1
|
Gong Y, Han H, Ma Z. Ultrasensitive self-powered biosensor with facile chemical signal amplification strategy using hydrogen peroxide-triggered silver oxidation reaction. Talanta 2024; 279:126570. [PMID: 39018949 DOI: 10.1016/j.talanta.2024.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The amplification strategies used for self-powered biosensor based on biofuel cell (BFC-SPB) need to be further developed. Because the currently developed strategies utilized the complicated hybridization of DNA or poorly readable current signal of capacitors for amplification, which limits the practical application in public health emergencies. Here, we present a facile chemical amplification strategy for BFC-SPB. The 5-min amplification was triggered by simply adding H2O2 solution dropwise to the sensing cathode after the formation of the immune sandwich. The Ag NP of immunoprobe were oxidized to Ag(I), which can be served as the electron acceptor of the cathode. The amount of immunoprobe was positively correlated with that of the antigen, resulting in corresponding and high concentration of Ag(I) after the amplification, which enhanced the ability of the cathode as the electron acceptor. Meanwhile the glucose oxidation reaction (GOR) was performed on the bioanode modified with glucose oxidase (GOx). After assembling the bioanode and sensing cathode, the open circuit voltage of the BFC-SPB, measured by digital multimeter, distinctly rised with the elevated concentration of the antigen. To demonstrate the proof of concept, immunoglobulin G (IgG), selecting as a model analyte, was sensitively detected using this method. Result indicated that the limit of detection was 4.4 fg mL-1 (0.03 amol mL-1) in the linear range of 1 pg mL-1-10 μg mL-1. This work initiates a brand-new way of chemical amplification strategy for BFC-SPB, and offers a promising platform for practical applications.
Collapse
Affiliation(s)
- Yichen Gong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens Bioelectron 2023; 243:115774. [PMID: 39492184 DOI: 10.1016/j.bios.2023.115774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Molecularly imprinted polymers (MIPs), which first appeared over half a century ago, are now attracting considerable attention as artificial receptors, particularly for sensing. MIPs, especially applied to biomedical analysis in biofluids, contribute significantly to patient diagnosis at the point of care, thereby allowing health monitoring. Despite the importance given to MIPs, removal of templates and binding of analytes have received little attention and are currently the least focused steps in MIP development. This critical review is dedicated to a comprehensive analysis and discussion of cutting-edge concepts and methodologies in the removal and binding steps pertaining to various types of analytes, including ions, molecules, epitopes, proteins, viruses, and bacteria. The central objective of this review is to comprehensively examine and discuss a range of removal methods, including soxhlet extraction, immersion, microwave-assisted technique, ultrasonication, electrochemical approach, and proteolytic digestion, among others. Additionally, we will explore various binding methods, such as soaking, drop-casting, and batch sorption, to provide a comprehensive overview of the subject. Furthermore, the current challenges and perspectives in removal and binding are highlighted. Our review, at the interface of chemistry and sensors, will offer a wide range of opportunities for researchers whose interests include MIPs, (bio)sensors, analytical chemistry, and diagnostics.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
3
|
Cheubong C, Sunayama H, Takano E, Kitayama Y, Minami H, Takeuchi T. A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract. NANOSCALE 2023; 15:15171-15178. [PMID: 37641944 DOI: 10.1039/d3nr02863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, we prepared molecularly imprinted polymer nanogels with good affinity for the Fc domain of immunoglobulin G (IgG) using 4-(2-methacrylamidoethylaminomethyl) phenylboronic acid as a modifiable functional monomer for post-imprinting in-cavity modification of a fluorescent dye (F-Fc-MIP-NGs). A novel nanogel-based biotic/abiotic hybrid sandwich detection system for porcine serum albumin (PSA) was developed using F-Fc-MIP-NGs as an alternative to a secondary antibody for fluorescence detection and another molecularly imprinted polymer nanogel capable of recognizing PSA (PSA-MIP-NGs) as a capturing artificial antibody, along with a natural antibody toward PSA (Anti-PSA) that was used as a primary antibody. After incubation of PSA and Anti-PSA with F-Fc-MIP-NGs, the PSA/Anti-PSA/F-Fc-MIP-NGs complex was captured by immobilized PSA-MIP-NGs for fluorescence measurements. The analysis time was less than 30 min for detecting pork adulteration of 0.01 wt% in halal beef and lamb meats. The detection limit was comparable to that of frequently used immunoassays. Therefore, we believe that this method is a promising, sensitive, and rapid detection method for impurities in real samples and could be a simple, inexpensive, and rapid alternative to conventional methods that have cumbersome procedures of 4 hours or more.
