1
|
Chen H, Liu Z, Xu Y, Yu X, Tao Y, Li Y, Huang X, He J, Wang T. Targeted anchoring of Cu sites in imine-based covalent organic frameworks as catalytic centers for efficient Li-CO 2 batteries. Chem Sci 2025:d4sc07485h. [PMID: 39911334 PMCID: PMC11791517 DOI: 10.1039/d4sc07485h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Lithium-carbon dioxide (Li-CO2) batteries have attracted much attention due to their high theoretical energy density and reversible CO2 reduction/evolution process. However, the wide bandgap insulating discharge product Li2CO3 is difficult to decompose, leading to large polarization or even death of the battery, thus seriously hindering the practical application of Li-CO2 batteries. The properties of covalent organic framework (COF) materials, which can support the construction of multiphase catalytic systems, have great potential in the fields of CO2 enrichment and electrocatalytic reduction. In this paper, the excellent redox properties of transition metal were utilized to introduce Cu metal into an imine-based COF to form Cu-O,N sites as the active sites for CO2 oxidation and reduction. The electrochemical performance of the Cu sites in Li-CO2 batteries was investigated, and the prepared batteries were able to cycle stably at a current density of 200 mA g-1 for more than 1100 h. COF structural sites can be anchored by metal Cu sites to form Cu-O,N active centers for CO2 oxidation and reduction processes. This study provides a new approach for the development of lithium CO2 batteries towards more stable and stable.
Collapse
Affiliation(s)
- Haixia Chen
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Zhixin Liu
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yunyun Xu
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Xingyu Yu
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yinglei Tao
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yue Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Xianli Huang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Jianping He
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Tao Wang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| |
Collapse
|
2
|
Huang Z, Li J, Li LS. Ethylenediamine assist preparation of carbon dots with novel biomass for highly sensitive detection of levodopa. RSC Adv 2025; 15:420-427. [PMID: 39758905 PMCID: PMC11697296 DOI: 10.1039/d4ra08240k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Levodopa (l-Dopa), a precursor drug for dopamine has been widely used to treat Parkinson's disease. However, excess accumulation of l-Dopa in the body may cause movement disorders and uncontrollable emotions. Therefore, it is vital to monitor l-Dopa levels in patients. In this study, a carbon dot (CD)-based fluorescence sensing system was developed for sensitive detection of l-Dopa. The CDs were prepared using a novel biomass, Pandanus amaryllifolius Roxb., as a carbon source via a simple hydrothermal method. Interestingly, it was found that ethylenediamine doping in the preparation system increased the quantum yield of CDs, as well as their fluorescence response sensitivity to l-Dopa. After optimizing the preparation and sensing conditions, the detection limit of l-Dopa decreased from 1.54 μM to 0.05 μM. A complete methodological validation was conducted and the probe was successfully applied to the determination of l-Dopa in fetal bovine serum with excellent precision (RSD ≤ 2.99%) and recoveries of 88.50-99.71%. Overall, this work provides an effective strategy for the regulation of properties of CDs derived from biomass and an innovative method for clinical l-Dopa monitoring.
Collapse
Affiliation(s)
- Zongmei Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University Haikou 570228 China
| | - Jing Li
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts & Science Xiangyang 441021 China
| | - Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University Haikou 570228 China
| |
Collapse
|
3
|
Huang L, Luo Y, Li X, Wu J, Long Q, Zheng L, Liao W, Li H, Jia L, Liu K. Electrochemical sensor based on molecularly imprinted polypyrrole-MWCNTs-OH/covalent organic framework for the detection of ofloxacin in water. Mikrochim Acta 2024; 192:3. [PMID: 39627597 DOI: 10.1007/s00604-024-06860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
A platform was developed to accurately detect the content of ofloxacin (OFX) based on molecularly imprinted polypyrrole-MWCNTs-OH/1,3,5-Tris(4-aminophenyl) benzene (TAPB)-2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP)-covalent organic framework (MIP-MWCNTs-OH/COF)-modified glassy carbon electrode (GCE) sensor (MIP-MWCNTs-OH/COF/GCE). The complex of MWCNTs-OH and COF synergistically enhanced the active area and electrochemical signal, based on which a molecularly imprinted membrane was polymerized on its surface to further improve the selectivity. Under optimized conditions, the prepared MIP-MWCNTs-OH/COF/GCE sensor exhibited strong detection performance to OFX in a linear range 1.969 × 10-11-9.619 × 10-9 M with the limit of detection (LOD, 3S/N) of 4.989 × 10-12 M, excellent selectivity, stability, and reproducibility. Furthermore, the MIP-MWCNTs-OH/COF/GCE sensor can be successfully applied to the detection of OFX in lake water and eye drops with a relative standard deviation (RSD) of less than 4.95%, indicating its high potential in practical applications.
