1
|
Giussani B, Gorla G, Riu J. Analytical Chemistry Strategies in the Use of Miniaturised NIR Instruments: An Overview. Crit Rev Anal Chem 2024; 54:11-43. [PMID: 35286178 DOI: 10.1080/10408347.2022.2047607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Miniaturized NIR instruments have been increasingly used in the last years, and they have become useful tools for many applications on a broad variety of samples. This review focuses on miniaturized NIR instruments from an analytical point of view, to give an overview of the analytical strategies used in order to help the reader to set up their own analytical methods, from the sampling to the data analysis. It highlights the uses of these instruments, providing a critical discussion including current and future trends.
Collapse
Affiliation(s)
- Barbara Giussani
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Giulia Gorla
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Jordi Riu
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Delli Santi MG, Castrignano S, Capezzuto M, Consales M, Vaiano P, Cusano A, Gagliardi G, Malara P. Optrode-Assisted Multiparametric Near-Infrared Spectroscopy for the Analysis of Liquids. SENSORS (BASEL, SWITZERLAND) 2024; 24:729. [PMID: 38339446 PMCID: PMC10857342 DOI: 10.3390/s24030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
We demonstrate a sensing scheme for liquid analytes that integrates multiple optical fiber sensors in a near-infrared spectrometer. With a simple optofluidic method, a broadband radiation is encoded in a time-domain interferogram and distributed to different sensing units that interrogate the sample simultaneously; the spectral readout of each unit is extracted from its output signal by a Fourier transform routine. The proposed method allows performing a multiparametric analysis of liquid samples in a compact setup where the radiation source, measurement units, and spectral readout are all integrated in a robust telecom optical fiber. An experimental validation is provided by combining a plasmonic nanostructured fiber probe and a transmission cuvette in the setup and demonstrating the simultaneous measurement of the absorption spectrum and the refractive index of water-methanol solutions.
Collapse
Affiliation(s)
- Maria Giulia Delli Santi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.G.D.S.); (M.C.); (G.G.); (P.M.)
| | - Salvatore Castrignano
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.G.D.S.); (M.C.); (G.G.); (P.M.)
| | - Marialuisa Capezzuto
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.G.D.S.); (M.C.); (G.G.); (P.M.)
| | - Marco Consales
- Optoelectronics Group, Engineering Department, University of Sannio, C.so Garibaldi 107, 82100 Benevento, Italy; (M.C.); (P.V.); (A.C.)
| | - Patrizio Vaiano
- Optoelectronics Group, Engineering Department, University of Sannio, C.so Garibaldi 107, 82100 Benevento, Italy; (M.C.); (P.V.); (A.C.)
| | - Andrea Cusano
- Optoelectronics Group, Engineering Department, University of Sannio, C.so Garibaldi 107, 82100 Benevento, Italy; (M.C.); (P.V.); (A.C.)
| | - Gianluca Gagliardi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.G.D.S.); (M.C.); (G.G.); (P.M.)
| | - Pietro Malara
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.G.D.S.); (M.C.); (G.G.); (P.M.)
| |
Collapse
|
3
|
Ortiz Restrepo SA, Adams A. Fast quantification of water content in glycols by compact 1H NMR spectroscopy. Talanta 2023; 253:123973. [PMID: 36206628 DOI: 10.1016/j.talanta.2022.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/13/2022]
Abstract
Glycols are key chemicals for many applications in different fields of activities. Being highly hydroscopic, glycols contain usually water. The presence of water, even in tiny amounts, can affect their chemical and physical properties. Therefore, the accurate determination of water content is essential for any intended applications. In this context, a novel method using low-field Nuclear Magnetic Resonance (NMR) spectroscopy is introduced. The proposed approach offers a straightforward, fast, low-cost, and versatile solution for water quantification in glycols without the need for reagents or calibration data. It is demonstrated by quantifying the water concentration up to 11 wt% in aqueous ethylene glycol (EG) and triethylene glycol (TEG) mixtures with the help of lineshape analysis of the corresponding proton spectra. The limit of detection, achieved within 1 min of measuring time, was 0.05 wt% for water in EG and 0.15 wt% in TEG. The excellent agreement between the NMR results and those from the Karl-Fischer titration indicates that the proposed NMR-based approach has a great potential to be used as an alternative to the Karl-Fischer method. In addition, it is expected that the same methodology can be applied for water quantification in more complex glycolic solutions and other mixtures.
