1
|
Li K, Liu T, Ying J, Tian A, Wang X. A lantern-shaped fluorescent probe based on viologen/polyoxometalate for the detection of Ag + in beverages and daily necessities. Talanta 2024; 280:126786. [PMID: 39216417 DOI: 10.1016/j.talanta.2024.126786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A lantern-shaped viologen/polyoxometalate (POM)-based compound [NiII(MSBP)2(H2O)2]·(β-Mo8O26)·H2O (Ni-POM) (MSBP = 1-(4-Methanesulfonyl-benzyl)-[4,4']bipyridinyl-1-ium) was successfully synthesized by a hydrothermal method for the efficient detection of Ag+. A strong affinity between Ag+ and SO in the viologen component of the Ni-POM structure made them interact, which led to blue fluorescence quenching. In the concentration range of 0.1-4 μM, a strong linear relationship was observed between the Ag+concentration and the fluorescence intensity ratio of Ni-POM, and the limit of detection (LOD) was 20.4 nM. Considering the widespread presence of Ag+ in various water sources, daily necessities and food preservatives, the utilization of Ni-POM for detecting the concentration of Ag+ in real samples (water, daily necessities and beverages) was proved to be highly effective. Moreover, a remarkable recovery rate ranging from 95.70 % to 103.60 % was achieved, indicating that the monitoring results of practical samples were satisfactory. A fluorescent ink based on Ni-POM was designed for the purpose of information confidentiality. More importantly, the hydrogel intelligent device for visual detection of Ag+ was developed, which could realize visual real-time on-site quantitative detection of Ag+ concentration in beverages and daily necessities. Therefore, Ni-POM provides an effective platform for the development of visually quantitative detection of Ag+ in food and daily necessities.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
2
|
Hu M, Luo L, Xu J, Zhang Q. Amino-Functionalized Metal-Organic Framework as Fluorescence Probe for Cell Imaging and Doxorubicin Detection. J Fluoresc 2024:10.1007/s10895-024-03875-7. [PMID: 39215910 DOI: 10.1007/s10895-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, an NH2-Cu-MOF was synthesized using the one-pot method and employed as a fluorescence probe for doxorubicin (DOX) detection. The synthesized NH2-Cu-MOF exhibited remarkable fluorescence recognition capabilities for detecting DOX. Within the concentration range of 1-100 µmol/L, a linear relationship was observed between the fluorescence intensity of the NH2-Cu-MOF and the DOX concentration. Furthermore, the synthesized NH2-Cu-MOF was effectively utilized for highly selective fluorescence quenching recognition and quantitative detection of DOX in the presence of multiple metal ions and other antibiotics. Despite interference from multiple metal ions and antibiotics, DOX was identified and quantified by highly selective fluorescence quenching with a detection limit of 2.1654 µmol/L. These findings underscore the potential of NH2-Cu-MOF as a class of "on-off" fluorescent probes for the rapid detection of DOX.
