1
|
Bourne Y, Sulzenbacher G, Chabaud L, Aráoz R, Radić Z, Conrod S, Taylor P, Guillou C, Molgó J, Marchot P. The Cyclic Imine Core Common to the Marine Macrocyclic Toxins Is Sufficient to Dictate Nicotinic Acetylcholine Receptor Antagonism. Mar Drugs 2024; 22:149. [PMID: 38667766 PMCID: PMC11050823 DOI: 10.3390/md22040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.
Collapse
Affiliation(s)
- Yves Bourne
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
| | - Gerlind Sulzenbacher
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
| | - Laurent Chabaud
- Institut de Chimie des Substances Naturelles (ICSN), Univ Paris-Saclay, CNRS, 91198 Gif-sur-Yvette, France; (L.C.); (C.G.)
| | - Rómulo Aráoz
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS) EMR CNRS 9004, Département Médicaments et Technologies pour la Santé, Institut des Sciences du Vivant Frédéric Joliot, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.A.); (J.M.)
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), University of California San Diego, La Jolla, CA 92093-0751, USA; (Z.R.); (P.T.)
| | - Sandrine Conrod
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Aix Marseille Univ, CNRS, 13344 Marseille, France;
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), University of California San Diego, La Jolla, CA 92093-0751, USA; (Z.R.); (P.T.)
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles (ICSN), Univ Paris-Saclay, CNRS, 91198 Gif-sur-Yvette, France; (L.C.); (C.G.)
| | - Jordi Molgó
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS) EMR CNRS 9004, Département Médicaments et Technologies pour la Santé, Institut des Sciences du Vivant Frédéric Joliot, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.A.); (J.M.)
| | - Pascale Marchot
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Aix Marseille Univ, CNRS, 13344 Marseille, France;
| |
Collapse
|
2
|
Liang L, Li C, Fang J, Li H, Wu S, Zhao J, Li J, He K, Dong F. An integrated screening method for paralytic shellfish toxins and their analogues based on fragmentation characteristics using an orbitrap-based ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Food Chem 2024; 434:137502. [PMID: 37741239 DOI: 10.1016/j.foodchem.2023.137502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Paralytic shellfish toxins (PSTs) perform a huge threat to food safety and public safety. In this study, an integrated non-targeted screening strategy was developed for the screening of PSTs and their analogues exploiting the fragmentation characteristics from ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). First, an extensible in-house PSTs compound database was developed. Second, the fragmentation characteristics of typical PSTs were studied and summarized using UHPLC-HRMS. Then, an integrated non-targeted screening strategy was developed based on fragmentation characteristics for screening of PSTs and their analogues. Finally, the method was fully validated in fortified shellfish samples and successfully applied to analyze the samples of OPCW exercise on biotoxin analysis. This promising approach can also be applied in a wide variety of scenarios, such as food safety, biotoxin verification, and forensic investigation.
Collapse
Affiliation(s)
- Longhui Liang
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Chunzheng Li
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Junjian Fang
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Hui Li
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Shengming Wu
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Junqing Zhao
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Jiaxin Li
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100039, China.
| | - Fangting Dong
- National Center of Biomedical Analysis, Beijing 100039, China.
| |
Collapse
|
3
|
Accoroni S, Cangini M, Angeletti R, Losasso C, Bacchiocchi S, Costa A, Taranto AD, Escalera L, Fedrizzi G, Garzia A, Longo F, Macaluso A, Melchiorre N, Milandri A, Milandri S, Montresor M, Neri F, Piersanti A, Rubini S, Suraci C, Susini F, Vadrucci MR, Mudadu AG, Vivaldi B, Soro B, Totti C, Zingone A. Marine phycotoxin levels in shellfish-14 years of data gathered along the Italian coast. HARMFUL ALGAE 2024; 131:102560. [PMID: 38212084 DOI: 10.1016/j.hal.2023.102560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Along the Italian coasts, toxins of algal origin in wild and cultivated shellfish have been reported since the 1970s. In this study, we used data gathered by the Veterinary Public Health Institutes (IZS) and the Italian Environmental Health Protection Agencies (ARPA) from 2006 to 2019 to investigate toxicity events along the Italian coasts and relate them to the distribution of potentially toxic species. Among the detected toxins (OA and analogs, YTXs, PTXs, STXs, DAs, AZAs), OA and YTX were those most frequently reported. Levels exceeding regulatory limits in the case of OA (≤2,448 μg equivalent kg-1) were associated with high abundances of Dinophysis spp., and in the case of YTXs (≤22 mg equivalent kg-1) with blooms of Gonyaulax spinifera, Lingulodinium polyedra, and Protoceratium reticulatum. Seasonal blooms of Pseudo-nitzschia spp. occur all along the Italian coast, but DA has only occasionally been detected in shellfish at concentrations always below the regulatory limit (≤18 mg kg-1). Alexandrium spp. were recorded in several areas, although STXs (≤13,782 µg equivalent kg-1) rarely and only in few sites exceeded the regulatory limit in shellfish. Azadinium spp. have been sporadically recorded, and AZAs have been sometimes detected but always in low concentrations (≤7 µg equivalent kg-1). Among the emerging toxins, PLTX-like toxins (≤971 μg kg-1 OVTX-a) have often been detected mainly in wild mussels and sea urchins from rocky shores due to the presence of Ostreopsis cf. ovata. Overall, Italian coastal waters harbour a high number of potentially toxic species, with a few HAB hotspots mainly related to DSP toxins. Nevertheless, rare cases of intoxications have occurred so far, reflecting the whole Mediterranean Sea conditions.
