1
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Chmayssem A, Nadolska M, Tubbs E, Sadowska K, Vadgma P, Shitanda I, Tsujimura S, Lattach Y, Peacock M, Tingry S, Marinesco S, Mailley P, Lablanche S, Benhamou PY, Zebda A. Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochim Acta 2023; 190:177. [PMID: 37022500 DOI: 10.1007/s00604-023-05743-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.
Collapse
Affiliation(s)
- Ayman Chmayssem
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France
| | - Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, 38000, Grenoble, Biomics, France
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Pankaj Vadgma
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Seiya Tsujimura
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-5358, Japan
| | | | - Martin Peacock
- Zimmer and Peacock, Nedre Vei 8, Bldg 24, 3187, Horten, Norway
| | - Sophie Tingry
- Institut Européen Des Membranes, UMR 5635, IEM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, UMR5292, Inserm U1028, CNRS, Univ. Claude-Bernard-Lyon I, 69675, Lyon 08, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, DTBS, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Pierre Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Abdelkader Zebda
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France.
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| |
Collapse
|
4
|
Sciurti E, Blasi L, Prontera CT, Barca A, Giampetruzzi L, Verri T, Siciliano PA, Francioso L. TEER and Ion Selective Transwell-Integrated Sensors System for Caco-2 Cell Model. MICROMACHINES 2023; 14:496. [PMID: 36984903 PMCID: PMC10054836 DOI: 10.3390/mi14030496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.
Collapse
Affiliation(s)
- Elisa Sciurti
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Laura Blasi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Carmela Tania Prontera
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Lucia Giampetruzzi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pietro Aleardo Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Luca Francioso
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| |
Collapse
|
5
|
Chmayssem A, Shalayel I, Marinesco S, Zebda A. Investigation of GOx Stability in a Chitosan Matrix: Applications for Enzymatic Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23010465. [PMID: 36617063 PMCID: PMC9824325 DOI: 10.3390/s23010465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/12/2023]
Abstract
In this study, we designed a new biosensing membrane for the development of an electrochemical glucose biosensor. To proceed, we used a chitosan-based hydrogel that entraps glucose oxidase enzyme (GOx), and we crosslinked the whole matrix using glutaraldehyde, which is known for its quick and reactive crosslinking behavior. Then, the stability of the designed biosensors was investigated over time, according to different storage conditions (in PBS solution at temperatures of 4 °C and 37 °C and in the presence or absence of glucose). In some specific conditions, we found that our biosensor is capable of maintaining its stability for more than six months of storage. We also included catalase to protect the biosensing membranes from the enzymatic reaction by-products (e.g., hydrogen peroxide). This design protects the biocatalytic activity of GOx and enhances the lifetime of the biosensor.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000 Grenoble, France
| | - Ibrahim Shalayel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000 Grenoble, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69373 Lyon, France
| | - Abdelkader Zebda
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000 Grenoble, France
| |
Collapse
|
6
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|
7
|
Soranzo T, Ben Tahar A, Chmayssem A, Zelsmann M, Vadgama P, Lenormand JL, Cinquin P, K. Martin D, Zebda A. Electrochemical Biosensing of Glucose Based on the Enzymatic Reduction of Glucose. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197105. [PMID: 36236202 PMCID: PMC9572614 DOI: 10.3390/s22197105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/12/2023]
Abstract
In this work, the enzyme aldehyde reductase, also known as aldose reductase, was synthesized and cloned from a human gene. Spectrophotometric measurements show that in presence of the nicotinamide adenine dinucleotide phosphate cofactor (NADPH), the aldehyde reductase catalyzed the reduction of glucose to sorbitol. Electrochemical measurements performed on an electrodeposited poly(methylene green)-modified gold electrode showed that in the presence of the enzyme aldehyde reductase, the electrocatalytic oxidation current of NADPH decreased drastically after the addition of glucose. These results demonstrate that aldehyde reductase is an enzyme that allows the construction of an efficient electrochemical glucose biosensor based on glucose reduction.
Collapse
Affiliation(s)
- Thomas Soranzo
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Awatef Ben Tahar
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Ayman Chmayssem
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA-LETI, Grenoble INP, LTM, F-38054 Grenoble, France
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jean-Luc Lenormand
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Phillipe Cinquin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Donald K. Martin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Abdelkader Zebda
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| |
Collapse
|
8
|
Anshori I, Lukito V, Adhawiyah R, Putri D, Harimurti S, Rajab TLE, Pradana A, Akbar M, Syamsunarno MRAA, Handayani M, Purwidyantri A, Prabowo BA. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing. MICROMACHINES 2022; 13:mi13081197. [PMID: 36014119 PMCID: PMC9413493 DOI: 10.3390/mi13081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
We present a low-cost and simple method to fabricate a novel lock-and-key mixer microfluidics using an economic stereolithography (SLA) three-dimensional (3D) printer, which costs less than USD 400 for the investment. The proposed study is promising for a high throughput fabrication module, typically limited by conventional microfluidics fabrications, such as photolithography and polymer-casting methods. We demonstrate the novel modular lock-and-key mixer for the connector and its chamber modules with optimized parameters, such as exposure condition and printing orientation. In addition, the optimization of post-processing was performed to investigate the reliability of the fabricated hollow structures, which are fundamental to creating a fluidic channel or chamber. We found out that by using an inexpensive 3D printer, the fabricated resolution can be pushed down to 850 µm and 550 µm size for squared- and circled-shapes, respectively, by the gradual hollow structure, applying vertical printing orientation. These strategies opened up the possibility of developing straightforward microfluidics platforms that could replace conventional microfluidics mold fabrication methods, such as photolithography and milling, which are costly and time consuming. Considerably cheap commercial resin and its tiny volume employed for a single printing procedure significantly cut down the estimated fabrication cost to less than 50 cents USD/module. The simulation study unravels the prominent properties of the fabricated devices for biological fluid mixers, such as PBS, urine and plasma blood. This study is eminently prospective toward microfluidics application in clinical biosensing, where disposable, low-cost, high-throughput, and reproducible chips are highly required.