Collapse
Affiliation(s)
- Lijuan Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Yuan Luo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xulin Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Juan Wu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Long
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Li Zheng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wenlong Liao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huiming Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lingpu Jia
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Kunping Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
4
|
Wei MJ, Wei ZQ, Zhang R, Wang W. A free-metal single covalent organic framework electrochemical detective platform for sensitive sensing of carbendazim. Food Chem 2024; 467:142306. [PMID: 39644667 DOI: 10.1016/j.foodchem.2024.142306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Carbendazim abuse in agriculture can lead to the residue in water and food, which may bring about adverse effects to human's health. In this study, we report the solvothermal synthesis of free-metal single TT-COF with one-step strategy and the TT-COF-based electrochemical sensor is fabricated for the further sensing of carbendazim. The TT-COF possesses high surface area, excellent conductivity and outstanding electrocatalytic activity. Therefore, the TT-COF/GCE is applied for the determination of carbendazim with CV and DPV techniques. This TT-COF/GCE sensor shows wide linear range of 0.005-5 μM and the low limit of detection (LOD) of 2.21 nM towards the detection of carbendazim. More importantly, the projected TT-COF/GCE sensor demonstrates satisfactory recoveries by estimating carbendazim in apple, tomato and pear juice real samples.
Collapse
Affiliation(s)
- Mei-Jie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| | - Ze-Qi Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
5
|
Sun G, Sun W, Liu J, Zha X, Lu S, Wang Y. Chitosan-Based Hydrogel Functionalized with Fe(II) Phthalocyanine for Butylated Hydroxyanisole Determination. Inorg Chem 2024; 63:17263-17273. [PMID: 39222464 DOI: 10.1021/acs.inorgchem.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synthesis of functional electrode sensing materials is the key to the construction of electrochemical sensors. A new hydrogel electrode sensing material was developed by incorporating Fe(II) phthalocyanine (FePc) into chitosan-based hydrogels. The chitosan-based hydrogel plays a crucial role in dispersing FePc nanoparticles uniformly and generating a stable environment for the redox reaction of butylated hydroxyanisole (BHA) on the electrode surface. Under optimized conditions, the prepared electrochemical sensor exhibited a detection range of 0.1-30 and 30-1000 μmol/L, with a detection limit of 0.035 μmol/L (S/N = 3). Moreover, this sensor demonstrated exceptional resistance to interference and maintained its stability. These findings suggest that the developed electrochemical sensor is promising for reliable detection of BHA in real samples, highlighting the potential of combining conductive hydrogels with functionalized metal phthalocyanines for accurate and rapid BHA determination.
Collapse
Affiliation(s)
- Guorong Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Wang Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Junyan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaoqian Zha
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
6
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
7
|
Huang S, Zhang H, Gao X, Su H, Lan J, Bai H, Yue H. Tapered cross-linked ZnO nanowire bundle arrays on three-dimensional graphene foam for highly sensitive electrochemical detection of levodopa. Mikrochim Acta 2024; 191:481. [PMID: 39046557 DOI: 10.1007/s00604-024-06563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
It is crucial to accurately and rapidly monitor the levodopa (LD) concentration for accurate classification and treatment of dyskinesia in Parkinson's disease. In this paper, 3D graphene foam (GF) with a highly conductive network is obtained by chemical vapor deposition. 3D GF serves as the substrate for hydrothermal in situ growth of tapered cross-linked ZnO nanowire bundle arrays (ZnO NWBAs), enabling the development of a highly sensitive detection platform for LD. The formation mechanism of a tapered cross-linked ZnO nanowire bundle arrays on 3D GF is put forward. The integration of 3D GF and ZnO NWBAs can accelerate the electron transfer rate and increase the contact area with biomolecules, resulting in high electrochemical properties. The electrode composed of ZnO NWBAs on 3D GF exhibits significant sensitivity (1.66 µA·µM-1·cm-2) for LD detection in the concentration range 0-60 µM. The electrode is able to rapidly and specifically determine LD in mixed AA or UA solution. The selectivity mechanism of the electrode is also explained by the bandgap model. Furthermore, the successful detection of LD in serum demonstrates the practicality of the electrode and its great potential for clinical application.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Haopeng Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xin Gao