Collapse
Affiliation(s)
| | - Monica Cangini
- National Reference Laboratory for Marine Biotoxins, CRM, Cesenatico, FC, Italy
| | | | | | | | | | | | | | | | - Angela Garzia
- DiSVA, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | - Anna Milandri
- National Reference Laboratory for Marine Biotoxins, CRM, Cesenatico, FC, Italy
| | - Stefania Milandri
- National Reference Laboratory for Marine Biotoxins, CRM, Cesenatico, FC, Italy
| | | | - Francesca Neri
- DiSVA, Università Politecnica delle Marche, Ancona, Italy
| | | | - Silva Rubini
- IZS della Lombardia e dell'Emilia-Romagna, Ferrara, Italy
| | | | | | | | | | | | | | - Cecilia Totti
- DiSVA, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
4
|
Rossignoli AE, Mariño C, Martín H, Blanco J. First Report of Two Gymnodimines and Two Tetrodotoxin Analogues in Invertebrates from the North Atlantic Coast of Spain. Mar Drugs 2023; 21:md21040232. [PMID: 37103371 PMCID: PMC10144553 DOI: 10.3390/md21040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Gymnodimine D (GYM D), 16-desmethyl gymnodimine D (16-desmethyl GYM D), and two tetrodotoxin analogues have been found in invertebrates obtained from the north Atlantic coast of Spain from May 2021 to October 2022. It is the first report of GYMD and 16-desmethyl GYM D in invertebrates worldwide and of the tetrodotoxin analogues, 5,6,11 trideoxy tetrodotoxin (5,6,11 trideoxy TTX) and its isomer (referred to as 5,6,11 trideoxy-epi-TTX), in the north Atlantic Coast of Spain. In this study, we also report for the first time the detection of tetrodotoxin (TTX) in three species (the cnidaria Calliactis parasitica, an unidentified species, and the bivalve Tellina donacina). The prevalence was medium for GYM D and 16-desmethyl GYM D and low for TTXs overall. The concentrations recorded were variable, with maximum values of GYM D in the bivalve Cerastoderma edule (8.8 μg GYM A equivalents kg-1), of 16-desmethyl GYM D in the bivalve Magellana gigas (10 μg GYM A equivalents kg-1) and of TTX and 5,6,11 trideoxy TTX in the cnidaria C. parasitica (49.7 and 233 μg TTX equivalents kg-1, respectively). There is very scarce information about these compounds. Therefore, the reporting of these new detections will increase the knowledge on the current incidence of marine toxins in Europe that the European Food Safety Authority (EFSA), in particular, and the scientific community, in general, have. This study also highlights the importance of analyzing toxin analogues and metabolites for effective monitoring programs and adequate health protection.
Collapse
Affiliation(s)
- Araceli E Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| |
Collapse
|
5
|
Stability and Chemical Conversion of the Purified Reference Material of Gymnodimine-A under Different Temperature and pH Conditions. Toxins (Basel) 2022; 14:toxins14110744. [PMID: 36355994 PMCID: PMC9695126 DOI: 10.3390/toxins14110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023] Open
Abstract
Gymnodimines (GYMs) are a group of fast-acting phycotoxins and their toxicological effects on human beings are still unclear due to the lack of sufficiently well-characterized large quantities of purified toxins for toxicology studies. In this study, a certified reference material (CRM) of GYM-A was prepared from the dinoflagellate Karenia selliformis, followed by multi-step chromatography separation and purification. Subsequently, the stability of GYM-A in methanolic media was evaluated at different temperature (-20, 4, and 20 °C) and pH (3, 5, and 7) conditions for 8 months, and the conversion products of GYM-A were explored by liquid chromatography-high resolution mass spectrometry (LC-HRMS). The results show that the stability of GYM-A decreased with increasing temperature and pH values. The GYM-A was stable during storage at -20 °C regardless of pH, but it decreased rapidly (81.8% ± 9.3%) at 20 °C in pH 7 solution after 8 months. Moreover, the concentrations of GYM-A did not significantly change at all temperatures in solutions with pH 3 (p > 0.05). It is recommended that GYM-A should be stored at low temperature (≤-20 °C) and pH (≤3) conditions for long-term storage in aqueous methanolic media. In addition, two conversion products of GYM-A, tentatively named as GYM-K (m/z 540) and GYM-L (m/z 524), were identified in the samples stored at high levels of pH and temperature. Based on the LC-HRMS data, the hypothetical chemical structures of both converting derivatives were proposed. A useful strategy for long-term storage of GYM-A CRM in aqueous methanolic media was suggested and two hypothesized conversion products of GYM-A were discovered in this study.
