1
|
Yeganeh O, Abdolahinia ED, Soofiyani SR, Faghfuri E, Shafie A, Pahlavan Y. Biosensors for autoimmune diseases. Clin Chim Acta 2024; 565:119998. [PMID: 39454986 DOI: 10.1016/j.cca.2024.119998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Diagnosis of autoimmune diseases (ADs) is usually based on symptoms and laboratory tests that measure the occurrence of serological and genetic biomarkers such as peptides, autoantibodies, and complement proteins. Early detection of AD is essential to reduce the severity of symptoms and organ damage as a result of progressive disease. Biosensors are tools that convert biochemical signals produced by molecular elements into optical, electrical, and other physical signals for analysis. In recent years, peptides, antigens, aptamers, autoantibodies, and other biomolecules have provided suitable diagnostic features for development of biosensors in detecting and follow up the diagnoses and treatment of diseases. This study reviews the introducing of different biomarkers in ADs with the novel vision to use of biosensor technology for research and development in this regard. Therefore, this study has the required innovation for using biosensor technology with more attention to electrochemical based biosensors to developing, targeting and designing the easy applicable and available diagnostic and response to treatment products using key biomolecules for ADs. It will help readers to understand the research trends of biosensors in ADs and further advance the development of this paramount field.
Collapse
Affiliation(s)
- Omid Yeganeh
- Department of Microbiology, Faculty of Bioscience, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeideh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Abbas Shafie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Yasamin Pahlavan
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z, Gao C, Wang C. The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis. Front Immunol 2024; 15:1408501. [PMID: 39324139 PMCID: PMC11422143 DOI: 10.3389/fimmu.2024.1408501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Yuxin Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Zexuan Bin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Karami P, Gholamin D, Fathi F, Afsar T, Johari-Ahar M. Anti-CCP biosensors in rheumatoid arthritis. Clin Chim Acta 2024; 561:119767. [PMID: 38857671 DOI: 10.1016/j.cca.2024.119767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Biosensors are unique analytical tools for the detection of biomarkers. Of these, autoantibodies against citrullinated proteins (ACPA) are useful for the differential diagnosis of rheumatoid arthritis (RA). The autoantibodies may be detected by immunoassay technology using synthetic cyclic citrullinated peptides (CCP), ie, anti-CCP. Recently, several biosensors have been developed for anti-CCP using CCP and mutated citrullinated vimentin (MCV) as recognition elements. In this review we highlight all currently available ACPA biosensor technology including those based on fluorescence, chemiluminescence, electrochemiluminescence (ECL), surface-enhanced Raman scattering (SERS)-based, surface plasmon resonance (SPR), lateral flow immunoassays (LFIA), and electrochemical. We explore various peptides as recognition elements, electrode modifiers and signal amplification systems thus providing new opportunities for next-generation biosensor design in RA.
Collapse
Affiliation(s)
- Pari Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Danial Gholamin
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Taha Afsar
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Johari-Ahar
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Guo L, Zhao Y, Huang Q, Huang J, Tao Y, Chen J, Li HY, Liu H. Electrochemical protein biosensors for disease marker detection: progress and opportunities. MICROSYSTEMS & NANOENGINEERING 2024; 10:65. [PMID: 38784375 PMCID: PMC11111687 DOI: 10.1038/s41378-024-00700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.