Collapse
Affiliation(s)
- Min Hu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Department of Pharmaceutical, Chongqing University FuLing Hospital, Chongqing, 408000, China
| | - Lun Luo
- Hubei Key Laboratory of Wudang Specialty Chinese Medicine Research, Hubei Institute of Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jing Xu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Qiongyao Zhang
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
3
|
Yin SH, Lan BL, Yang YL, Tong YQ, Feng YF, Zhang Z. Multi-analyte fluorescence sensing based on a post-synthetically functionalized two-dimensional Zn-MOF nanosheets featuring excited-state proton transfer process. J Colloid Interface Sci 2024; 657:880-892. [PMID: 38091911 DOI: 10.1016/j.jcis.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
Covalent post-synthetic modification of metal-organic frameworks (MOFs) represents an underexplored but promising avenue for allowing the addition of specific fluorescent recognition elements to produce the novel MOF-based sensory materials with multiple-analyte detection capability. Here, an excited-state proton transfer (ESPT) active sensor 2D-Zn-NS-P was designed and constructed by covalent post-synthetic incorporation of the excited-state tautomeric 2-hydroxypyridine moiety into the ultrasonically exfoliated amino-tagged 2D Zn-MOF nanosheets (2D-Zn-NS). The water-mediated ESPT process facilitates the highly accessible active sites incorporated on the surface of 2D-Zn-NS-P to specifically respond to the presence of water in common organic solvents via fluorescence turn-on behavior, and accurate quantification of trace amount of water in acetonitrile, acetone and ethanol was established using the as-synthesized nanosheet sensor with the detection sensitivity (<0.01% v/v) superior to the conventional Karl Fischer titration. Upon exposure to Fe3+ or Cr2O72-, the intense blue emission of the aqueous colloidal dispersion of 2D-Zn-NS-P was selectively quenched even in the coexistence of common inorganic interferents. The prohibition of the water-mediated ESPT process and local emission, induced by the coordination of ESPT fluorophore with Fe3+ or by Cr2O72- competitively absorbs the excitation energy, was proposed to responsible for the fluorescence turn-off sensing of the respective analytes. The present study offers the attractive prospect to develop the ESPT-based fluorescent MOF nanosheets by covalent post-synthetic modification strategy as multi-functional sensors for detection of target analytes.
Collapse
Affiliation(s)
- Shu-Hui Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Bi-Liu Lan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ya-Li Yang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Fang Feng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China; College of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
4
|
Wang XQ, Yang J, Zhang M, Wu D, Hu T, Yang J. Highly stable lanthanide(III) metal-organic frameworks as ratiometric fluorescence sensors for vitamin B 6. Dalton Trans 2023; 52:13387-13394. [PMID: 37676645 DOI: 10.1039/d3dt01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Three lanthanide(III)-based metal-organic frameworks, formulated as [(CH3)2NH2]2[Ln6(μ3-OH)8(EBTC)3(H2O)6]·4H2O·2DMF (Ln = Eu (1), Tb (2) and Ce (3)), were synthesized using a rigid tetracarboxylate organic ligand (1,1'-ethynebenzene-3,3',5,5'-tetracarboxylic acid, H4EBTC). Complexes 1-3 possess 12-connected hexanuclear [Ln6(μ3-OH)8(OOC-)12(H2O)6] clusters with the ftw topology, which were stable in water and acid/alkaline aqueous solution. Due to the antenna effect, complexes 1 and 2 presented double fluorescence emission peaks, which are the characteristic emission peaks of Ln3+ ions and the ligand H4EBTC, respectively. The doped bimetallic EuxTb1--x-MOFs were obtained by tuning the Eu(III)/Tb(III) ratio during the reaction, which exhibited a colour change from red, orange, and yellow to green. Furthermore, complexes 1, 2 and Eu2Tb8-MOF as ratiometric fluorescence sensors exhibited excellent sensing ability for vitamin B6 (VB6) in phosphate buffer solution (pH = 7.35) and real samples with high selectivity and reusability. The low detection limit (LOD) values were calculated to be 1.03 μM for complex 1, 0.25 μM for complex 2 and 0.11 μM for Eu2Tb8-MOF in aqueous solution. Finally, a visual film based on Ln-MOF@SA was prepared to detect VB6 with high reusability.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China
| | - Jiandong Yang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Man Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Dan Wu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
5
|
Wang K, Dong Y, Bai X, Zhao X, Zhao R, Zhou J, Yu H, Li L, Tang H, Ma Y. A water-stable Zn (II) coordination polymer as a fluorescence sensor for multifunctional detection of Cefixime in milk, honey, beef and chicken. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Wang R, Zhang H, Wang S, Meng F, Sun J, Lou D, Su Z. A ratiometric fluorescent probe based on a dual-ligand lanthanide metal–organic framework (MOF) for sensitive detection of aluminium and fluoride ions in river and tap water. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02554j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A dual-emission fluorescent probe towards Al3+ and F− using a Ln-MOF material Eu-BDC-NH2/TDA is employed with exceptional sensitivity, high selectivity, low LOD, excellent anti-interference characteristics and direct visual observation.