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Hang Su
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Jingming Lan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - He Bai
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Hongyan Yue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| |
Collapse
|
8
|
Peng HL, Zhang Y, Liu H, Gao C. Flexible Wearable Electrochemical Sensors Based on AuNR/PEDOT:PSS for Simultaneous Monitoring of Levodopa and Uric Acid in Sweat. ACS Sens 2024; 9:3296-3306. [PMID: 38829039 DOI: 10.1021/acssensors.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
As a facile substitute for the invasive technique of blood testing, wearable electrochemical sensors exhibit high potential for the noninvasive and real-time monitoring of biomarkers in human sweat. However, owing to enzyme specificity, the simultaneous detection of multiple biomarkers by enzymatic analysis is challenging. Moreover, sweat accumulation under sensors causes sweat contamination, which hinders real-time biomarker detection from sweat. This study reports the design and fabrication of flexible wearable electrochemical sensors containing a composite comprising Au nanorods (AuNRs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for the nonenzymatic detection of levodopa (LD) and uric acid (UA) in sweat. Each sensor was integrated with a flexible three-electrode system and a microfluidic patch for sweat sampling. AuNRs immobilized by PEG-doped PEDOT:PSS showed excellent analytical performance for LD and UA at different potentials. Thus, the newly fabricated sensors could detect LD and UA over a broad detection range with high sensitivity and showed a low limit of detection for both species. On-body assessments confirmed the ability of these sensors to simultaneously detect LD and UA in real time. Therefore, this study could open new frontiers in the fabrication of wearable electrochemical sensors for the pharmacokinetic profile tracking of LD and gout management.
Collapse
Affiliation(s)
- Hui-Ling Peng
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yongqi Zhang
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
9
|
Wang X, Yang S, Bai X, Shan J. Bimetallic CoCu nanoparticles anchored on COF/SWCNT for electrochemical detection of carbendazim. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166530. [PMID: 37633369 DOI: 10.1016/j.scitotenv.2023.166530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Carbendazim (CBZ) is a widespread fungicide used in crop protection, but the CBZ residues in drinking water, fruits, and vegetables can also cause adverse impacts on public health due to direct exposure. In this paper, a ternary synergistic composite of bimetallic CoCu nanoparticles anchored on covalent organic framework/single-walled carbon nanotube (CoCu/COF/SWCNT) was prepared and further applied as an electrochemical sensing platform for detecting CBZ. The sensor showed a sensitive response performance toward CBZ oxidation, as a result of the enhanced charge transfer ability, large electrochemically active surface area, and high electro-catalytic activity from the rational integration of the ternary components in CoCu/COF/SWCNT. Under the optimal conditions, the proposed sensor exhibited a detection range of 0.001 to 10 μM and a limit detection of 0.65 nM for CBZ detection. In addition, the sensor displayed practical feasibility for the determination of CBZ in water and pear samples with a recovery of 96.1 % to 102.1 %.
Collapse
Affiliation(s)
- Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Shuang Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xuting Bai
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
10
|
Li D, Zhao H, Wang G, Liu R, Bai L. Room-temperature ultrasonic-assisted self-assembled synthesis of silkworm cocoon-like COFs@GCNTs composite for sensitive detection of diuron in food samples. Food Chem 2023; 418:135999. [PMID: 37001360 DOI: 10.1016/j.foodchem.2023.135999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Diuron (DU) exhibits good weed control effect but possesses strong hazard to human health, thereby designing a fast and sensitive method to detect DU is highly urgent. Herein, we report the ultrasonic-assisted self-assembly synthesis of porous covalent organic frameworks (COFs) spheres@graphitized multi-walled carbon nanotubes (GCNTs) composite based on π-π conjugation effect at room temperature, which was employed for DU determination. For the COFs@GCNTs composite, COFs with ultrahigh specific surface area shows strong adsorption ability towards DU, whereas GCNTs with favorable conductivity help to form the 3D interconnected conductive network around COFs spheres, thereby effectively compensating for the poor conductivity of COFs. Because of the synergistic effect between COFs and GCNTs, the developed sensor presented a low detection limit of 0.08 µM in the concentration range of 0.30-18.00 µM. Moreover, the actual sample analysis in the tomato and cucumber yielded satisfactory recoveries (96.40%-103.20%), proving reliable practicability of the developed sensor.