Collapse
Affiliation(s)
- Chehasan Cheubong
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani 12110, Thailand
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Eri Takano
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Yukiya Kitayama
- Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideto Minami
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
- Innovation Commercialization Division, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Dong Q, Yang M, Wang Y, Guan Y, Zhang W, Zhang Y. Peptide-crosslinked molecularly imprinted polymers for efficient separation of immunoglobulin G from human serum. Biomater Sci 2023; 11:1398-1407. [PMID: 36594639 DOI: 10.1039/d2bm01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low-cost and highly effective methods are highly desirable to replace the costly ethanol fractionation and affinity chromatography in IgG isolation from human plasma. Molecularly imprinted polymers (MIPs) of IgG are potential candidates, however, they still suffer from severe problems such as difficult template removal and low imprinting efficiency. Here, a recently developed strategy was adopted to overcome these problems. The MIPs were synthesized using poly(L-glutamic acid) (PLGA) peptide crosslinkers instead of commonly used crosslinkers, such as N,N-methylenebisacrylamide (BIS). Because of the pH-induced helix-coil transition and the precise folding of the peptide segments in the polymers, the imprint cavities can be enlarged by adjusting the pH from 5.0 to 7.0, but their original size and shape are restored when the pH is adjusted back. Therefore, the IgG template can be eluted completely under mild conditions, and significantly improved imprinting efficiency can be achieved. Compared with BIS-crosslinked MIP, 8.6 times more binding sites can be created by molecular imprinting PLGA-crosslinked MIP. The factors influencing the performance of the MIP were studied systematically. An optimized MIP with a high adsorption capacity (612.5 mg g-1), high IF (4.92), and high selectivity was obtained. The adsorption capacity and selectivity of the MIP are much higher than the previously reported IgG MIPs. Because of its high adsorption capacity and selectivity, it can separate IgG from human serum effectively, affording high purity products.
Collapse
Affiliation(s)
- Qiujing Dong
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengmeng Yang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yafei Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Tlili A, Ayed D, Attia G, Fourati N, Zerrouki C, Othmane A. Comparative study of two surface techniques of proteins imprinting in a polydopamine matrix. Application to immunoglobulin detection. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Chiarello M, Anfossi L, Cavalera S, Di Nardo F, Serra T, Sordello F, Baggiani C. Rabbit IgG-imprinted nanoMIPs by solid phase synthesis: the effect of cross-linkers on their affinity and selectivity. J Mater Chem B 2022; 10:6724-6731. [PMID: 35343553 DOI: 10.1039/d2tb00245k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid phase synthesis (SPS) of molecularly imprinted nanopolymers (nanoMIPs) represents an innovative method to prepare nanomaterials with tailor-made molecular recognition properties towards peptides and proteins. The synthesis of nanoMIPs by SPS usually involves a pre-polymerization formulation, where the cross-linker is invariably N,N'-methylen-bis-acrylamide (BIS). To date, the effect of cross-linkers on the binding properties of nanoMIPs prepared using cross-linkers other than BIS has never been reported. In this work, in order