1
|
Sun Y, Sun W, Wang J, Song C, Hu Y, Zhao R, Zhao W, He L. Glutathione-functionalized covalent organic frameworks@silica as a hydrophilic-hydrophobic balanced mixed-mode stationary phase for highly efficient separation of compounds with a wide range of polarity. Anal Chim Acta 2025; 1335:343477. [PMID: 39643289 DOI: 10.1016/j.aca.2024.343477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Covalent organic frameworks (COFs) are a highly promising stationary phase for high-performance liquid chromatography (HPLC), but the separation of polar compounds is limited by their low hydrophilicity. Therefore, it is crucial to develop novel COFs-based stationary phases with balanced hydrophilicity-hydrophobicity for the efficient separation of different polar compounds. RESULTS In this paper, glutathione (GSH)-functionalized COFs@silica microspheres (GSH-COFs@SiO2) were synthesized via a two-step, post-synthesis modification strategy. The COFs particles was constructed onto silica surface by the covalent conjugation of 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinylterephthalaldehyde. GSH containing abundant -NH2 and -COOH groups was bonded onto the surface of COFs@SiO2 to further enhance hydrophilicity. The resulting GSH-COFs@SiO2 exhibited balanced hydrophilicity-hydrophobicity and can be used in hydrophilic/reversed-phase liquid chromatography modes through multiple retention mechanisms. Consequently, a variety of compounds with different polarity, including nucleosides/bases, benzoic acids, anilines, phenols, alkylbenzenes and polycyclic aromatic hydrocarbons, were well separated with ideal resolution, satisfactory column efficiency and good peak shapes. Furthermore, this novel column exhibited remarkable column stability, as evidenced by intra-day relative standard deviations of 0.08 %-0.18 % for retention time and 0.45 %-1.47 % for peak area. SIGNIFICANCE AND NOVELTY This work demonstrates the superior hydrophilic-hydrophobic selectivity of GSH-COFs@SiO2 stationary phases towards compounds with a wide range of polarity and provides a very facile and easily popularized post-synthetic modification route for hydrophilic-hydrophobic balanced COFs-based HPLC stationary phases.
Collapse
Affiliation(s)
- Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Wenjie Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Junqi Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Chenchen Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Renyong Zhao
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Chen T, Shu Y, Song G, Liu T, Jiang J, Jiang B, Zong X, Zhao Z, Zhao B, Zeng Y. Per aqueous liquid chromatography of Radix hedysari polysaccharides and Au nanoparticles co-functionalized stationary phase and its application in the determination of iridoids and phenylethanols. Anal Chim Acta 2024; 1329:343247. [PMID: 39396309 DOI: 10.1016/j.aca.2024.343247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Hydrophilic Interaction Liquid Chromatography (HILIC) is an outstanding strategy for the challenging analysis of hydrophilic and polar components. Nevertheless, analysis under HILIC mode typically consumes 70%-95 % acetonitrile with the disadvantage of high analytical costs, being environmentally unfriendly and causing biohazards, which is not in line with the concept of green chromatography. Research has shown that Per Aqueous Liquid Chromatography (PALC) simultaneously emphasizes efficient analytical performance for hydrophilic analytes and green analytical concepts. The development of new PALC stationary phases with superior performance is necessary. RESULTS In this paper, silanized silica was sequentially subjected to esterification reaction, polymerization reaction and covalent bonding through five steps to obtain SiO2-RHP-AuNPs material, which was prepared as a novel stationary phase for PALC. Comprehensive characterization of the materials by means of Fourier transform infrared spectroscopy, Transmission scanning electron microscope, Elemental analysis and Thermogravimetric analysis showed the successful bonding of the functionalized groups on the original silica. The polymeric stationary phase based on Radix hedysari polysaccharide and Au nanoparticles had higher density of hydroxyl and ester functionalized groups. The Au nanoparticles upgraded their mesoporous structure and thermal stability, providing exceptional chromatographic performance and selectivity for chromatographic analysis. The influence of mobile phase water content, salt concentration, pH and column temperature on the retention behavior was evaluated. The novel Column was found to exhibit a dual mechanism of hydrophobic interactions/ion exchange interactions in a mobile phase with high water content. SIGNIFICANCE AND NOVELTY The separation efficiency and selectivity of SiO2-RHP-AuNPs columns for synthetic pigments and organic acids in PALC mode were superior to those of commercial HILIC and C18 columns. In addition, a method for the determination of seven active ingredients in Fructus Ligustri Lucidi by SiO2-RHP-AuNPs column in PALC mode was developed. The method had good stability, reproducibility and accuracy, which was capable of realizing the quality evaluation of Chinese Materia Medicas.
