordable platforms for microextraction techniques capable of being integrated with different analytical instrumentations. Considering the evolution of these approaches, this article describes innovative high-throughput platforms that have recently been proposed for the analysis of varied matrices, with special attention to laboratory-made devices. Additionally, some challenges, opportunities, and trends regarding these experimental workflows are pointed out.
Collapse
Affiliation(s)
- Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil. .,Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
10
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
11
|
Tellinghuisen J. Goodness-of-Fit Tests in Calibration: Are They Any Good for Selecting Least-Squares Weighting Formulas? Anal Chem 2022; 94:15997-16005. [DOI: 10.1021/acs.analchem.2c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Tellinghuisen
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Rosendo LM, Rosado T, Oliveira P, Simão AY, Margalho C, Costa S, Passarinha LA, Barroso M, Gallardo E. The Determination of Cannabinoids in Urine Samples Using Microextraction by Packed Sorbent and Gas Chromatography-Mass Spectrometry. Molecules 2022; 27:molecules27175503. [PMID: 36080271 PMCID: PMC9457599 DOI: 10.3390/molecules27175503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabis is the most consumed illicit drug worldwide, and its legal status is a source of concern. This study proposes a rapid procedure for the simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), cannabidiol (CBD), and cannabinol (CBN) in urine samples. Microextraction by packed sorbent (MEPS) was used to pre-concentrate the analytes, which were detected by gas chromatography–mass spectrometry. The procedure was previously optimized, and the final conditions were: conditioning with 50 µL methanol and 50 µL of water, sample load with two draw–eject cycles, and washing with 310 µL of 0.1% formic acid in water with 5% isopropanol; the elution was made with 35 µL of 0.1% ammonium hydroxide in methanol. This fast extraction procedure allowed quantification in the ranges of 1–400 ng/mL for THC and CBD, 5–400 ng/mL for CBN and 11-OH-THC, and 10–400 ng/mL for THC-COOH with coefficients of determination higher than 0.99. The limits of quantification and detection were between 1 and 10 ng/mL using 0.25 mL of sample. The extraction efficiencies varied between 26 and 85%. This analytical method is the first allowing the for determination of cannabinoids in urine samples using MEPS, a fast, simple, and low-cost alternative to conventional techniques.
Collapse
Affiliation(s)
- Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Patrik Oliveira
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Cláudia Margalho
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Centro, 3000-213 Coimbra, Portugal
| | - Suzel Costa
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- UCIBIO-Apllied Molecular Bioesciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 1099-085 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
- Correspondence: (L.A.P.); (M.B.); (E.G.); Tel.: +351-27-532-9002 (L.A.P.); +351-21-881-1800 (M.B.); +351-27-532-9002 (E.G.)
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal
- Correspondence: (L.A.P.); (M.B.); (E.G.); Tel.: +351-27-532-9002 (L.A.P.); +351-21-881-1800 (M.B.); +351-27-532-9002 (E.G.)
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: (L.A.P.); (M.B.); (E.G.); Tel.: +351-27-532-9002 (L.A.P.); +351-21-881-1800 (M.B.); +351-27-532-9002 (E.G.)
| |
Collapse
|
13
|
Puiu M, Bala C. Affinity Assays for Cannabinoids Detection: Are They Amenable to On-Site Screening? BIOSENSORS 2022; 12:608. [PMID: 36005003 PMCID: PMC9405638 DOI: 10.3390/bios12080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid, and cost-effective methods. The need for non-invasive detection tools has led to the development of selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug exposure and the frequency of use by corroborating the detection results with pharmacokinetic data. In this review, we report on the current detection methods of cannabinoids in biofluids. Fluorescent, electrochemical, colorimetric, and magnetoresistive biosensors will be briefly overviewed, putting emphasis on the affinity formats amenable to on-site screening, with possible applications in roadside testing and anti-doping control.