Collapse
Affiliation(s)
- Runnan Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Sibo Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Fanxu Meng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People’s Republic of China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People’s Republic of China
| |
Collapse
|
7
|
Liu BT, Nagarajan D, Kaliyamoorthy S, Rathinam B. Citrate Functionalized Zirconium-Based Metal Organic Framework for the Fluorescent Detection of Ciprofloxacin in Aqueous Media. MICROMACHINES 2022; 13:2097. [PMID: 36557396 PMCID: PMC9782501 DOI: 10.3390/mi13122097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Ciprofloxacin (CIP) is a commonly used antibiotic for the treatment of infectious diseases in humans and as a prophylactic agent in the livestock industry, leading to the environmental discharge of significant amounts of CIP. CIP is stable in aquatic systems leading to its pseudo-persistence. Constant exposure to these antibiotics results in the generation of antibiotic-resistant pathogens and potential toxicity/hypersensitivity in humans. Therefore, it is necessary to develop a convenient, rapid, and cost-effective method for the monitoring of ciprofloxacin in environmental samples. Rhodamine-based fluorescent receptors have the limitation of aqueous solubility. Therefore, in order to overcome this drawback, we designed a novel fluorescent receptor based on a zirconium-based metal organic framework (MOF-808). The precursor, MOF-808, was synthesized and functionalized by using sodium citrate to obtain a receptor called C-MOF-808. The C-MOF-808 was structurally characterized by XRD and spectroscopic analyses. Thus, this synthesized receptor can be used for the fluorescent detection of CIP in aqueous media with a detection limit of 9.4 µM. The detection phenomena of the receptor were studied by absorption as well as fluorescent spectra. The binding behavior of CIP with the receptor was studied by FT-IR and 1H-NMR analyses, and a binding mechanism is proposed.
Collapse
Affiliation(s)
- Bo-Tau Liu
- Department of Chemical and Materials, Engineering National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Selvam Kaliyamoorthy
- The Noyori Laboratory, Graduate School of Science and Research Center for Materials Science Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Balamurugan Rathinam
- Department of Chemical and Materials, Engineering National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
8
|
Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. BIOSENSORS 2022; 12:bios12110928. [PMID: 36354436 PMCID: PMC9688172 DOI: 10.3390/bios12110928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis.
Collapse
|
9
|
Zhang J, Shu B, Gao Y, Gui X, He L, Zhang K. Multicolor fluorescence digital mapping of rare-earth ion-labeled porous silica nanoprobes for the recognition of various antibiotic residues in milk. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
A novel Zn metal organic framework for the detection of o-nitrophenol, m-nitrophenol, p–nitrophenol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Fabrication of a one‐dimensional copper(I) cyanide bearing 4,4′‐bis(imidazoly)biphenyl) polymer as a recyclable luminescent sensing material for sensitive detection of nitrofurazone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Liang Y, Li J, Yang S, Wu S, Zhu M, Fedin VP, Zhang Y, Gao E. Self-calibrated FRET fluorescent probe with Metal-organic framework for proportional detection of nitrofuran antibiotics. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Rabiee N, Fatahi Y, Ahmadi S, Abbariki N, Ojaghi A, Rabiee M, Radmanesh F, Dinarvand R, Bagherzadeh M, Mostafavi E, Ashrafizadeh M, Makvandi P, Lima EC, Saeb MR. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153902. [PMID: 35182622 PMCID: PMC8849853 DOI: 10.1016/j.scitotenv.2022.153902] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 05/15/2023]
Abstract
Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 μm and 0.78 to ≈0.80 μm, showing good physical interactions with the recombinant SARS-CoV-2 spike antigen. MTT assay was performed and compared to the conventional synthesis methods, including hydrothermal, solvothermal, and microwave-assisted methods. The synthesized nanodevices demonstrated above 88% relative cell viability after 24 h and even 48 h of treatment. Besides, the ability of the synthesized nanomaterials to detect the recombinant SARS-CoV-2 spike antigen was investigated, with a detection limit of 5 nM. The in-situ synthesized nanoplatforms exhibited low cytotoxicity, high biocompatibility, and appropriate tunability. The fabricated nanosystems seem promising for future surveys as potential platforms to be integrated into biosensors.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran 14197-33141, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, 91501-970, Brazil.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11, 12 80-233 Gdańsk, Poland