Collapse
Affiliation(s)
- Tong Chen
- Comprehensive Technology Centre, Zhenjiang Customs District PR China, Zhenjiang, 212008, China.
| | - Ye Shu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Guangsan Song
- Comprehensive Technology Centre, Zhenjiang Customs District PR China, Zhenjiang, 212008, China.
| | - Tao Liu
- Comprehensive Technology Centre, Zhenjiang Customs District PR China, Zhenjiang, 212008, China.
| | - Jun Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Bingxin Jiang
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212003, China.
| | - Xufang Zong
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212003, China.
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Baixiu Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Yichen Zeng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Shen Q, Tang C, Xu X, Liu G, Shao S, Yao W, Dong S. Novel PEI/Zein core-shell composite as mixed-mode stationary phase for high performance liquid chromatography. J Chromatogr A 2024; 1730:465159. [PMID: 39025022 DOI: 10.1016/j.chroma.2024.465159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Based on the adhesion of polyethyleneimine (PEI), a novel PEI/zein co-modified core-shell stationary phase (PEI/Zein@SiO2) was prepared by doping zein to form a composite modification layer. The stationary phase achieved effective separation of nucleosides, bases and antibiotics in hydrophilic interaction mode on account of the hydrophilic groups of composite coating. With the hydrophobicity of zein, the flavones could be separated in reversed-phase mode. In short, the separation and analysis of hydrophilic/hydrophobic compounds were accomplished excellently by the PEI/Zein@SiO2 column with mixed double mode. The prepared chromatographic stationary phase not only avoided the dissolution of zein, but also covered the strong adsorption of some analytes caused by silica hydroxyl groups on the surface of silica spheres. The morphological structure and specific surface area of the material were reflected by various characterization techniques. Hydrophilic/hydrophobic compounds were used as tested analytes to research separation performance and retention mechanisms of PEI/Zein@SiO2 column. The stability and reproducibility of the PEI/Zein@SiO2 stationary phase were satisfied. Therefore, the modification of zein could improve the separation selectivity of stationary phase effectively for complex samples, which had the potential to be one of the significant potential application materials in stationary phase packing.
Collapse
Affiliation(s)
- Qing Shen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cong Tang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaomeng Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Shijun Shao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Wenxiu Yao
- Gansu Police College, Lanzhou 730046, PR China.
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Wang Z, Wang W, Luo AQ, Yuan LM. Recent progress for chiral stationary phases based on chiral porous materials in high-performance liquid chromatography and gas chromatography separation. J Sep Sci 2024; 47:e2400073. [PMID: 38965996 DOI: 10.1002/jssc.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Chirality is a fundamental property of nature. Separation and analysis of racemates are of great importance in the fields of medicine and the production of chiral biopharmaceutical intermediates. Chiral chromatography has the characteristics of a wide separation range, fast separation speed, and high efficiency. The development and preparation of novel chiral stationary phases with good chiral recognition and separation capacity is the core and key of chiral chromatographic separation and analysis. In this work, the representative research progress of novel chiral porous crystal materials including chiral covalent organic frameworks, chiral porous organic cages, chiral metal-organic frameworks, and chiral metal-organic cages used as chiral stationary phases of capillary gas chromatography and high-performance liquid chromatography over the last 4 years is reviewed in detail. The chiral recognition and separation properties of the representative studies in this review are also introduced and discussed.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ai-Qin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
5
|
Zhao Q, Zhao L, Zhang Y, Chen W, Tang S. Design of smart temperature-sensitive terpolymeric hydrogel for multi-applications in liquid chromatography. J Chromatogr A 2024; 1722:464867. [PMID: 38598895 DOI: 10.1016/j.chroma.2024.464867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Hydrogels with a unique three-dimensional network structure have been widely used in a variety of fields. However, hydrogels are prone to swelling under water-rich conditions, which severely limits their application in liquid chromatography. Therefore, producing a hydrogel with reliable performance and good mechanical property is essential. Smart temperature-sensitive chromatographic packings have attracted extensive attentions in recent years. In this work, sodium 4-styrenesulfonate and 1-octadecene were introduced into the poly(N-isopropylacrylamide) hydrogel to improve mechanical property and separation performance. As a consequence, a smart temperature-sensitive