Collapse
|
6
|
Morales-Amador A, Souto ML, Hertweck C, Fernández JJ, García-Altares M. Rapid Screening of Polyol Polyketides from Marine Dinoflagellates. Anal Chem 2022; 94:14205-14213. [PMID: 36190828 PMCID: PMC9583072 DOI: 10.1021/acs.analchem.2c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Dinoflagellate-derived
polyketides are typically large molecules
(>1000 Da) with complex structures, potent bioactivities, and high
toxicities. Their discovery suffers three major bottlenecks: insufficient
bioavailability, low-yield cultivation of producer organisms, and
production of multiple highly related analogues by a single strain.
Consequently, the biotechnological production of therapeutics or toxicological
standards of dinoflagellate-derived polyketides is also hampered.
Strategies based on sensitive and selective techniques for chemical
prospection of dinoflagellate extracts could aid in overcoming these
limitations, as it allows selecting the most interesting candidates
for discovery and exploitation programs according to the biosynthetic
potential. In this work, we assess the combination of data-dependent
liquid chromatography coupled with high-resolution tandem mass spectrometry
(LC–HRMS2) and molecular networking to screen polyol
polyketides. To demonstrate the power of this approach, we selected
dinoflagellate Amphidinium carterae since it is commonly used as a biotechnological model and produces
amphidinols, a family of polyol-polyene compounds with antifungal
and antimycoplasmal activity. First, we screened families of compounds
with multiple hydroxyl groups by examining MS2 profiles
that contain sequential neutral losses of water. Then, we clustered
MS2 spectra by molecular networking to facilitate the dereplication
and discovery of amphidinols. Finally, we used the MS2 fragmentation
behavior of well-characterized luteophanol D as a model to propose
a structural hypothesis of nine novel amphidinols. We envision that
this strategy is a valuable approach to rapidly monitoring toxin production
of known and unknown polyol polyketides in dinoflagellates, even in
small culture volumes, and distinguishing strains according to their
toxin profiles.
Collapse
Affiliation(s)
- Adrián Morales-Amador
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.,Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - María L Souto
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - José J Fernández
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - María García-Altares
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany.,Department of Electronic Engineering, Rovira i Virgili University, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Kim YS, An HJ, Kim J, Jeon YJ. Current Situation of Palytoxins and Cyclic Imines in Asia-Pacific Countries: Causative Phytoplankton Species and Seafood Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4921. [PMID: 35457784 PMCID: PMC9026528 DOI: 10.3390/ijerph19084921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.
Collapse
Affiliation(s)
- Young-Sang Kim
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| | - Hyun-Joo An
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaeseong Kim
- Water and Eco-Bio Corporation, Kunsan National University, Kunsan 54150, Korea
| | - You-Jin Jeon
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| |
Collapse
|
8
|
Zhang X, Gao Y, Deng B, Hu B, Zhao L, Guo H, Yang C, Ma Z, Sun M, Jiao B, Wang L. Selection, Characterization, and Optimization of DNA Aptamers against Challenging Marine Biotoxin Gymnodimine-A for Biosensing Application. Toxins (Basel) 2022; 14:195. [PMID: 35324692 PMCID: PMC8949142 DOI: 10.3390/toxins14030195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Gymnodimines (GYMs), belonging to cyclic imines (CIs), are characterized as fast-acting toxins, and may pose potential risks to human health and the aquaculture industry through the contamination of sea food. The existing detection methods of GYMs have certain defects in practice, such as ethical problems or the requirement of complicated equipment. As novel molecular recognition elements, aptamers have been applied in many areas, including the detection of marine biotoxins. However, GYMs are liposoluble molecules with low molecular weight and limited numbers of chemical groups, which are considered as "challenging" targets for aptamers selection. In this study, Capture-SELEX was used as the main strategy in screening aptamers targeting gymnodimine-A (GYM-A), and an aptamer named G48nop, with the highest KD value of 95.30 nM, was successfully obtained by screening and optimization. G48nop showed high specificity towards GYM-A. Based on this, a novel aptasensor based on biolayer interferometry (BLI) technology was established in detecting GYM-A. This aptasensor showed a detection range from 55 to 1400 nM (linear range from 55 to 875 nM) and a limit of detection (LOD) of 6.21 nM. Spiking experiments in real samples indicated the recovery rate of this aptasensor, ranging from 96.65% to 109.67%. This is the first study to report an aptamer with high affinity and specificity for the challenging marine biotoxin GYM-A, and the new established aptasensor may be used as a reliable and efficient tool for the detection and monitoring of GYMs in the future.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