| |
Collapse
|
14
|
Ma Y, Zhao Z, Zhu M, Zhang Y, Kosinova M, Fedin VP, Wu S, Gao E. Rapid detection of lamotrigine by a water stable fluorescent lanthanide metal-organic framework sensor. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhang Y, Gao L, Ma S, Hu T. Cd (II) coordination polymer as a strip based fluorescence sensor for sensing Fe 3+ ions in aqueous system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120525. [PMID: 34752993 DOI: 10.1016/j.saa.2021.120525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The design and construction of a sensor that can sensitively and conveniently recognize metal ions are essential for the treatment of industrial wastewater. In this work, {[Cd4(HL)2(pyp)2(H2O)2]·2H2O·1.5Diox}n (1) was synthesized under solvothermal condition and presented a 2D 3,5-connected layered network with the point symbol of {3.4.5} {32.4.5.62.74}, which was coated on the surface of polyvinylidene fluoride (PVDF) to construct a novel paper sensor (1@PVDF). Meanwhile, the stability of 1@PVDF was characterized by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). In addition, fluorescence sensing experiments of 1@PVDF sensor for cations in aqueous system indicated that it has high sensitivity for sensing Fe3+ ions with the detection limit (DL) of 4.0 × 10-8 M. By the characterization of PXRD, UV-vis spectra, ICP, XPS, time-resolved excited-state decay measurements, the sensing mechanisms of 1@PVDF for Fe3+ ions were attributed to the competitive absorption and interaction between 1 and Fe3+. And the sensing process of 1@PVDF for Fe3+ ions was static in the Fe3+ concentration of 0 to 0.05 mM. In addition, the binding energies of Fe3+ and Zn2+ with the framework of 1 were calculated by density functional theory (DFT), which further proved that there was an obvious interaction between Fe3+ and the uncoordinated O atom in 1. Based on the thin film technology, a portable and convenient paper-based probe has been developed for practical applications.
Collapse
Affiliation(s)
- Yujuan Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Lingling Gao
- College of Chemistry and Chemical Engineering, Jinzhong University, Taiyuan 030606, PR China
| | - Sai Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
16
|
Fluorescence sensing and anti-counterfeiting application based a heterometallic Cd (II)–Na (I)-MOF. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
A water-stable 3-fold parallel interpenetrated Cd(II) coordination polymer as multi-responsive luminescent sensor for detecting Fe3+, Cr2O72− and FZD in aqueous media. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Li J, Zhu M, Zhang Y, Gao E, Wu S. A new visual and stable fluorescent Cu-MOF as a dual-function sensor for glyphosate and Cr 2O 72−. NEW J CHEM 2022. [DOI: 10.1039/d2nj03186h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new visual and stable Cu-MOF as a dual-function sensor with high sensitivity for the detection of glyphosate and Cr2O72−.
Collapse
Affiliation(s)
- Junyan Li
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang, Liaoning 110142, P. R. China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang, Liaoning 110142, P. R. China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang, Liaoning 110142, P. R. China
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang, Liaoning 110142, P. R. China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning, Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang, Liaoning 110142, P. R. China
| |
Collapse
|
19
|
Liu HF, Ye-Tao, Qin XH, Chao-Chen, Huang FP, Zhang XQ, Bian HD. Three-fold interpenetrated metal–organic framework as a multifunctional fluorescent probe for detecting 2,4,6-trinitrophenol, levofloxacin, and l-cystine. CrystEngComm 2022. [DOI: 10.1039/d1ce01590g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A robust Zn(ii) MOF with good chemical and thermal stability, was prepared as an effective fluorescent probe for 2,4,6-trinitrophenol (TNP), levofloxacin (LVX) and l-cystine (l-Cys) with recyclability.