Collapse
Affiliation(s)
- Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601 China
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056 China
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wenzhou Institute of Advanced Manufacturing Technology, Huazhong University of Science and Technology, Wenzhou, 325000 China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
5
|
Redondo-Gómez C, Parreira P, Martins MCL, Azevedo HS. Peptide-based self-assembled monolayers (SAMs): what peptides can do for SAMs and vice versa. Chem Soc Rev 2024; 53:3714-3773. [PMID: 38456490 DOI: 10.1039/d3cs00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Self-assembled monolayers (SAMs) represent highly ordered molecular materials with versatile biochemical features and multidisciplinary applications. Research on SAMs has made much progress since the early begginings of Au substrates and alkanethiols, and numerous examples of peptide-displaying SAMs can be found in the literature. Peptides, presenting increasing structural complexity, stimuli-responsiveness, and biological relevance, represent versatile functional components in SAMs-based platforms. This review examines the major findings and progress made on the use of peptide building blocks displayed as part of SAMs with specific functions, such as selective cell adhesion, migration and differentiation, biomolecular binding, advanced biosensing, molecular electronics, antimicrobial, osteointegrative and antifouling surfaces, among others. Peptide selection and design, functionalisation strategies, as well as structural and functional characteristics from selected examples are discussed. Additionally, advanced fabrication methods for dynamic peptide spatiotemporal presentation are presented, as well as a number of characterisation techniques. All together, these features and approaches enable the preparation and use of increasingly complex peptide-based SAMs to mimic and study biological processes, and provide convergent platforms for high throughput screening discovery and validation of promising therapeutics and technologies.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Helena S Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
6
|
Kumar AS, Venkatesalu S, Dilliyappan S, Pasupulla AP, Prathap L, Palaniyandi T, Baskar G, Ravi M, Sugumaran A. Microfluidics as diagnostic tools. Clin Chim Acta 2024; 556:117841. [PMID: 38395126 DOI: 10.1016/j.cca.2024.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The challenges in the management of human diseases are largely determined by the precision, speed and ease of diagnostic procedures available. Developments in biomedical engineering technologies have greatly helped in transforming human health care, especially for disease diagnosis which in turn lead to better patient outcomes. One such development is in the form of microfluidic chip technology which has transformed various aspects of human health care. We present in this review, a comprehensive account on the utility of microfluidic chip technologies for the diagnosis of autoimmune disorders, cardiovascular diseases (CVDs), infectious diseases, and neurodegenerative conditions. We have included the diseases posing global threat such as rheumatoid arthritis, diabetes, pernicious anemia, tuberculosis, COVID-19, influenza, alzheimer's, multiple sclerosis, and epilepsy. Apart from discussing the ways of microfluidic chip in diagnosis, we included a section presenting electrochemical, electrical, optical, and acoustic detection technologies for the precise diagnosis of CVDs. Microfluidics platforms have thus revolutionized novel capabilities in addressing the requirements of point-of-care diagnostics enabling miniaturization by integrating multiple laboratory functions into a single chip resulting in "one flow - one solution" systems. Hence, the precision and early diagnoses of diseases are now possible due to the advancements of microfluidics-based technology.
Collapse
Affiliation(s)
- Avanthika Satish Kumar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Sneha Venkatesalu
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathologist, School of Medicine, College of Health Sciences, Nigist Eleni Comprehensive Specialized Hospital, Wachemo University, Hossana, Ethiopia, East Africa
| | - Lavanya Prathap
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India
| |
Collapse
|
7
|
Chen HM, Tsai YH, Hsu CY, Wang YY, Hsieh CE, Chen JH, Chang YS, Lin CY. Peptide-Coated Bacteriorhodopsin-Based Photoelectric Biosensor for Detecting Rheumatoid Arthritis. BIOSENSORS 2023; 13:929. [PMID: 37887122 PMCID: PMC10605345 DOI: 10.3390/bios13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