Collapse
Affiliation(s)
| | - Alina Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Templergraben 55, Aachen, 52056, Germany.
| |
Collapse
|
4
|
Rozman M, Lukšič M. Stainless Steel Foil-Based Label-Free Modular Thin-Film Electrochemical Detector for Solvent Identification. MICROMACHINES 2022; 13:2256. [PMID: 36557555 PMCID: PMC9780910 DOI: 10.3390/mi13122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Most organic solvents are colorless liquids, usually stored in sealed containers. In many cases, their identification depends on the appropriate description on the container to prevent mishandling or mixing with other materials. Although modern laboratories rely heavily on identification technologies, such as digitized inventories and spectroscopic methods (e.g., NMR or FTIR), there may be situations where these cannot be used due to technical failure, lack of equipment, or time. An example of a portable and cost-effective solution to this problem is an electrochemical sensor. However, these are often limited to electrochemical impedance spectroscopy (EIS) or voltammetry methods. To address this problem, we present a novel modular electrochemical sensor for solvent identification that can be used with either an EIS-enabled potentiostat/galvanostat or a simple multimeter. A novel method of fabricating and using a sensor consisting of a thin-film coating of an organic substance on a stainless-steel electrode substrate is presented. The differences in the solubility of the thin film in different solvents are used to distinguish between common organic solvents such as water, ethanol, and tetrahydrofuran.
Collapse
Affiliation(s)
- Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-91150 Trenčín, Slovakia
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Performance Optimization of a Developed Near-Infrared Spectrometer Using Calibration Transfer with a Variety of Transfer Samples for Geographical Origin Identification of Coffee Beans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238208. [PMID: 36500300 PMCID: PMC9736488 DOI: 10.3390/molecules27238208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
This research aimed to improve the classification performance of a developed near-infrared (NIR) spectrometer when applied to the geographical origin identification of coffee bean samples. The modification was based on the utilization of a collection of spectral databases from several different agricultural samples, including corn, red beans, mung beans, black beans, soybeans, green and roasted coffee, adzuki beans, and paddy and white rice. These databases were established using a reference NIR instrument and the piecewise direct standardization (PDS) calibration transfer method. To evaluate the suitability of the transfer samples, the Davies-Bouldin index (DBI) was calculated. The outcomes that resulted in low DBI values were likely to produce better classification rates. The classification of coffee origins was based on the use of a supervised self-organizing map (SSOM). Without the spectral modification, SSOM classification using the developed NIR instrument resulted in predictive ability (% PA), model stability (% MS), and correctly classified instances (% CC) values of 61%, 58%, and 64%, respectively. After the transformation process was completed with the corn, red bean, mung bean, white rice, and green coffee NIR spectral data, the predictive performance of the SSOM models was found to have improved (67-79% CC). The best classification performance was observed with the use of corn, producing improved % PA, % MS, and % CC values at 71%, 67%, and 79%, respectively.
Collapse
|
6
|
Influence of measurement procedure on the use of a handheld NIR spectrophotometer. Food Res Int 2022; 161:111836. [DOI: 10.1016/j.foodres.2022.111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
7
|
Liokumovitch E, Glasser Z, Sternklar S. Spectral sensor of the ethanol concentration in water based on photodiode optoelectronic chromatic dispersion. OPTICS LETTERS 2022; 47:5076-5079. [PMID: 36181190 DOI: 10.1364/ol.472890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Optoelectronic chromatic dispersion (OED) of a PN-type germanium photodiode is used for spectral sensing of ethanol concentration in water. A concentration sensitivity of 70 ppm is achieved. Spectral sensors based on OED in PN-type photodiodes can serve as low-cost on-chip devices for optical spectroscopy.