Collapse
Affiliation(s)
- Han-Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ye-Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiao-Huan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chao-Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiu-Qing Zhang
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, P.R. China
| | - He-Dong Bian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008, P. R. China
| |
Collapse
|
20
|
Bai Y, Zhang ML, Wang BT, Ren YX, Zhao YC, Yang H, Yang X. Four MOFs with isomeric ligands as fluorescent probes for highly selective, sensitive and stable detection of antibiotics in water. CrystEngComm 2022. [DOI: 10.1039/d1ce01261d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four complexes showed excellent discriminative probes for cefixime (CEF) and tetracycline (TEC) based on their sensitive fluorescence quenching. The PET and IFE effects resulted in high sensitivity and selectivity for the detection of CEF and TEC.
Collapse
Affiliation(s)
- Ye Bai
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Mei-li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Bo-Tao Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Yu-Chao Zhao
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Hua Yang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Xiaogang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
21
|
Song X, Hu XL, Lin ZH, Ma C, Su ZM. Methyl Blue@CUST-580 composite as a simultaneous fluorescence-enhanced dual-emission platform for enhanced detection of antibiotics. CrystEngComm 2022. [DOI: 10.1039/d2ce00901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cd-based MOF fluorescent sensor, [(Cd)2O(BIMB)0.5(BTB)] [CUST-580, H3BTB= 1,3,5- Tris(4-carboxyphenyl) benzene, BIMB = 1,4-Bis((1H-imidazoi-1-yl) methyl) bezene] was successfully synthesized by solvothermal condition. Due to the unique 3D spatial structure...
Collapse
|
22
|
Zhang YR, Xie XZ, Yin XB, Xia Y. Flexible ligand–Gd dye-encapsulated dual-emission metal–organic framework. Dalton Trans 2022; 51:17895-17901. [DOI: 10.1039/d2dt03043h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We revealed the general considerations for host–guest ML-MOFs from the perspectives of ligands, metal nodes and embedded dyes. The results can be used to guide the preparation of other ML-MOFs to realize the host–guest strategy.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
| | - Xiao-Zheng Xie
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
| | - Xue-Bo Yin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
| | - Yan Xia
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
23
|
A new dysprosium (III)-Organic framework as a ratiometric luminescent sensor for Nitro-compounds and antibiotics in aqueous solutions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Qin G, Cao D, Wan X, Wang X, Kong Y. Polyvinylpyrrolidone-assisted synthesis of highly water-stable cadmium-based metal-organic framework nanosheets for the detection of metronidazole. RSC Adv 2021; 11:34842-34848. [PMID: 35494769 PMCID: PMC9042684 DOI: 10.1039/d1ra05349c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, much effort has been dedicated to ultra-thin two-dimensional metal–organic framework (2D MOF) nanosheets due to their outstanding properties, such as ultra-thin morphology, large specific surface area, abundant modifiable active sites, etc. However, the preparation of high-quality 2D MOF nanosheets in good yields still remains a huge challenge. Herein, we report 2D cadmium-based metal–organic framework (Cd-MOF) nanosheets prepared in a one-pot polyvinylpyrrolidone (PVP)-assisted synthesis method with high yield. The Cd-MOF nanosheets were characterized with good stability and dispersion in aqueous systems, and were highly selective and sensitive to the antibiotic metronidazole (MNZ) with low limit of detection (LOD: 0.10 μM), thus providing a new and promising fluorescent sensor for rapid detection of MNZ in aqueous solution. Except PVP was added for Cd-MOF nanosheets, the preparation process of bulk and Cd-MOF nanosheets was similar.![]()
Collapse
Affiliation(s)
- Guoxu Qin
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China .,College of Chemistry and Materials Science, Anhui Normal University 189 Jiuhua Southern Road Wuhu 241002 P.R. China