Collapse
Affiliation(s)
- Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia;
- Correspondence: (I.A.); (B.A.P.)
| | - Vincent Lukito
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Rafita Adhawiyah
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Delpita Putri
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Suksmandhira Harimurti
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Tati Latifah Erawati Rajab
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Arfat Pradana
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia;
| | - Mohammad Akbar
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran and Dr. Hasan Sadikin General Hospital, Bandung 40161, Indonesia;
| | | | - Murni Handayani
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
| | - Agnes Purwidyantri
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Briliant Adhi Prabowo
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Correspondence: (I.A.); (B.A.P.)
| |
Collapse
|
9
|
Chmayssem A, Tanase CE, Verplanck N, Gougis M, Mourier V, Zebda A, Ghaemmaghami AM, Mailley P. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material. BIOSENSORS 2022; 12:bios12070452. [PMID: 35884254 PMCID: PMC9313146 DOI: 10.3390/bios12070452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is widely accepted as an effective and non-destructive method to assess cell health during cell-culture. However, there is a lack of compact devices compatible with microfluidic integration and microscopy that could provide the real-time and non-invasive monitoring of cell-cultures using EIS. In this paper, we reported the design and characterization of a modular EIS testing system based on a patented technology. This device was fabricated using easily processable methodologies including screen-printing of the impedance electrodes and molding or micromachining of the cell culture chamber with an easy assembly procedure. Accordingly, to obtain processable, biocompatible and sterilizable electrode materials that lower the impact of interfacial impedance on TEER (Transepithelial electrical resistance) measurements, and to enable concomitant microscopy observations, we optimized the formulation of the electrode inks and the design of the EIS electrodes, respectively. First, electrode materials were based on carbon biocompatible inks enriched with IrOx particles to obtain low interfacial impedance electrodes approaching the performances of classical non-biocompatible Ag/AgCl second-species electrodes. Secondly, we proposed three original electrode designs, which were compared to classical disk electrodes that were optically compatible with microscopy. We assessed the impact of the electrode design on the response of the impedance sensor using COMSOL Multiphysics. Finally, the performance of the impedance spectroscopy devices was assessed in vitro using human airway epithelial cell cultures.
Collapse
Affiliation(s)
- Ayman Chmayssem
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
- University Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France;
| | - Constantin Edi Tanase
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (C.E.T.); (A.M.G.)
| | - Nicolas Verplanck
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| | - Maxime Gougis
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| | - Véronique Mourier
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| | - Abdelkader Zebda
- University Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France;
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (C.E.T.); (A.M.G.)
| | - Pascal Mailley
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| |
Collapse
|
10
|
Tango R, Koeda A, Nagamine K, Tokito S, Niwa O, Ishikawa S, Sugimoto M. Development of a highly sensitive Prussian-blue-based enzymatic biosensor for L-carnitine employing the thiol/disulfide exchange reaction. ANAL SCI 2022; 38:963-968. [PMID: 35578012 DOI: 10.1007/s44211-022-00122-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 11/01/2022]
Abstract
This is the first report of conducting proof-of-concept study for amperometric acetyltransferase-based L-carnitine sensor by employing the thiol/disulfide exchange reaction. The carnitine acetyltransferase (CrAT) catalyzes the reaction between acetyl-CoA and L-carnitine to produce CoA which is difficult to detect directly by electrochemical methods owing to steric hindrance and electrostatic effect of CoA. The thiol/disulfide exchange reaction between CoA and cystamine was mediated in the enzymatic reaction to produce electrochemically detectable low molecular weight of cationic cysteamine. The sensor exhibited high sensitivity and selectivity for L-carnitine in the concentration range 0.28-50 µM with a limit of detection of 0.28 µM. This is a promising strategy for L-carnitine sensing in point-of-care testing applications.
Collapse
Affiliation(s)
- Ryota Tango
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Aya Koeda
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan.
| | - Shizuo Tokito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Osamu Niwa
- Saitama Institute of Technology, 1690, Fusaiji, Fukaya, 369-0293, Saitama, Japan
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2, lida-nishi, Yamagata, 990-9585, Japan
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Tokyo, 160-0023, Japan
| |
Collapse
|
11
|
Quintard C, Tubbs E, Achard JL, Navarro F, Gidrol X, Fouillet Y. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet. Biosens Bioelectron 2022; 202:113967. [DOI: 10.1016/j.bios.2022.113967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023]
|
12
|
Chmayssem A, Petit L, Verplanck N, Mourier V, Vignoud S, Engin Vrana N, Mailley P. Characterization of the Impact of Classical Cell‐culture Media on the Response of Electrochemical Sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes CEA, LETI, DTBS F-38000 Grenoble France
| | - Lauriane Petit
- Inserm UMR 1121 1 rue Eugène Boeckel 67000 Strasbourg France
| | | | | | | | | | - Pascal Mailley
- Univ. Grenoble Alpes CEA, LETI, DTBS F-38000 Grenoble France
| |
Collapse
|
13
|
|