Collapse
Affiliation(s)
- Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
14
|
Bocelli MD, Vargas Medina DA, Rodriguez JPG, Lanças FM, Santos‐Neto ÁJ. Determination of parabens in wastewater samples via robot‐assisted dynamic single‐drop microextraction and liquid chromatography–tandem mass spectrometry. Electrophoresis 2022; 43:1567-1576. [DOI: 10.1002/elps.202100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Marcio David Bocelli
- São Carlos Institute of Chemistry University of São Paulo São Carlos São Paulo Brazil
| | | | | | - Fernando Mauro Lanças
- São Carlos Institute of Chemistry University of São Paulo São Carlos São Paulo Brazil
| | | |
Collapse
|
15
|
Magnetic restricted-access carbon nanotubes for SPME to determine cannabinoids in plasma samples by UHPLC-MS/MS. Anal Chim Acta 2022; 1226:340160. [DOI: 10.1016/j.aca.2022.340160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
|
16
|
Maciel EVS, Lanças FM. A cartridge-based device for automated analyses of solid matrices by online sample prep-capillary LC-MS/MS. Anal Bioanal Chem 2022; 414:2725-2737. [PMID: 35106613 DOI: 10.1007/s00216-022-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Sample preparation is an essential step focused on eliminating interfering compounds while pre-concentrating the analytes. However, its multiple steps are laborious, time-consuming, and a source of errors. Currently, automated approaches represent a promising alternative to overcome these drawbacks. Similarly, miniaturisation has been considered an ideal strategy for creating greener analytical workflows. The combination of these concepts is currently highly desired by analytical chemists. However, most automated and miniaturised sample preparation techniques are primarily concerned with liquid samples, while solids are frequently overlooked. We present an approach based on a cartridge packed with solids (soil samples) coupled with a capillary LC-MS, combining sample preparation and analytical steps into a unique platform. As a proof-of-concept, nine pesticides used in sugarcane crops were extracted and analysed by our proposed method. For optimisation, a fractional factorial design (25-1) was performed with the following variables: aqueous dilution of the sample (V1), extraction strength (V2), matrix washing time (V3), extraction flow (V4), and analytical flow (V5). After, the most influential ones (V1, V2, and V3) were taken into a central composite design (23) to select their best values. Under optimised conditions, the method reported linear ranges between 10 and 125 ng g-1 with R2 > 0.985. Accuracy and precision were in accordance with the values established by the International Council for Harmonisation (Q2(R1)). Therefore, the proposed approach was effective in extracting and analysing selected pesticides in soil samples. Also, we carried out initial qualitative tests for pesticides in honeybees to see if there is the possibility to apply our method in other solids.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil.
| |
Collapse
|
17
|
Danila GM, Puiu M, Zamfir LG, Bala C. Early detection of cannabinoids in biological samples based on their affinity interaction with the growth hormone secretagogue receptor. Talanta 2022; 237:122905. [PMID: 34736642 DOI: 10.1016/j.talanta.2021.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Herein we report on the early detection of cannabinoids in urine samples according to their affinity profiles in competitive assays with labelled ghrelin (GHR). We have demonstrated for the first time that cannabidiol (CBD) and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) act as extracellular ligands for the growth hormone secretagogue receptor (GHS-R1a), strongly promoting the binding of ghrelin (GHR), the endogenous ligand of GHS-R1a. The affinity profiles of CBD and carboxy-THC are significantly different from the profiles of synthetic GHR mimetics such as CJC-1295 or [D-Arg1-D-Phe5-D-Trp7,9-Leu11]-Substance P peptides, which are the most common interferents; the cannabinoids promoted the GHR/GHS-R1a interaction, while the ghrelin mimetics acted rather as competitive inhibitors. The analysis of 1:4 diluted urine samples proved that the proposed method displays good linearity and sensitivity in the range of 5-30 ng/mL for both CBD and carboxy-THC, whereas GHR mimetics display no interference at concentrations up to 100 ng/mL. The results were validated by comparison with the gas chromatography tandem mass spectrometry reference method. CBD may exert the same promoting effect on the interaction of GHS-R1a with other GHR mimetics listed as performance-enhancing substances.
Collapse
Affiliation(s)
- George Madalin Danila
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; Romanian Doping Control Laboratory, 022103, Bucharest, Romania
| | - Mihaela Puiu
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; ICUB, University of Bucharest, 050107, Bucharest, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; Department of Analytical Chemistry, University of Bucharest, 030018, Bucharest, Romania.