| | - Duojun Cao
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| | - Xinjun Wan
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| | - Xinyun Wang
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| | - Yaqiong Kong
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| |
Collapse
|
25
|
Li Y, Tian X, Zhang J, Qiu L, Wang X, Wu S, Zhang Y, Zhu M, Gao E. High‐efficiency fluorescent probe constructed by Cd(II) complex for detecting nitro compounds and antibiotics. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yong Li
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Xu Tian
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Jia Zhang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Liping Qiu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Xia Wang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan Liaoning China
| |
Collapse
|
26
|
Yang X, Ren Y, Chai H, Hou X, Wang Z, Wang J. Highly sensitive detection of nitrobenzene by a series of fluorescent 2D zinc(ii) metal-organic frameworks with a flexible triangular ligand. RSC Adv 2021; 11:23975-23984. [PMID: 35479019 PMCID: PMC9036677 DOI: 10.1039/d1ra03737d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Four fluorescent zinc(ii) metal–organic frameworks, namely [Zn(HCIA)(4,4′-bipy)] (1), [Zn2(CIA)(OH)(1,4-bibz)1.5]·H2O (2), [Zn(CIA)(OH) (4,4′-bbpy)] (3), and [Zn2(HCIA) (4,4′-bimp)]·H2O (4), were prepared hydrothermally with a flexible triangular ligand (H3CIA) and a series of linear N-donor ligands (H3CIA = 5-(2-carboxybenzyloxy) isophthalic acid, 4,4′-bipy = 4,4′-bipydine, 1,4-bibz = 1,4-bis(1-imidazoly)benzene; 4,4′-bbpy = 4,4′-bis (imidazolyl) biphenyl; 4,4′-bimp = 4,4′-bis (imidazole-1-ylethyl) biphenyl). Structural analyses revealed that complex 1 exhibited a 2D brick-like network structure based on the basic bimetallic ring, 2 was also a 2D interspersed structure from the 1D tubular structure, compound 3 possessed a 2D (4,4) network with 4,4′-bbpy occupying the holes, and complex 4 displayed a 2D network from the 1D ladder-like chain. The thermal stabilities and fluorescent properties of these complexes were investigated in the solid state. The fluorescent sensing experiments revealed that all Zn-MOFs could highly sensitively detect nitrobenzene in aqueous solution, which indicated that these materials can be used as fluorescent probes for the detection of nitrobenzene. Four fluorescent 2D Zn-MOFs based on a flexible triangular ligand and linear N-donor ligands are hydrothermally prepared and used to detect nitrobenzene in aqueous solution with high sensitivity, demonstrating their potential as fluorescent sensors.![]()
Collapse
Affiliation(s)
- Xue Yang
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University Yan'an 716000 P. R. China
| | - Yixia Ren
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University Yan'an 716000 P. R. China
| | - Hongmei Chai
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University Yan'an 716000 P. R. China
| | - Xiufang Hou
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University Yan'an 716000 P. R. China
| | - Zhixiang Wang
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University Yan'an 716000 P. R. China
| | - Jijiang Wang
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University Yan'an 716000 P. R. China
| |
Collapse
|
27
|
Li Z, Liu G, Fan C, Pu S. Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Anal Bioanal Chem 2021; 413:3281-3290. [PMID: 33693975 DOI: 10.1007/s00216-021-03264-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Phosphate (PO43-) plays a major role in aquatic ecosystems and biosystems. Developing a highly sensitive and selective ratiometric fluorescence probe for detection of PO43- is of great significance to the ecological environment and human health. In this work, a novel dual lanthanide metal organic framework was synthesized via hydrothermal reaction based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand (designated as Tb-Ce-MOFs). The fluorescence of Tb-Ce-MOFs shows emission at 375 nm. In the presence of PO43-, with increased concentration of PO43-, the fluorescence intensity of Tb-Ce-MOFs at 500 nm and 550 nm