An effective early diagnosis is important for rheumatoid arthritis (RA) management. This study reveals a novel RA detection method using bacteriorhodopsin as a photoelectric transducer, a light-driven proton pump in purple membranes (PMs). It was devised by covalently conjugating a PM monolayer-coated electrode with a citrullinated-inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3)542-556 peptide that recognizes the serum RA-associated autoantibodies. The direct serum coating decreased the photocurrents in the biosensor, with the reduction in the photocurrent caused by coating with an RA-patient serum that is significantly larger than that with a healthy-control serum (38.1% vs. 20.2%). The difference in the reduction in the photocurrent between those two serum groups widened after the serum-coated biosensor was further labeled with gold nanoparticle (AuNP)-conjugated anti-IgA (anti-IgA-AuNP) (53.6% vs. 30.6%). Both atomic force microscopic (AFM) and Raman analyses confirmed the sequential peptide, serum, and anti-IgA-AuNP coatings on the PM-coated substrates. The reductions in the photocurrent measured in both the serum and anti-IgA-AuNPs coating steps correlated well with the results using commercial enzyme-linked immunosorbent assay kits (Spearman rho = 0.805 and 0.787, respectively), with both a sensitivity and specificity close to 100% in both steps. It was shown that an RA diagnosis can be performed in either a single- or two-step mode using the developed biosensor.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Yi-Hsuan Tsai
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Chien-Yi Hsu
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yong-Yi Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Cheng-En Hsieh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan;
- Office of Data Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Abo-Aziza FAM, Wasfy BM, Wahba SMR, Abd-Elhalem SS. Mesenchymal Stem Cells and Myeloid-Derived Suppressor Cells Interplay in Adjuvant-Induced Arthritis Rat Model. Int Immunopharmacol 2023; 120:110300. [PMID: 37192553 DOI: 10.1016/j.intimp.2023.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
There has not been much researchs on the biological relationship between myeloid-derived suppressor cells (MDSCs) and mesenchymal stem cells (MSCs). The goal of the current work is to examine how these cells cooperate with one another in a rat model of adjuvant-induced arthritis (AIA). Three groups of equal numbers of rats were created; the first group served as the control. Complete Freund's adjuvant (CFA) was injected into the second group to induce AIA. The third group underwent MSCstreatment. Three weeks later, ANA, IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-γ, M-CSF, iNOS and Arg-1 were determined using ELISA. Flowcytometric studies for MDSCs using CD11bc + and His48 + antibodies were performed. Current results showed significantly higher levels of WBCs, ANA, IL-1, IL-4, IL-6, IL-10, TNF-α, M-CSF, iNOS and Arg-1 along with a significant rise in MDSCs % in the AIA group compared to the control group. As opposed to AIA animals, MSCs administration resulted in a considerable improvement in cytokine levels, supporting the immunomodulation function of MSCs. Histological examination of the joints in the AIA group revealed articular cartilage degradation as well as infiltration of inflammatory cells and fibroplasia. These several evidences suggested that MDSCs may perform various roles in autoimmunity. Understanding how MDSCs and MSCs contribute to arthritis may help their prospective application in immunotherapy. Therefore, the reciprocal collaboration of MSCs and MDSCs must therefore be the subject of new investigations, which can offer new platforms for the development of more effective and individualized therapies for the treatment of immunological illnesses.
Collapse
Affiliation(s)
- Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 12622 Cairo, Egypt.
| | - Basma M Wasfy
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sanaa M R Wahba
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sahar S Abd-Elhalem
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| |
Collapse
|
9
|
Nelson AM, Habibi S, DeLancey JOL, Ashton-Miller JA, Burns MA. Electrochemical Sensing of Urinary Chloride Ion Concentration for Near Real-Time Monitoring. BIOSENSORS 2023; 13:331. [PMID: 36979543 PMCID: PMC10046868 DOI: 10.3390/bios13030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Urinary chloride concentration is a valuable health metric that can aid in the early detection of serious conditions, such as acid base disorders, acute heart failure, and incidences of acute renal failure in the intensive care unit. Physiologically, urinary chloride levels frequently change and are difficult to measure, involving time-consuming and inconvenient lab testing. Thus, near real-time simple sensors are needed to quickly provide actionable data to inform diagnostic and treatment decisions that affect health outcomes. Here, we introduce a chronopotentiometric sensor that utilizes commercially available screen-printed electrodes to accurately quantify clinically relevant chloride concentrations (5-250 mM) in seconds, with no added reagents or electrode surface modification. Initially, the sensor's performance was optimized through the proper selection of current density at a specific chloride concentration, using electrical response data in conjunction with scanning electron microscopy. We developed a unique swept current density algorithm to resolve the entire clinically relevant chloride concentration range, and the chloride sensors can be reliably reused for chloride concentrations less than 50 mM. Lastly, we explored the impact of pH, temperature, conductivity, and additional ions (i.e., artificial urine) on the sensor signal, in order to determine sensor feasibility in complex biological samples. This study provides a path for further development of a portable, near real-time sensor for the quantification of urinary chloride.