| |
Collapse
|
18
|
Turoňová D, Kujovská Krčmová L, Švec F. Application of microextraction in pipette tips in clinical and forensic toxicology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Teixeira RA, Dinali LAF, Silva CF, de Oliveira HL, da Silva ATM, Nascimento CS, Borges KB. Microextraction by packed molecularly imprinted polymer followed by ultra-high performance liquid chromatography for determination of fipronil and fluazuron residues in drinking water and veterinary clinic wastewater. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Chen H, Wu F, Xu Y, Liu Y, Song L, Chen X, He Q, Liu W, Han Q, Zhang Z, Zou Y, Liu W. Synthesis, characterization, and evaluation of selective molecularly imprinted polymers for the fast determination of synthetic cathinones. RSC Adv 2021; 11:29752-29761. [PMID: 35492065 PMCID: PMC9044941 DOI: 10.1039/d1ra01330k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023] Open
Abstract
As a kind of new psychoactive substance (NPS), synthetic cathinones have drawn great worldwide attention. In this study, molecularly imprinted polymers (MIPs), as adsorbents for the extraction and determination of 4-methyldimethcathinone (4-MDMC), were first synthesized by coprecipitation polymerization. The physicochemical analyses of MIPs were successfully performed by XRD, FTIR, FESEM and TGA techniques. Furthermore, rebinding properties of temperature and pH dependence, and selectivity and reusability tests for MIPs and non-imprinted polymers (NIPs) were performed using an ultraviolet-visible spectrometer (UV-vis). The obtained results indicate that the imprinting efficiency has strong dependence on temperature and pH, and the optimal adsorption for targets is achieved under the condition of 318 K and pH = 6.0. This means that the combination between the polymers and 4-MDMC is a strong spontaneous and endothermic process. Compared with NIPs, MIPs exhibit prominent adsorption capacity (Qe = 9.77 mg g−1, 318 K). The selectivity coefficients (k) of MIPs for 4-MDMC, methylenedioxypentedrone (βk-MBDP), 4-ethylmethcathinone (4-EMC), methoxetamine (MXE) and tetrahydrofuranylfentanyl (THF-F) were found to be 1.70, 3.49, 7.14 and 5.82, respectively. Moreover, it was found that the adsorption equilibrium was achieved within 30 min. The aim of this work is the simple synthesis of MIPs and the optimal performance of the molecular recognition of 4-MDMC. Moreover, the synthesized MIPs can be easily regenerated and repeatedly used with negligible loss of efficiency (only 9.94% loss after six times adsorption–desorption tests). Satisfying recoveries in the range of 69.3–78.9% indicate that MIPs have good applicability for analyte removal from urine samples. Ultimately, this material shows great promise for the rapid extraction and separation of synthetic cathinones, which are dissolved in the liquid for the field of criminal sciences. Molecularly imprinted polymers, as an adsorbent for extraction and selective recognition of 4-methyldimethcathinone, were firstly synthesized through coprecipitation polymerization.![]()
Collapse
Affiliation(s)
- Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Fangsheng Wu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Yibing Xu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Yuan Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Lun Song
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Xiujuan Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Qun He
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Wei Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Zihua Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Yun Zou
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| |
Collapse
|
21
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
22
|
Analysis of cannabinoids in conventional and alternative biological matrices by liquid chromatography: Applications and challenges. J Chromatogr A 2021; 1651:462277. [PMID: 34091369 DOI: 10.1016/j.chroma.2021.462277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
Cannabis is by far the most widely abused illicit drug globe wide. The analysis of its main psychoactive components in conventional and non-conventional biological matrices has recently gained a great attention in forensic toxicology. Literature states that its abuse causes neurocognitive impairment in the domains of attention and memory, possible macrostructural brain alterations and abnormalities of neural functioning. This suggests the necessity for the development of a sensitive and a reliable analytical method for the detection and quantification of cannabinoids in human biological specimens. In this review, we focus on a number of analytical methods that have, so far, been developed and validated, with particular attention to the new "golden standard" method of forensic analysis, liquid chromatography mass spectrometry or tandem mass spectrometry. In addition, this review provides an overview of the effective and selective methods used for the extraction and isolation of cannabinoids from (i) conventional matrices, such as blood, urine and oral fluid and (ii) alternative biological matrices, such as hair, cerumen and meconium.