Collapse
|
11
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Xue R, Liu YS, Huang SL, Yang GY. Recent Progress of Covalent Organic Frameworks Applied in Electrochemical Sensors. ACS Sens 2023; 8:2124-2148. [PMID: 37276465 DOI: 10.1021/acssensors.3c00269] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As an emerging porous crystalline organic material, the covalent organic frameworks (COFs) are given more and more attention in many fields, such as gas storage and separation, catalysis, energy storage and conversion, luminescent devices, drug delivery, pollutant adsorption and removal, analysis and detection due to their special advantages of high crystallinity, flexible designability, controllable porosities and topologies, intrinsic chemical and thermal stability. In recent years, the COFs are applied in analytical chemistry, for instance, chromatography, solid-phase microextraction, luminescent and colorimetric sensing, surface-enhanced Raman scattering and electroanalytical chemistry. The COFs decorated electrodes show high performance for detecting trace substances with remarkable selectivity and sensitivity, such as heavy metal ions, glucose, hydrogen peroxide, drugs, antibiotics, explosives, phenolic compounds, pesticides, disease metabolites and so on. This review mainly summarized the application of COF based electrochemical sensor according to different target analytes.
Collapse
Affiliation(s)
- Rui Xue
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yin-Sheng Liu
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Lab of Eco-Environments Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
13
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
14
|
Pourhajghanbar M, Arvand M, Habibi MF. Surface imprinting by using bi-functional monomers on spherical template magnetite for selective detection of levodopa in biological fluids. Talanta 2023; 254:124136. [PMID: 36462277 DOI: 10.1016/j.talanta.2022.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The present work introduces an innovative biosensing platform for greatly sensitive determination of levodopa medicine. Initially, spherical magnetic (SM) nanoparticles were prepared by hydrothermal fabrication approach and used as a pattern to make spherical magnetic molecular imprinted polymer (SMMIP). Afterward, levodopa-molecularly imprinted layer was grown on the surface of the spherical magnetic pattern by electropolymerization with dopamine and resorcinol as bi-functional monomers and levodopa as a template molecule, which enhanced the specific recognition of the sensing platform to levodopa. The presence of SM nanoparticles could not only accelerate the mass transfer, the electron transport rate, and improve specific surface area of the electrode but also facilitate the recognition of the polymer, in this way increasing the current response and improving the performance of the biosensor. The superior sensing efficiency of the presented biosensor was confirmed based on the low limit of detection of 10 nmol L-1 which represented two linear ranges from 0.5 to 200 μmol L-1 and 200-1000 μmol L-1 for levodopa. More importantly, the practicability of the biosensor was proved by detecting levodopa in tablet, blood serum and plasma, implying that the sensing platform was suitable for monitoring levodopa in actual biological fluid and medicine.
Collapse
Affiliation(s)
- Maedeh Pourhajghanbar
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| | - Maryam Farahmand Habibi
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| |
Collapse
|
15
|
Muggli K, Spies L, Bessinger D, Auras F, Bein T. Electrically Conductive Carbazole and Thienoisoindigo-Based COFs Showing Fast and Stable Electrochromism. ACS NANOSCIENCE AU 2023; 3:153-160. [PMID: 37096229 PMCID: PMC10119976 DOI: 10.1021/acsnanoscienceau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 02/19/2023]
Abstract
Thienothiophene thienoisoindigo (ttTII)-based covalent organic frameworks (COFs) have been shown to offer low band gaps and intriguing optical and electrochromic properties. So far, only one tetragonal thienothiophene thienoisoindigo-based COF has been reported showing stable and fast electrochromism and good coloration efficiencies. We have developed two novel COFs using this versatile and nearly linear ttTII building block in a tetragonal and a hexagonal framework geometry to demonstrate their attractive features for optoelectronic applications of thienoisoindigo-based COFs. Both COFs exhibit good electrical conductivities, show promising optical absorption features, are redox-active, and exhibit a strong electrochromic behavior when applying an external electrical stimulus, shifting the optical absorption even farther into the NIR region of the electromagnetic spectrum and achieving absorbance changes of up to 2.5 OD. Cycle-stable cyclic voltammograms with distinct oxidation and reduction waves reveal excellent reversibility and electrochromic switching over 200 cycles and confirm the high stability of the frameworks. Furthermore, high coloration efficiencies in the NIR region and fast switching speeds for coloration/decoloration as fast as 0.75 s/0.37 s for the Cz-ttTII COF and 0.61 s/0.29 s for the TAPB-ttTII COF at 550 nm excitation were observed, outperforming many known electrochromic materials, and offering options for a great variety of applications, such as stimuli-responsive coatings, optical information processing, or thermal control.