to investigate the effect of different cross-linkers in protein-imprinted nanoMIPs prepared by SPS, alongside BIS we considered other similar cross-linkers: N,N'-ethylene dimethacrylamide (EDAM), N,O-bis-methacryloylethanolamine (NOBE), ethylene glycol dimethacrilate (EDMA) and glycerol dimethacrylate (GDMA), replacing BIS with them in pre-polymerization mixtures. The synthetized nanoMIPs were homogeneous, with a polydispersity index of 0.24-0.30 and a mean diameter of 129-169 nm in water. The binding properties of the nanoMIPs were measured via equilibrium partition experiments with the template, rabbit IgG (RIgG), and the selectivity was evaluated with respect to bovine IgG (BIgG), bovine serum albumin (BSA) and hen egg lysozyme (LZM). The experimental results show that all the cross-linkers, with the exception of EDMA, endowed nanoMIPs with high binding affinities for the template (BIS: 16.0 × 106 mol-1 L, EDAM: 8.8 × 106 mol-1 L, NOBE: 15.8 × 106 mol-1 L, and GDMA: 12.8 × 106 mol-1 L), medium to high imprinting factors (BIS: 12.3, EDAM: 5.5, NOBE: 7.2, and GDMA: 11.6) and good selectivity towards other proteins but markedly dependent on the structure of the cross-linker, confirming the importance of the latter in the SPS of imprinted nanopolymers.
Collapse
Affiliation(s)
- Matteo Chiarello
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Laura Anfossi
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Simone Cavalera
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Fabio Di Nardo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Thea Serra
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Fabrizio Sordello
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Claudio Baggiani
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| |
Collapse
|
8
|
Preparation and properties of hemoglobin (Hb)-imprinted poly (ionic liquid)s via seATRP in only 5 μL Volumes. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Zhang Y, Li P, Hou M, Chen L, Wang J, Yang H, Feng W. An electrochemical biosensor based on ARGET ATRP with DSN-assisted target recycling for sensitive detection of tobacco mosaic virus RNA. Bioelectrochemistry 2022; 144:108037. [PMID: 34906819 DOI: 10.1016/j.bioelechem.2021.108037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
Herein, an electrochemical biosensor for detecting tobacco mosaic virus (TMV) RNA is constructed by activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) combined with duplex-specific nuclease (DSN)-assisted target recycling. First, the captured DNA (cDNA) is self-assembled on the electrode surface and hybridizes with the TMV RNA (tRNA) to form cDNA/tRNA hybrids. And then the initiator of ARGET ATRP (α-bromoisobutyric acid, BMP) is attached to the cDNA via an amide bond and later triggers ARGET ATRP. Many electroactive monomers (ferrocenylmethyl methacrylate, FMMA) are polymerized and a remarkable electrical signal response of ferrocene (Fc) is obtained. However, with the present of DSN, DSN cleaves the cDNA/tRNA hybrid and releases tRNA to hybridize with another cDNA, thereby causing significant shortening of the length of the cDNA. The number of polymer chains on the electrode surface is drastically reduced, which is followed by a noticeable reduction in the signal of Fc. The method shows high sensitivity, superior selectivity, excellent stability and good reproducibility under optimal conditions with the limit of detection (LOD) of 2.9 fM. Furthermore, the biosensor showed satisfactory applicability in detecting tRNA in real samples, thereby demonstrating the potential of the method for practical TMV RNA detection.