terpolymeric hydrogel modified silica stationary phase (ION-hydrogel@SiO2) was synthesized for multimode liquid chromatographic separation. It was found that this new ION-hydrogel@SiO2 column exhibited excellent chromatographic separation ability for a wide range of analytes. To a certain extent, this new column has a higher chromatographic separation efficiency compared to the commercial C18 column and XAmide column. Moreover, the use of low proportion of organic phase in chromatographic separation is conducive to the realization of green chromatography. By investigating the chromatographic separation mechanism, it has been demonstrated that the hydrogen bonding interaction is primarily responsible for the temperature-sensitive behavior of the hydrogel. Finally, the ION-hydrogel@SiO2 column was used for the determination of pyridoxine in the commercially available tablet samples. In conclusion, this study presents a feasible idea for the development of novel copolymer hydrogels as liquid chromatographic stationary phases.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Wang X, Peng H, Zhang Z, Wu J, Yu J, Zeng H, Yang H, Zhou G, Peng J. Graft copolymerization of anion and cation onto silica and application in mixed-mode of reversed phase/ hydrophilic interaction/ ion exchange chromatography. Talanta 2024; 266:125055. [PMID: 37567120 DOI: 10.1016/j.talanta.2023.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Ionic liquids (ILs) have turned out to be one of the best choices to fabricate mixed-mode stationary phases, this work aimed to investigate the possibility and merit of copolymerizing cations and anions as modifications. We prepared two ILs stationary phases, one of which was constructed by copolymerizing cation and anion (p-vinylbenzene sulfonate). Two stationary phases were characterized and comprehensively evaluated. The stationary phases showed great repeatability (RSD <0.87%) and high efficiency (up to 83,810 plate/m). Both stationary phases can operate under a mixed mode of reversed phase/hydrophilic interaction/ion exchange chromatography (RPLC/HILIC/IEC). Chromatographic evaluation results revealed that copolymerized anions endow stationary phase superior selectivity under RPLC and HILIC modes, so hydrophobic terphenyls isomer (under ACN/H2O = 35/65) and hydrophilic nucleotides and bases (under ACN/100 mM NH4FA buffer = 90/10) are better separated. Organic and inorganic anions showed entirely different retention behaviors on two stationary phases, and the mechanism was investigated by linear solvation energy relationship (LSER) and thermodynamic analysis. This work proved that copolymerizing cations and anions of ILs could be a promising method to prepare stationary phases, the retention property and mechanism need further research.
Collapse
Affiliation(s)
- Xiang Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zilong Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiajia Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiayu Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hanlin Zeng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hanqi Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Guangming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Wei W, Long H, Liu Y, Zhang Y, Chen W, Tang S. Preparation and application of a novel imine-linked covalent organic framework@silica composite for reversed-phase and hydrophilic interaction chromatographic separations. Anal Chim Acta 2023; 1276:341635. [PMID: 37573114 DOI: 10.1016/j.aca.2023.341635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
The composites of covalent organic frameworks (COFs) and silica gel have been considered to be promising chromatographic separation materials due to the distinct advantages such as large specific surface area, good mechanical strength and high porosity. In the present study, a novel imine-linked COF@silica composite was prepared by in-situ growth of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dihydroxyterephthalaldehyde (DHTA) monomers on the surface of aminated silica gel (SiO2-NH2). The successful surface-modification of TAPT-DHTA-COF distinctly enhanced the separation selectivity and efficiency of SiO2-NH2. Multiple types of analyte-stationary phase interactions contributed to the selective retention of structurally similar analytes. The designed TAPT-DHTA-COF@SiO2 was observed to effectively separate hydrophobic phenyl ketones, phthalate esters and steroid hormones. Moreover, the polar amino and hydroxyl groups of TAPT-DHTA-COF facilitated the selective determination of hydrophilic nucleosides/bases. The kinetic performance and thermodynamic behavior of TAPT-DHTA-COF@SiO2 column were particularly explored. It was found that column efficiency was mainly affected by the mass transfer resistance, and the retention of nucleosides/bases on the TAPT-DHTA-COF@SiO2 column was temperature dependent. The developed versatile TAPT-DHTA-COF@SiO2 column was finally applied for detecting environmental hormones as well as water-soluble nicotinamide in real samples. In summary, the potential application of TAPT-DHTA-COF@SiO2 composite material for liquid chromatographic separations was first explored and verified. The TAPT-DHTA-COF@SiO2 was proved to be a promising chromatographic separation material.