increased, while the intensity at 375 nm was reduced. Hence, ratiometric fluorescence detecting of PO43- can be achieved by measuring the ratio of fluorescence at 550 nm (FL550) to 375 nm (FL375) in the fluorescent spectra of the Tb-Ce-MOFs. In this sensing approach, the Tb-Ce-MOFs probe exhibits highly sensitive and selective for detection of PO43-. The limit of detection is calculated to be 28 nM and the detection range is 0.1 to 10 μM. In addition, the Tb-Ce-MOFs were used in the detection of PO43- in real samples. We design and synthesize a mixed lanthanide metal organic framework fluorescence probe (Tb-Ce-MOFs) for ratiometric fluorescence for the detection of PO43- based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- YuZhang Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
28
|
Wang J, Yu M, Chen L, Li Z, Li S, Jiang F, Hong M. Construction of a Stable Lanthanide Metal-Organic Framework as a Luminescent Probe for Rapid Naked-Eye Recognition of Fe 3+ and Acetone. Molecules 2021; 26:1695. [PMID: 33803563 PMCID: PMC8003027 DOI: 10.3390/molecules26061695] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
Four lanthanide metal-organic frameworks (Ln-MOFs), namely {[Me2NH2][LnL]·2H2O}n (Ln = Eu 1, Tb 2, Dy 3, Gd 4), have been constructed from a new tetradentate ligand 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid (H4L). These isostructural Ln-MOFs, crystallizing in the monoclinic P21/c space group, feature a 3D structure with 7.5 Å × 9.8 Å channels along the b axis and the point symbol of {410.614.84} {45.6}2. The framework shows high air and hydrolytic stability, which can keep stable after exposed to humid air for 30 days or immersed in water for seven days. Four MOFs with different lanthanide ions (Eu3+, Tb3+, Dy3+, and Gd3+) ions exhibit red, green, yellow, and blue emissions, respectively. The Tb-MOF emitting bright green luminescence can selectively and rapidly (<40 s) detect Fe3+ in aqueous media via a fluorescence quenching effect. The detection shows excellent anti-inference ability toward many other cations and can be easily recognized by naked eyes. In addition, it can also be utilized as a rapid fluorescent sensor to detect acetone solvent as well as acetone vapor. Similar results of sensing experiments were observed from Eu-MOF. The sensing mechanism are further discussed.
Collapse
Affiliation(s)
- Jiayishuo Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muxin Yu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- Organic Optoelectronics Engineering Research Centre of Fujian’s Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China
| | - Lian Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| | - Zhijia Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchang Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Jiang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| | - Maochun Hong
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| |
Collapse
|
29
|
Gan Z, Hu X, Xu X, Zhang W, Zou X, Shi J, Zheng K, Arslan M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem 2021; 354:129501. [PMID: 33735696 DOI: 10.1016/j.foodchem.2021.129501] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
Residual tetracycline (TC) in animal food caused by abuse of antibiotics leads to many chronic diseases in the human body. The development of a simple and on-site visualization method for TC detection is need of the hour. Herein, a fluorescent europium-based metal-organic framework (Eu-MOF) sensor for visual and rapid detection of TC was developed. Eu-MOF displays a red emission being excited at 260 nm. Upon exposure to TC, significant fluorescence quenching was observed due to the inner filter effect and photoinduced electron transfer. Moreover, the developed sensor was applied for the detection of TC in milk and beef samples with recoveries of 96.1% to 106.3%, respectively. More importantly, a portable test strip based on Eu-MOF was manufactured. It is a highly selective and sensitive portable device for TC detection. The results can be distinguished immediately by naked eyes, making it become an excellent choice to detect TC in real-time application.
Collapse
Affiliation(s)
- Ziyu Gan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|