Collapse
Affiliation(s)
- Yaping Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Peipei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Mengyuan Hou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Luyao Chen
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jianfeng Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
10
|
Gerdan Z, Saylan Y, Uğur M, Denizli A. Ion-Imprinted Polymer-on-a-Sensor for Copper Detection. BIOSENSORS 2022; 12:91. [PMID: 35200351 PMCID: PMC8869677 DOI: 10.3390/bios12020091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of metal ions in the body is caused by human activities and industrial uses. Among these metal ions, copper is the third most abundant ion found in the human body and is indispensable for health because it works as a catalyst in the iron absorption processes. However, high doses of copper ions have been reported to generate various diseases. Different types of sensors are used to detect metal ions for several applications. To design selective and specific recognition sites on the sensor surfaces, molecular imprinting is one of the most used alteration methods to detect targets by mimicking natural recognition molecules. In this study, an ion-imprinted polymer-integrated plasmonic sensor was prepared to selectively detect copper (Cu(II)) ions in real-time. Following different characterization experiments, the Cu(II)-imprinted plasmonic sensor was employed for kinetic, selectivity, and reusability studies. According to the results, it was observed that this sensor can measure with 96% accuracy in the Cu(II) concentration range of 0.04-5 μM in buffer solution. The limit of detection and limit of quantification values were computed as 0.027 µM and 0.089 µM. The results also showed that this plasmonic sensor works successfully not only in a buffer solution but also in complex media such as plasma and urine.
Collapse
Affiliation(s)
- Zeynep Gerdan
- Graduate School of Biomedical Engineering, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey;
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Mukden Uğur
- Department of Robotics and Intelligent Systems, Institute of Science, Turkish German University, Istanbul 34820, Turkey;
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| |
Collapse
|
11
|
Kadadou D, Tizani L, Wadi VS, Banat F, Alsafar H, Yousef AF, Barceló D, Hasan SW. Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107070. [PMID: 34976725 PMCID: PMC8701687 DOI: 10.1016/j.jece.2021.107070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool for infectious diseases. Biosensors are far superior to conventional methods used for regular infection screening and surveillance testing. They are rapid, sensitive, inexpensive portable and carry no risk of exposure in their detection schemes. In this context, this review summarizes the most recently developed biosensors for the detection of bacteria and viruses in wastewater. The review also provides information on the new detection methods aimed at screening for SARS-CoV-2, which has now caused more than 4 million deaths. In addition, the review highlights the potential behind on-line and real-time detection of pathogens in wastewater pipelines. Most of the biosensors reported were not targeted to wastewater samples due to the complexity of the matrix. However, this review highlights on the performance factors of recently developed biosensors and discusses the importance of nanotechnology in amplifying the output signals, which in turn increases the accuracy and reliability of biosensors. Current research on the applicability of biosensors in wastewater promises a dramatic change to the conventional approach in the field of medical screening.
Collapse
Affiliation(s)
- Dana Kadadou
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lina Tizani
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Emirates Bio-research center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F Yousef
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer de Jordi Girona 1826, 08034 Barcelona, Spain
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
13
|
Cui Z, Guo L, Jin Z, Ma L, Yang H, Miao M. Highly sensitive and specific assessment of ochratoxin A in herbal medicines via activator regeneration by electron transfer ATRP. NEW J CHEM 2022. [DOI: 10.1039/d2nj03180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A signal-off fluorescence biosensor for highly sensitive detection of OTA was constructed via the ARGET ATRP signal amplification strategy.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Zhenyu Jin
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
14
|
Reville EK, Sylvester EH, Benware SJ, Negi SS, Berda EB. Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers. Polym Chem 2022. [DOI: 10.1039/d1py01472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecularly imprinted polymers (MIPs) are unlocking the door to synthetic materials that are capable of molecular recognition.
Collapse
Affiliation(s)
- Erinn K. Reville
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| | | | - Sarah J. Benware
- Department of Chemistry, University of Wisconsin-Madison, 54706, Madison, WI, USA
| | - Shreeya S. Negi
- Department of Chemistry and Biochemistry, California Polytechnic State University, 93410, San Luis Obispo, CA, USA
| | - Erik B. Berda
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| |
Collapse
|
15
|
de Ávila Gonçalves S, R Rodrigues P, Pioli Vieira R. Metal-Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100221. [PMID: 34223686 DOI: 10.1002/marc.202100221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Plínio R Rodrigues
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|