Collapse
|
8
|
Elderderi S, Sacré PY, Wils L, Chourpa I, Elbashir AA, Hubert P, Byrne HJ, Boudesocque-Delaye L, Ziemons E, Bonnier F. Comparison of Vibrational Spectroscopic Techniques for Quantification of Water in Natural Deep Eutectic Solvents. Molecules 2022; 27:4819. [PMID: 35956767 PMCID: PMC9370017 DOI: 10.3390/molecules27154819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrational spectroscopic techniques, i.e., attenuated total reflectance infrared (ATR-IR), near infrared spectroscopy (NIRS) and Raman spectroscopy (RS), coupled with Partial Least Squares Regression (PLSR), were evaluated as cost-effective label-free and reagent-free tools to monitor water content in Levulinic Acid/L-Proline (LALP) (2:1, mol/mol) Natural Deep Eutectic Solvent (NADES). ATR-IR delivered the best outcome of Root Mean Squared Error (RMSE) of Cross-Validation (CV) = 0.27% added water concentration, RMSE of Prediction (P) = 0.27% added water concentration and mean % relative error = 2.59%. Two NIRS instruments (benchtop and handheld) were also compared during the study, respectively yielding RMSECV = 0.35% added water concentration, RMSEP = 0.56% added water concentration and mean % relative error = 5.13% added water concentration, and RMECV = 0.36% added water concentration, RMSEP = 0.68% added water concentration and mean % relative error = 6.23%. RS analysis performed in quartz cuvettes enabled accurate water quantification with RMECV = 0.43% added water concentration, RMSEP = 0.67% added water concentration and mean % relative error = 6.75%. While the vibrational spectroscopic techniques studied have shown high performance in relation to reliable determination of water concentration, their accuracy is most likely related to their sensitivity to detect the LALP compounds in the NADES. For instance, whereas ATR-IR spectra display strong features from water, Levulinic Acid and L-Proline that contribute to the PLSR predictive models constructed, NIRS and RS spectra are respectively dominated by either water or LALP compounds, representing partial molecular information and moderate accuracy compared to ATR-IR. However, while ATR-IR instruments are common in chemistry and physics laboratories, making the technique readily transferable to water quantification in NADES, Raman spectroscopy offers promising potential for future development for in situ, sample withdrawal-free analysis for high throughput and online monitoring.
Collapse
Affiliation(s)
- Suha Elderderi
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, P.O. Box 20, Wad Madani 21111, Sudan
| | - Pierre-Yves Sacré
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Vibra-Santé HUB, University of Liège (ULiege), Avenue Hippocrate 15, 4000 Liège, Belgium; (P.-Y.S.); (P.H.); (E.Z.)
| | - Laura Wils
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (L.B.-D.)
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.)
| | - Abdalla A. Elbashir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan
| | - Philippe Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Vibra-Santé HUB, University of Liège (ULiege), Avenue Hippocrate 15, 4000 Liège, Belgium; (P.-Y.S.); (P.H.); (E.Z.)
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland;
| | - Leslie Boudesocque-Delaye
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (L.B.-D.)
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Vibra-Santé HUB, University of Liège (ULiege), Avenue Hippocrate 15, 4000 Liège, Belgium; (P.-Y.S.); (P.H.); (E.Z.)
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.)
| |
Collapse
|
9
|
Zhang Z, Liu H, Chen D, Zhang J, Li H, Shen M, Pu Y, Zhang Z, Zhao J, Hu J. SMOTE-based method for balanced spectral nondestructive testing of moldy apple core. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Jouyban A, Rahimpour E. Optical sensors for determination of water in the organic solvents: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02290-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Photocatalytic Activity of S-Scheme Heterostructure for Hydrogen Production and Organic Pollutant Removal: A Mini-Review. NANOMATERIALS 2021; 11:nano11040871. [PMID: 33808089 PMCID: PMC8066994 DOI: 10.3390/nano11040871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
Finding new technologies and materials that provide real alternatives to the environmental and energy-related issues represents a key point on the future sustainability of the industrial activities and society development. The water contamination represents an important problem considering that the quantity and complexity of organic pollutant (such as dyes, pesticides, pharmaceutical active compounds, etc.) molecules can not be efficiently addressed by the traditional wastewater treatments. The use of fossil fuels presents two major disadvantages: (1) environmental pollution and (2) limited stock, which inevitably causes the energy shortage in various countries. A possible answer to the above issues is represented by the photocatalytic technology based on S-scheme heterostructures characterized by the use of light energy in order to degrade organic pollutants or to split the water molecule into its components. The present mini-review aims to outline the most recent achievements in the production and optimization of S-scheme heterostructures for photocatalytic applications. The paper focuses on the influence of heterostructure components and photocatalytic parameters (photocatalyst dosage, light spectra and intensity, irradiation time) on the pollutant removal efficiency and hydrogen evolution rate. Additionally, based on the systematic evaluation of the reported results, several perspectives regarding the future of S-scheme heterostructures were included.
Collapse
|