Collapse
Affiliation(s)
- Anna M. Nelson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - John O. L. DeLancey
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI 48109,USA
| | - James A. Ashton-Miller
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark A. Burns
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Wen HY, Chiang CC, Chen RY, Ni WZ, Weng YQ, Yeh YT, Hsu HC. Immunosensing for Early Detection of Rheumatoid Arthritis Biomarkers: Anti-Cyclic Citrullinated Peptide Antibodies Based on Tilted-Fiber Bragg Grating Biosensor. Bioengineering (Basel) 2023; 10:bioengineering10020261. [PMID: 36829755 PMCID: PMC9952665 DOI: 10.3390/bioengineering10020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is regarded as a chronic, immune-mediated disease that leads to the damage of various types of immune cells and signal networks, followed by inappropriate tissue repair and organ damage. RA is primarily manifested in the joints, but also manifests in the lungs and the vascular system. This study developed a method for the in vitro detection of RA through cyclic citrullinated peptide (CCP) antibodies and antigens. The diameter of a tilted-fiber Bragg grating (TFBG) biosensor was etched to 50 μm and then bonded with CCP antigens and antibodies. The small variations in the external refractive index and the optical fiber cladding were measured. The results indicated that the self-assembled layer of the TFBG biosensor was capable of detecting pre- and post-immune CCP antigen and CCP peptide concentrations within four minutes. A minimum CCP concentration of 1 ng/mL was detected with this method. This method is characterized by the sensor's specificity, ability to detect CCP reactions, user-friendliness, and lack of requirement for professional analytical skills, as the detections are carried out by simply loading and releasing the test samples onto the platform. This study provides a novel approach to medical immunosensing analysis and detection. Although the results for the detection of different concentrations of CCP antigen are not yet clear, it was possible to prove the concept that the biosensor is feasible even if the measurement is not easy and accurate at this stage. Further study and improvement are required.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Chia-Chin Chiang
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Rou-Yu Chen
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wei-Zhi Ni
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yu-Qiao Weng
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Hsiang-Cheng Hsu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Kanioura A, Geka G, Kochylas I, Likodimos V, Gardelis S, Dimitriou A, Papanikolaou N, Kakabakos S, Petrou P. SERS Determination of Oxidative Stress Markers in Saliva Using Substrates with Silver Nanoparticle-Decorated Silicon Nanowires. BIOSENSORS 2023; 13:273. [PMID: 36832039 PMCID: PMC9953924 DOI: 10.3390/bios13020273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Glutathione and malondialdehyde are two compounds commonly used to evaluate the oxidative stress status of an organism. Although their determination is usually performed in blood serum, saliva is gaining ground as the biological fluid of choice for oxidative stress determination at the point of need. For this purpose, surface-enhanced Raman spectroscopy (SERS), which is a highly sensitive method for the detection of biomolecules, could offer additional advantages regarding the analysis of biological fluids at the point of need. In this work, silicon nanowires decorated with silver nanoparticles made by metal-assisted chemical etching were evaluated as substrates for the SERS determination of glutathione and malondialdehyde in water and saliva. In particular, glutathione was determined by monitoring the reduction in the Raman signal obtained from substrates modified with crystal violet upon incubation with aqueous glutathione solutions. On the other hand, malondialdehyde was detected after a reaction with thiobarbituric acid to produce a derivative with a strong Raman signal. The detection limits achieved after optimization of several assay parameters were 50 and 3.2 nM for aqueous solutions of glutathione and malondialdehyde, respectively. In artificial saliva, however, the detection limits were 2.0 and 0.32 μM for glutathione and malondialdehyde, respectively, which are, nonetheless, adequate for the determination of these two markers in saliva.
Collapse
Affiliation(s)
- Anastasia Kanioura
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Georgia Geka
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece
| | - Anastasios Dimitriou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Nikolaos Papanikolaou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| |
Collapse
|
12
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:246. [PMID: 36832012 PMCID: PMC9954504 DOI: 10.3390/bios13020246] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
- School of Electronics and Communication Engineering, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
13
|
Adil O, Shamsi MH. Electrochemical Impedance Immunoassay for ALS-Associated Neurofilament Protein: Matrix Effect on the Immunoplatform. BIOSENSORS 2023; 13:247. [PMID: 36832013 PMCID: PMC9954657 DOI: 10.3390/bios13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder, which has complex diagnostic steps. Electrochemical immunoassays may make the diagnosis simpler and faster. Here, we present the detection of ALS-associated neurofilament light chain (Nf-L) protein through an electrochemical impedance immunoassay on reduced graphene oxide (rGO) screen-printed electrodes. The immunoassay was developed in two different media, i.e., buffer and human serum, to compare the effect of the media on their figures of merit and calibration models. The label-free charge transfer resistance (RCT) of the immunoplatform was used as a signal response to develop the calibration models. We found that exposure of the biorecognition layer to human serum improved the impedance response of the biorecognition element with significantly lower relative error. Moreover, the calibration model obtained in the human serum environment has higher sensitivity and a better limit of detection (0.087 ng/mL) than the buffer medium (0.39 ng/mL). The analyses of the ALS patient samples show that concentrations obtained from the buffer-based regression model was higher than the serum-based model. However, a high Pearson correlation (r = 1.00) between the media suggests that concentration in one medium may be useful to predict the concentration in the other medium. Moreover, the Nf-L concentration appears to increase with age in both male and female groups, while overall higher Nf-L was found in the male group than the female group.