Collapse
Affiliation(s)
- Wanjiao Wei
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haoyu Long
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
8
|
Hu Y, Kadotani J, Kuwahara Y, Ihara H, Takafuji M. Zwitterionic polymer-terminated porous silica stationary phases for highly selective separation in hydrophilic interaction chromatography. J Chromatogr A 2023; 1693:463885. [PMID: 36848731 DOI: 10.1016/j.chroma.2023.463885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
We described two novel zwitterionic polymer-terminated porous silica stationary phases containing the same pyridinium cation and anions of different side chains (carboxylate and phosphonate groups) for use in hydrophilic interaction liquid chromatography (HILIC). These two novel columns were prepared by polymerizing 4-vinylpyridine and grafting it onto a silica surface, followed by quaternization reaction with 3-bromopropionic acid (Sil-VPC24) and (3-bromopropyl) phosphonic acid (Sil-VPP24), which possess positively charged pyridinium groups, and negatively charged carboxylate and phosphonate groups, respectively. The products obtained were verified through relevant characterization techniques such as elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric analysis, Zeta potential analysis, and Brunauer-Emmett-Teller analysis. The retention properties and mechanisms of different types of compounds (neutral, cationic, and anionic) on the two zwitterionic-modified silica stationary phases were studied by varying the buffer salt concentration and pH of the eluent. The separation of phenol and aromatic acids, disubstituted benzene isomers, sulfonamide drugs, as well as nucleosides/nucleobases were investigated on the two packed novel columns and a commercial zwitterionic column in identical HILIC mode, ensuring a thorough comparison between both novel columns and with a commercial standard. The results illustrated that various compounds could be separated up to various efficiencies based on the mechanism of hydrophilic interaction-based retention between the solutes and the two zwitterionic polymer stationary phases. The Sil-VPP24 column demonstrated the best separation performance out of the three, as well as flexible selectivity and excellent resolution. Both novel columns exhibited excellent stability and chromatographic repeatability for the separation of seven nucleosides and bases.
Collapse
Affiliation(s)
- Yongxing Hu
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jun Kadotani
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; National Institute of Technology, Okinawa College, 905, Henoko, Okinawa 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
9
|
Luo P, Peng J, Peng H, Zhang Z, Chen J, Fan K, Wang X. Preparation of three regioisomeric ionic liquid stationary phases and investigation of their retention behavior. J Chromatogr A 2023; 1689:463773. [PMID: 36628808 DOI: 10.1016/j.chroma.2023.463773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The structural properties of ionic liquid stationary phases have a considerable effect on their separation selectivity. However, the difference of the chromatographic retention behavior of different regioisomeric ionic liquid stationary phases has rarely been investigated. In this study, three regioisomeric ionic liquid silane reagents were prepared by photoinitiated ene-click chemistry and bonded to silica by one-pot method to fabricate three new stationary phases (Sil-C2Im-C8, Sil-C6Im-C4, and Sil-C9Im-C1). All three stationary phases showed promising retention repeatability and efficiency. The retention behavior of the three stationary phases was investigated under various chromatographic conditions. The retention mechanism was further investigated by the linear energy solvation relationship and Van't Hoff plots. The stationary phases exhibited mixed-mode retention mechanisms. The π-π, hydrogen bonding, ion-exchange, and hydrophilic interactions with analytes were the weakest when the imidazole ions were embedded in the innermost part of the alkyl chains, while the interactions were the strongest when the imidazole ions were embedded in the middle of the alkyl chains. The three stationary phases provided great but different separation performances towards nucleosides, nucleobases, aromatic acids, alkyl benzenes, and polycyclic aromatic hydrocarbons due to the influence of imidazole ion position.