Collapse
|
23
|
Almeida PLD, Lima LMA, Almeida LFD. A 3D-printed robotic system for fully automated multiparameter analysis of drinkable water samples. Anal Chim Acta 2021; 1169:338491. [PMID: 34088373 DOI: 10.1016/j.aca.2021.338491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
This work describes a 3D-printed robotic system named RSAWA (robotic system for automatic water analysis) for fully automated water analysis. RSAWA consists of a robotic arm coupled to a syringe pump, temperature and conductivity sensors, a low-cost webcam as colorimetric detector, and a 96-well microplate placed on a 3D-printed platform. The robotic system is controlled by software and it performs all analytical procedures. RSAWA was applied to measure conductivity (CDT), pH, total alkalinity (TA), total hardness (TH), chloride (Cl-), nitrite (NO2-), total dissolved phosphorus (TP), and total iron (TI) in drinkable water samples. A simple circuit was designed for conductivity determinations, while colorimetric pH determinations were carried out using Hue values extracted from digital images and a pH universal indicator. HSV histograms were used to calculate Pearson's correlation coefficients, allowing the construction of accurate titration curves. In addition to achieving sample throughputs of 112 h-1 for TA and TH determinations and 92 h-1 for Cl- determinations, RSAWA produced 99.5% less waste than the corresponding reference methods during titrations. Colorimetric measurements were performed through RGB vector norms calculated from digital images were used as analytical signals. Limits of quantification (μg L-1) were 6.83, 13.0 and 1.5 mg L-1 for NO2-, TP, and TI determinations, respectively. Sample throughputs (samples h-1) were 83 for NO2- and TP and 72 for TI with a 98.5% reduction in waste generation. Thus, RSAWA is a low-cost, feasible, and environmentally friendly alternative to quickly and accurately determine several chemical and physicochemical parameters in aqueous samples.
Collapse
Affiliation(s)
- Pedro Lemos de Almeida
- Instituto Federal de Educação, Ciência e Tecnologia Do Sertão de Pernambuco, Campus Salgueiro, CEP, 56000-000, Salgueiro, Pernambuco, Brazil; Universidade Federal da Paraíba, CCEN, Departamento de Química, CEP, 58051-970, João Pessoa, Paraíba, Brazil
| | - Lidiane Macedo Alves Lima
- Universidade Federal Rural de Pernambuco, Departamento de Química, CEP, 52171-900, Recife, Pernambuco, Brazil
| | - Luciano Farias de Almeida
- Universidade Federal da Paraíba, CCEN, Departamento de Química, CEP, 58051-970, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
24
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|
25
|
Daryanavard SM, Zolfaghari H, Abdel-Rehim A, Abdel-Rehim M. Recent applications of microextraction sample preparation techniques in biological samples analysis. Biomed Chromatogr 2021; 35:e5105. [PMID: 33660303 DOI: 10.1002/bmc.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Analysis of biological samples is affected by interfering substances with chemical properties similar to those of the target analytes, such as drugs. Biological samples such as whole blood, plasma, serum, urine and saliva must be properly processed for separation, purification, enrichment and chemical modification to meet the requirements of the analytical instruments. This causes the sample preparation stage to be of undeniable importance in the analysis of such samples through methods such as microextraction techniques. The scope of this review will cover a comprehensive summary of available literature data on microextraction techniques playing a key role for analytical purposes, methods of their implementation in common biological samples, and finally, the most recent examples of application of microextraction techniques in preconcentration of analytes from urine, blood and saliva samples. The objectives and merits of each microextration technique are carefully described in detail with respect to the nature of the biological samples. This review presents the most recent and innovative work published on microextraction application in common biological samples, mostly focused on original studies reported from 2017 to date. The main sections of this review comprise an introduction to the microextraction techniques supported by recent application studies involving quantitative and qualitative results and summaries of the most significant, recently published applications of microextracion methods in biological samples. This article considers recent applications of several microextraction techniques in the field of sample preparation for biological samples including urine, blood and saliva, with consideration for extraction techniques, sample preparation and instrumental detection systems.
Collapse
Affiliation(s)
| | - Hesane Zolfaghari
- Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Mohamed Abdel-Rehim
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
26
|
Li J, Zhang Y, Zhou Y, Feng XS. Cannabinoids: Recent Updates on Public Perception, Adverse Reactions, Pharmacokinetics, Pretreatment Methods and Their Analysis Methods. Crit Rev Anal Chem 2021; 52:1197-1222. [PMID: 33557608 DOI: 10.1080/10408347.2020.1864718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cannabinoids (CBDs) have been traditionally used as a folk medicine. Recently, they have been found to exhibit a high pharmacological potential. However, they are addicted and are often abused by drug users, thereby, becoming a threat to public safety. CBDs and their metabolites are usually found in trace levels in plants or in biological matrices and, are therefore not easy to be detected. Advances have been made toward accurately analyzing CBDs in plants or in biological matrices. This review aims at elucidating on the consumption of CBDs as well as its adverse effects and to provide a comprehensive overview of CBD pretreatment and detection methods. Moreover, novel pretreatment methods such as microextraction, Quick Easy Cheap Effective Rugged Safe and online technology as well as novel analytic methods such as ion-mobility mass spectrometry, application of high resolution mass spectrometry in nontarget screening are summarized. In addition, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospect.
Collapse
Affiliation(s)
- Jie Li
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
28
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|