Collapse
|
14
|
Advances in the detection of rheumatoid arthritis related biomarker by highly sensitive electrochemical sensors. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Zolti O, Suganthan B, Ramasamy RP. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress. BIOSENSORS 2023; 13:215. [PMID: 36831981 PMCID: PMC9954316 DOI: 10.3390/bios13020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Foodborne pathogens are an important diagnostic target for the food, beverage, and health care industries due to their prevalence and the adverse effects they can cause to public health, food safety, and the economy. The standards that determine whether a given type of food is fit for consumption are set by governments and must be taken into account when designing a new diagnostic tool such as a biosensor platform. In order to meet these stringent detection limits, cost, and reliability standards, recent research has been focused on developing lab-on-a-chip-based approaches for detection devices that use microfluidic channels and platforms. The microfluidics-based devices are designed, developed, and used in different ways to achieve the established common standards for food pathogen testing that enable high throughput, rapid detection, low sample volume, and minimal pretreatment procedures. Combining microfluidic approaches with electrochemical biosensing could offer affordable, portable, and easy to use devices for food pathogen diagnostics. This review presents an analysis of the established common standards and the recent progress made in electrochemical sensors toward the development of future lab-on-a-chip devices that will aid 'collection-to-detection' using a single method and platform.
Collapse
Affiliation(s)
| | | | - Ramaraja P. Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Chen YS, Huang CH, Pai PC, Seo J, Lei KF. A Review on Microfluidics-Based Impedance Biosensors. BIOSENSORS 2023; 13:bios13010083. [PMID: 36671918 PMCID: PMC9855525 DOI: 10.3390/bios13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/30/2023]
Abstract
Electrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors. Moreover, the reliability and efficiency of analyses are benefited by microfluidics-enabled automation. Through the use of mature microfluidic technology, complicated biological processes can be shrunk and integrated into a single microfluidic system (e.g., lab-on-a-chip or micro-total analysis systems). By incorporating electrical impedance biosensors, hand-held and bench-top microfluidic systems can be easily developed and operated by personnel without professional training. Furthermore, the impedance spectrum provides broad information regarding cell size, membrane capacitance, cytoplasmic conductivity, and cytoplasmic permittivity without the need for fluorescent labeling, magnetic modifications, or other cellular treatments. In this review article, a comprehensive summary of microfluidics-based impedance biosensors is presented. The structure of this article is based on the different substrate material categorizations. Moreover, the development trend of microfluidics-based impedance biosensors is discussed, along with difficulties and challenges that may be encountered in the future.
Collapse
Affiliation(s)
- Yu-Shih Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jungmok Seo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
17
|
Biosensing Dopamine and L-Epinephrine with Laccase (Trametes pubescens) Immobilized on a Gold Modified Electrode. BIOSENSORS 2022; 12:bios12090719. [PMID: 36140104 PMCID: PMC9496072 DOI: 10.3390/bios12090719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Engineering electrode surfaces through the electrodeposition of gold may provide a range of advantages in the context of biosensor development, such as greatly enhanced surface area, improved conductivity and versatile functionalization. In this work we report on the development of an electrochemical biosensor for the laccase-catalyzed assay of two catecholamines—dopamine and L-epinephrine. Variety of electrochemical techniques—cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy and constant potential amperometry have been used in its characterization. It has been demonstrated that the laccase electrode is capable of sensing dopamine using two distinct techniques—differential pulse voltammetry and constant potential amperometry, the latter being suitable for the assay of L-epinephrine as well. The biosensor response to both catecholamines, examined by constant potential chronoamperometry over the potential range from 0.2 to −0.1 V (vs. Ag|AgCl, sat KCl) showed the highest electrode sensitivity at 0 and −0.1 V. The dependencies of the current density on either catecholamine’s concentration was found to follow the Michaelis—Menten kinetics with apparent constants KMapp = 0.116 ± 0.015 mM for dopamine and KMapp = 0.245 ± 0.031 mM for L-epinephrine and linear dynamic ranges spanning up to 0.10 mM and 0.20 mM, respectively. Calculated limits of detection for both analytes were found to be within the sub-micromolar concentration range. The biosensor applicability to the assay of dopamine concentration in a pharmaceutical product was demonstrated (with recovery rates between 99% and 106%, n = 3).