Collapse
Affiliation(s)
- Pan Luo
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China
| | - Jingdong Peng
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China.
| | - Huanjun Peng
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China
| | - Zilong Zhang
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China
| | - Jun Chen
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China
| | - Kun Fan
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China
| | - Xiang Wang
- School of Chemistry and Chemical Engieering, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Li Z, Shen Z, Pei Y, Chao S, Pei Z. Covalently bridged pillararene-based polymers: structures, synthesis, and applications. Chem Commun (Camb) 2023; 59:989-1005. [PMID: 36621829 DOI: 10.1039/d2cc05594e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalently bridged pillararene-based polymers (CBPPs) are a special class of macrocycle-based polymers in which multiple pillararene monomers are attached to the polymer structures by covalent bonds. Owing to the unique molecular structures including the connection components or the spatial structures, CBPPs have become increasingly popular in applications ranging from environmental science to biomedical science. In this review, CBPPs are divided into three types (linear polymers, grafted polymers, and cross-linked polymers) according to their structural characteristics and described from the perspective of synthesis methods comprehensively. In addition, the applications of CBPPs are presented, including selective adsorption and separation, fluorescence sensing and detection, construction of supramolecular gels, anticancer drug delivery, artificial light-harvesting, catalysis, and others. Finally, the current challenging issues and comprehensive prospects of CBPPs are discussed.
Collapse
Affiliation(s)
- Zhanghuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Chen J, Wang X, Fan K, Luo P, Peng H, Peng J. Preparation of spherical silica hydroxyl-functionalized covalent organic polymer composites for mixed-mode liquid chromatography. J Sep Sci 2023; 46:e2200637. [PMID: 36377530 DOI: 10.1002/jssc.202200637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Covalent organic polymers are an emerging class of amorphous microporous materials that have raised increasing concerns in analytical chemistry due to their unique structural and surface chemical properties. However, the application of covalent organic polymers as mixed-mode stationary phases in chromatographic separations has rarely been reported. Herein, novel spherical silica hydroxyl-functionalized covalent organic polymer composites were successfully prepared via a layer-by-layer approach. The structure and morphology of the materials were carefully characterized by elemental analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller, and contact angle measurements. Baseline separations of various alkylbenzenes, polycyclic aromatic hydrocarbons, and nucleosides and bases were achieved on the prepared stationary phase under reversed-phase/hydrophilic interaction mode. The column efficiencies of 23 853 and 36 580 plates/m were obtained for butylbenzene and uracil, respectively, and the relative standard deviation of the retention time for continuous injections was less than 1.38% (n = 10), suggesting satisfactory column efficiency and repeatability. Additionally, this novel stationary phase realized the complete separation of the endocrine-disrupting chemicals in river water. This work affords a new route for synthesizing covalent organic polymers-based mixed-mode stationary phase and further reveals their great potential in chromatographic separation.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Chemical Engineering, Southwest University, P. R. China.,Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, P. R. China
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Southwest University, P. R. China
| | - Kun Fan
- School of Chemistry and Chemical Engineering, Southwest University, P. R. China
| | - Pan Luo
- School of Chemistry and Chemical Engineering, Southwest University, P. R. China
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, P. R. China
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, P. R. China
| |
Collapse
|
12
|
Fu G, Gao C, Quan K, Li H, Qiu H, Chen J. Phosphorus-doped deep eutectic solvent-derived carbon dots-modified silica as a mixed-mode stationary phase for reversed-phase and hydrophilic interaction chromatography. Anal Bioanal Chem 2022:10.1007/s00216-022-04405-9. [PMID: 36350343 DOI: 10.1007/s00216-022-04405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
In this work, phosphorus-doped carbon dots (P-DESCDs) were successfully prepared using choline chloride/lactic acid type deep eutectic solvent and phosphoric acid as ingredients, and (3-aminopropyl) trimethoxysilane was used as a bridge to graft P-DESCDs onto the silica surface to obtain a new mixed-mode stationary phase (Sil-P-DESCDs) for reversed-phase and hydrophilic interaction liquid chromatography. The successful preparation of the stationary phase was confirmed by laser scanning confocal microscopy, elemental analysis, and Fourier transform infrared spectrometry. Interestingly, the doping of phosphorus greatly improved the separation performance and hydrophilicity of the Sil-P-DESCDs column. The Sil-P-DESCDs column was found to have certain hydrophobicity, hydrogen bonding ability and shape selectivity by Tanaka and Engelhardt standard test mixtures, and a series of hydrophilic and hydrophobic compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, sulfonamides, aromatic amines, phenols, flavonoids, nucleoside bases, and alkaloids. In addition, the effects of mobile phase ratio, column temperature, flow rate, salt concentration, and pH on the retention of analytes on Sil-P-DESCDs columns were investigated. Finally, the Sil-P-DESCDs column was applied to the qualitative and quantitative analysis of calcein-7-glucoside in the real sample of medicinal Astragalus pellets, and it was found at a concentration of 0.02 mg/mL.