- College of Medicine, Shaoxing University, 900th Chengnan Avenue, Shaoxing 312000, China
| | - Yun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bowen Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Navy Medical University, Shanghai 200433, China;
| | - Luming Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Han Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Chengfang Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Zhenxia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| |
Collapse
|
9
|
Wright EJ, Beach DG, McCarron P. Non-target analysis and stability assessment of reference materials using liquid Chromatography‒High-Resolution mass spectrometry. Anal Chim Acta 2022; 1201:339622. [DOI: 10.1016/j.aca.2022.339622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
|
10
|
A Generic LC-HRMS Screening Method for Marine and Freshwater Phycotoxins in Fish, Shellfish, Water, and Supplements. Toxins (Basel) 2021; 13:toxins13110823. [PMID: 34822607 PMCID: PMC8619867 DOI: 10.3390/toxins13110823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Phycotoxins occur in various marine and freshwater environments, and can accumulate in edible species such as fish, crabs, and shellfish. Human exposure to these toxins can take place, for instance, through consumption of contaminated species or supplements and through the ingestion of contaminated water. Symptoms of phycotoxin intoxication include paralysis, diarrhea, and amnesia. When the cause of an intoxication cannot directly be found, a screening method is required to identify the causative toxin. In this work, such a screening method was developed and validated for marine and freshwater phycotoxins in different matrices: fish, shellfish, water, and food supplements. Two LC methods were developed: one for hydrophilic and one for lipophilic phycotoxins. Sample extracts were measured in full scan mode with an Orbitrap high resolution mass spectrometer. Additionally, a database was created to process the data. The method was successfully validated for most matrices, and in addition, regulated lipophilic phycotoxins, domoic acid, and some paralytic shellfish poisoning toxins could be quantified in shellfish. The method showed limitations for hydrophilic phycotoxins in sea water and for lipophilic phycotoxins in food supplements. The developed method is a screening method; in order to confirm suspected compounds, comparison with a standard or an additional analysis such as NMR is required.
Collapse
|
11
|
Servent D, Malgorn C, Bernes M, Gil S, Simasotchi C, Hérard AS, Delzescaux T, Thai R, Barbe P, Keck M, Beau F, Zakarian A, Dive V, Molgó J. First evidence that emerging pinnatoxin-G, a contaminant of shellfish, reaches the brain and crosses the placental barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148125. [PMID: 34380275 DOI: 10.1016/j.scitotenv.2021.148125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Massive proliferation of some toxic marine dinoflagellates is responsible for the occurrence of harmful algal blooms and the contamination of fish and shellfish worldwide. Pinnatoxins (PnTx) (A-H) comprise an emerging phycotoxin family belonging to the cyclic imine toxin group. Interest has been focused on these lipophilic, fast-acting and highly potent toxins because they are widely found in contaminated shellfish, and can represent a risk for seafood consumers. PnTx display a potent antagonist effect on nicotinic acetylcholine receptors (nAChR), and in this study we assessed in vivo the ability of PnTx-G to cross physiological barriers to reach its molecular target. Radiolabeled [3H]-PnTx-G synthesized with good radiochemical purity and yield retained the high affinity of the natural toxin. Oral gavage or intravenous administration to adult rats and digital autoradiographic analyses revealed the biodistribution and toxicokinetics of [3H]-PnTx-G, which is rapidly cleared from blood, and accumulates in the liver and small intestine. The labeling of peripheral and brain adult/embryo rat tissues highlights its ability to cross the intestinal, blood-brain and placental barriers. High-resolution 3D-imaging and in vitro competition studies on rat embryo sections revealed the specificity of [3H]-PnTx-G binding and its selectivity for muscle and neuronal nAChR subtypes (such as α7 subtype). The use of a human perfused cotyledon model and mass spectrometry analyses disclosed that PnTx-G crosses the human placental barrier. The increasing worldwide occurrence of both the dinoflagellate Vulcanodinium rugosum and PnTx-contaminated shellfish, due to climate warming, raises concerns about the potential adverse impact that exposure to pinnatoxins may have for human health.
Collapse
Affiliation(s)
- Denis Servent
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mylène Bernes
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Sophie Gil
- Université de Paris, UMR-S1139, Faculté de Pharmacie de Paris, France
| | | | - Anne-Sophie Hérard
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Thierry Delzescaux
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Armen Zakarian
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, CA 93106-9510, USA
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Jordi Molgó
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| |
Collapse
|