Collapse
Affiliation(s)
- Katharina Muggli
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Laura Spies
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
16
|
Li Y, Feng J, Zhang Y, Wang C, Hao J, Wang Y, Xu Y, Cheng X. Covalent organic frameworks@ZIF-67 derived novel nanocomposite catalyst effectively activated peroxymonosulfate to degrade organic pollutants. CHEMOSPHERE 2023; 311:137038. [PMID: 36323385 DOI: 10.1016/j.chemosphere.2022.137038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Metal organic frameworks-Covalent organic frameworks (MOFs-COFs) nanocomposites could improve the catalytic performance. Herein, a novel nanocomposite catalyst (CC@Co3O4) derived from MOFs-COFs (COF@ZIF-67) was prepared on peroxymonosulfate (PMS) activation for bisphenol A (BPA) and rhodamine B (RhB) degradation. Owing to the Co species, oxygen vacancy (OV), surface hydroxyl (-OH), graphite N and ketone groups (C=O), the CC@Co3O4 exhibited higher catalytic degradation performance and total organic carbon (TOC) for BPA (93.8% and 22.3%) and RhB (98.2% and 82.5%) with a small quantity of catalyst (0.10 g/L) and low concentration of PMS (0.20 g/L) even without pH adjustment. Sulfate radicals (•SO4-), hydroxyl radicals (•OH), single oxygen (1O2), superoxide radicals (•O2-) and electron transfer process were all involved in the degradation of BPA and RhB. Among them, the degradation of BPA and RhB mainly depended on •O2- and 1O2, respectively. Meanwhile, the degradation pathways of BPA and RhB were proposed, and the biotoxicity of the degradation products was evaluated by freshwater chlorella. The results illustrated that the degradation products were environmentally friendly to organisms. In addition, the role of COF in the nanocomposites was also studied. The addition of COF remarkably improved the catalytic performance of CC@Co3O4 due to the faster electron transfer, more graphite N and C=O. Overall, this work may open the door to the development of COF-based catalysts in the field of water pollutant remediation.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Jingbo Feng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Yan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Chen Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Junjie Hao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, PR China
| | - Yukun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Yinyin Xu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
17
|
Zha X, Sun X, Chu H, Wang Y. Synthesis of bimetallic covalent organic framework nanocomposite for enhanced electrochemical detection of gallic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Chu H, Sun X, Zha X, Zhang Y, Wang Y. Synthesis of core-shell structured metal oxide@covalent organic framework composites as a novel electrochemical platform for dopamine sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Porphyrin zirconium-based MOF dispersed single Pt atom for electrocatalytic sensing levodopa. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs. Anal Bioanal Chem 2022; 414:6791-6800. [PMID: 35931786 DOI: 10.1007/s00216-022-04242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022]
Abstract
Folic acid (FA) is essential for human health, particularly for pregnant women and infants. In this work, a glassy carbon electrode (GCE) was modified by a bimetallic layer of Cu/Co nanoparticles (CuNPs/CoNPs) as a synergistic amplification element by simple step-by-step electrodeposition, and was used for sensitive detection of FA. The proposed CuNPs/CoNPs/GCE sensor was characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). Then, under optimal conditions, a linear relationship was obtained in the wide range of 110.00-1750.00 μM for the detection of FA with a limit of detection (LOD) of 34.79 μM (S/N = 3). The sensitivity was calculated as 0.096 μA μM-1 cm-2. Some interfering compounds including glucose (Glc), biotin, dopamine (DA), and glutamic acid (Glu) showed little effect on the detection of FA by amperometry (i-t). Finally, the average recovery obtained was in a range of 91.77-110.06%, with a relative standard deviation (RSD) less than 8.00% in FA tablets, indicating that the proposed sensor can accurately and effectively detect the FA content in FA tablets.