Collapse
|
13
|
Ji SL, Xiao SS, Wang LL. Construction of an ultra-small hydrazone-linked covalent organic polymer for selective fluorescent detection of ferric ion in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121541. [PMID: 35753102 DOI: 10.1016/j.saa.2022.121541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
A novel ultra-small hydrazone-linked covalent organic polymer (UHCOP) was synthesized based on the Schiff-base reaction between 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde and 1,4-benzenedicarbohydrazide at room temperature and utilized as a sensitive fluorescent sensor for rapid (<2 min) and selective detection of Fe3+ in aqueous solution. The prepared UHCOP displayed ultra-small size with the diameter of 7.98 ± 0.97 nm and gave a stable fluorescent emission at 510 nm. UHCOP exhibited good sensitivity and highly selectivity towards Fe3+. The coordination interaction between UHCOP and Fe3+ resulted in the obviously aggregation-caused quenching response of UHCOP. The linear range was from 5.0 μM to 1.4 mM (R2 = 0.999) with the detection limit of 2.5 μM. Finally, UHCOP has been successfully applied in the detection of Fe3+ in real water samples, proving the fabricated UHCOP is promising as a sensitive fluorescent sensor for selective detection of Fe3+ in aqueous solution.
Collapse
Affiliation(s)
- Shi-Lei Ji
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Shan-Shan Xiao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
14
|
Effect of spacer alkyl chain length on retention among three imidazolium stationary phases under various modes in high performance liquid chromatography. J Chromatogr A 2022; 1685:463646. [DOI: 10.1016/j.chroma.2022.463646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
15
|
Hybrid silica material as a mixed-mode sorbent for solid-phase extraction of hydrophobic and hydrophilic illegal additives from food samples. J Chromatogr A 2022; 1672:463049. [DOI: 10.1016/j.chroma.2022.463049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
|
16
|
Zhang JH, Xie SM, Yuan LM. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 2021; 45:51-77. [PMID: 34729907 DOI: 10.1002/jssc.202100593] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Separations and analyses of chiral compounds are important in many fields, including pharmaceutical production, preparation of chemical intermediates, and biochemistry. High-performance liquid chromatography using a chiral stationary phase is regarded as one of the most valuable methods for enantiomeric separation and analysis because it is highly efficient, is broadly applicable, and has powerful separation capability. The focus for development of this method is the identification of novel chiral stationary phases with superior recognition performance and good stability. The present article reviews recent progress in the development of new chiral stationary phases for high-performance liquid chromatography between January 2018 and June 2021. These newly reported chiral stationary phases are divided into three categories: small organic molecule-based (cyclodextrin and its derivatives, macrocyclic antibiotics, cinchona alkaloids, and other low molecular weight chiral molecules), macromolecule-based (cellulose and amylose derivatives, chitin and chitosan derivatives, and synthetic helical polymers) and chiral porous material-based (chiral metal-organic frameworks, chiral covalent organic frameworks, and chiral inorganic mesoporous silicas). Each type of chiral stationary phase is discussed in detail.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|