Collapse
|
18
|
A Co-Printed Nanoslit Surface Plasmon Resonance Structure in Microfluidic Device for LMP-1 Detection. BIOSENSORS 2022; 12:bios12080653. [PMID: 36005049 PMCID: PMC9405854 DOI: 10.3390/bios12080653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
Abstract
This paper reports a novel micro/nanostructure co-hot embossing technique. Gold-capped nanostructures were used as localized surface plasmon resonance (SPR) sensors and were integrated into a microfluidic channel. The advantage of the co-hot embossing technique is that the SPR sensors do not need to be aligned with the microfluidic channel while bonding to it. The integrated SPR sensor and microfluidic channel were first characterized, and the sensitivity of the SPR sensor to the refractive index was found using different concentrations of glycerol solutions. The SPR sensor was also used to quantify latent membrane protein (LMP-1) when modifying anti-LMP-1 at the surface of the SPR sensor. Different concentrations of LMP-1 samples were used to build a calibration curve.
Collapse
|
19
|
Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. BIOSENSORS 2022; 12:bios12080581. [PMID: 36004978 PMCID: PMC9406156 DOI: 10.3390/bios12080581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.
Collapse
|
20
|
Svigelj R, Zuliani I, Grazioli C, Dossi N, Toniolo R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. NANOMATERIALS 2022; 12:nano12060987. [PMID: 35335800 PMCID: PMC8953296 DOI: 10.3390/nano12060987] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Nanomaterials can be used to modify electrodes and improve the conductivity and the performance of electrochemical sensors. Among various nanomaterials, gold-based nanostructures have been used as an anchoring platform for the functionalization of biosensor surfaces. One of the main advantages of using gold for the modification of electrodes is its great affinity for thiol-containing molecules, such as proteins, forming a strong Au-S bond. In this work, we present an impedimetric biosensor based on gold nanoparticles and a truncated aptamer for the quantification of gluten in hydrolyzed matrices such as beer and soy sauce. A good relationship between the Rct values and PWG-Gliadin concentration was found in the range between 0.1–1 mg L−1 of gliadin (corresponding to 0.2–2 mg L−1 of gluten) with a limit of detection of 0.05 mg L−1 of gliadin (corresponding to 0.1 mg L−1 of gluten). The label-free assay was also successfully applied for the determination of real food samples.
Collapse
|
21
|
Lu YJ, Hsieh HY, Kuo WC, Wei PK, Sheen HJ, Tahara H, Chiu TW, Fan YJ. Nanoplasmonic Structure of a Polycarbonate Substrate Integrated with Parallel Microchannels for Label-Free Multiplex Detection. Polymers (Basel) 2021; 13:polym13193294. [PMID: 34641110 PMCID: PMC8512492 DOI: 10.3390/polym13193294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, a multiplex detection system was proposed by integrating a localized surface plasmon resonance (LSPR) sensing array and parallel microfluidic channels. The LSPR sensing array was fabricated by nanoimprinting and gold sputter on a polycarbonate (PC) substrate. The polydimethylsiloxane (PDMS) microfluidic channels and PC LSPR sensing array were bound together through (3-aminopropyl)triethoxysilane (APTES) surface treatment and oxygen plasma treatment. The resonant spectrum of the LSPR sensing device was obtained by broadband white-light illumination and polarized wavelength measurements with a spectrometer. The sensitivity of the LSPR sensing device was measured using various ratios of glycerol to water solutions with different refractive indices. Multiplex detection was demonstrated using human immunoglobulin G (IgG), IgA, and IgM. The anti-IgG, anti-IgA, and anti-IgM were separately modified in each sensing region. Various concentrations of human IgG, IgA, and IgM were prepared to prove the concept that the parallel sensing device can be used to detect different targets.
Collapse
Affiliation(s)
- Yi-Jung Lu
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Han-Yun Hsieh
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Chang Kuo
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan;
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Correspondence: (T.-W.C.); (Y.-J.F.); Tel.: +886-2-2736-1661 (ext. 7722) (Y.-J.F.)
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-W.C.); (Y.-J.F.); Tel.: +886-2-2736-1661 (ext. 7722) (Y.-J.F.)
| |
Collapse
|