Collapse
|
21
|
Pang YH, Wang YY, Shen XF, Qiao JY. Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Mikrochim Acta 2022; 189:189. [PMID: 35412090 DOI: 10.1007/s00604-022-05297-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 01/23/2023]
Abstract
A novel ratiometric electrochemical sensor was developed based on a carbon cloth electrodeposited with silver nanoparticles and drop-coated by covalent organic framework (COF-LZU1) for simultaneous determination of bisphenol A (BPA) and bisphenol S (BPS). Carbon cloth exhibited a significantly larger electrochemical active area than common glassy carbon electrodes (27.5 times). Silver nanoparticles not only provided a stable reference signal but also enhanced electroactivity for the oxidation of BPA and BPS. COF-LZU1 with good adsorption performance and large periodic π-arrays promoted the enrichment of BPA and BPS to further increase the current response. Compared with the traditional single-signal electrochemical sensor, the developed ratiometric sensor exhibited better reproducibility and a wider linear range for BPA and BPS from 0.5 to 100 μM with a limit of detection of 0.15 μM. Furthermore, the developed sensor showed excellent stability and superior anti-interference ability. The real sample analysis for BPA and BPS has been successfully carried out in mineral water, electrolyte drink, tea, juice, and beer with recoveries of 88.3-111.7%. The developed ratiometric sensor is expected to be a candidate for the preparation of other electrochemical sensors and the analysis of additional practical samples.
Collapse
Affiliation(s)
- Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yu Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
22
|
Simultaneous determination of aesculin and aesculetin and their interactions with DNA using carbon fiber microelectrode modified by Pt–Au bimetallic nanoparticles. Anal Chim Acta 2022; 1202:339664. [DOI: 10.1016/j.aca.2022.339664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
|
23
|
Sun L, Guo H, Pan Z, Liu B, Zhang T, Yang M, Wu N, Zhang J, Yang F, Yang W. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Sun X, Xie Y, chu H, long M, zhang M, Wang Y, Hu X. A highly sensitive electrochemical biosensor for the detection of hydroquinone based on magnetic covalent organic frameworks and enzyme for signal amplification. NEW J CHEM 2022. [DOI: 10.1039/d2nj01764d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Possessing prominent customization in structural design as well as unique physicochemical properties, covalent organic frameworks (COFs) show great potential in biosensing field. In this paper, we prepared a novel COF...
Collapse
|
25
|
Xie Y, Wang N, Sun X, Chu H, Wang Y, Hu X. Triple-signaling amplification strategy based electrochemical sensor design: boosting synergistic catalysis in metal-metalloporphyrin-covalent organic frameworks for sensitive bisphenol A detection. Analyst 2021; 146:4585-4594. [PMID: 34159957 DOI: 10.1039/d1an00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A covalent organic framework (COF) is a promising type of porous material with customizable surface characteristics. Confining multiple catalytic units within a mesoporous COF can generate abundant active sites and improve the catalytic performance. In this work, a COF with both metalloporphyrin and a metal nanoparticle complex denoted as hemin/TAPB-DMTP-COF/AuNPs (TAPB: 1,3,5-tris(4-amino-phenyl)benzene, DMTP: 2,5-dimethoxyterephaldehyde, AuNPs: Au nanoparticles) has been successfully fabricated through a hierarchical encapsulation method. The as-synthesized composite was then employed to construct an electrochemical sensing platform for the efficient detection of bisphenol A (BPA). Under the optimal conditions, the hemin/TAPB-DMTP-COF/AuNP sensor presented a linear range of 0.01-3 μmol L-1 and a low detection limit of 3.5 nmol L-1. The satisfactory signal amplification is based on a triple-signaling amplification strategy due to the abundant Fe3+ sites of Fe-porphyrin, high conductivity of AuNPs and a large specific surface area of the TAPB-DMTP-COF. The proposed method was used to measure the content of BPA in different water samples with a satisfactory recovery from 95.5 to 104.0%, suggesting the great potential of the sensor in practical applications.
Collapse
Affiliation(s)
- Yao Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, 200240, China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
26
|
Structural Characteristics and Environmental Applications of Covalent Organic Frameworks. ENERGIES 2021. [DOI: 10.3390/en14082267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Covalent organic frameworks (COFs) are emerging crystalline polymeric materials with highly ordered intrinsic and uniform pores. Their synthesis involves reticular chemistry, which offers the freedom of choosing building precursors from a large bank with distinct geometries and functionalities. The pore sizes of COFs, as well as their geometry and functionalities, can be pre-designed, giving them an immense opportunity in various fields. In this mini-review, we will focus on the use of COFs in the removal of environmentally hazardous metal ions and chemicals through adsorption and separation. The review will introduce basic aspects of COFs and their advantages over other purification materials. Various fabrication strategies of COFs will be introduced in relation to the separation field. Finally, the challenges of COFs and their future perspectives in this field will be briefly outlined.
Collapse
|