1
|
Yang Y, Hao Y, Huang L, Luo Y, Chen S, Xu M, Chen W. Recent Advances in Electrochemical Sensors for Formaldehyde. Molecules 2024; 29:327. [PMID: 38257238 PMCID: PMC11154431 DOI: 10.3390/molecules29020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.
Collapse
Affiliation(s)
- Yufei Yang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Lijie Huang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanjian Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Maotian Xu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
2
|
Sonkar R, Gade PS, Mudliar SN, Bhatt P. Green Downstream Processing Method for Xylooligosaccharide Purification and Assessment of Its Prebiotic Properties. ACS OMEGA 2023; 8:42815-42826. [PMID: 38024717 PMCID: PMC10652722 DOI: 10.1021/acsomega.3c05714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Xylooligosaccharides (XOS) obtained from lignocellulosic biomass after autohydrolysis primarily consist of lignin-derived impurities and autogenerated inhibitors like furfural, hydroxymethylfurfural, and acetic acid. In this study, graphene oxide-mediated purification (GOMP), a novel and environmentally friendly downstream processing method, was developed for the purification of XOS from hydrolysate obtained after ozone-assisted autohydrolysis of wheat bran. GOMP resulted in appreciable recovery of total XOS from the hydrolysate (73.87 ± 4.25%, DP2-6) with near complete removal of autogenerated inhibitors (furfural 85.42%, HMF 87.38%, and acetic acid 84.0%). Recovery of XOS by GOMP was higher than the conventional membrane purification technique (44.07 ± 0.92%) and activated charcoal treatment (72.76 ± 0.84%) along with comparatively higher removal of inhibitor compounds. GOMP results in the selective adsorption of inhibitors on the graphene oxide matrix from the XOS-rich hydrolysate, resulting in its purification and concentration. The prebiotic function of the obtained XOS fractions (DP2-4.48%, DP3-39.69%, DP4-36.13%, DP5-8.38%, and DP6-13.10%) was evaluated, indicating the growth stimulation of tested probiotic cultures and differential utilization of XOS oligomers DP3 and DP4 and complete consumption of DP2, DP5, and DP6 along with short-chain fatty acids as a major fermentation product. These findings suggest that GOMP, which employs a common substance (i.e., graphene oxide) used in water treatment, exhibits potential as an efficient and economically viable single-step methodology for XOS purification.
Collapse
Affiliation(s)
- Rutuja
Murlidhar Sonkar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Sandeep N. Mudliar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Plant
Cell Biotechnology Department, CSIR-Central
Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
3
|
Kaur H, Chittineedi P, Bellala RS, Bellala VM, Singh S, Kumari R, Chandra P, Pandrangi SL, Singh SP. Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample. BIOSENSORS 2023; 13:406. [PMID: 36979618 PMCID: PMC10046405 DOI: 10.3390/bios13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Varying levels of transferrin (Tf) have been associated with different disease conditions and are known to play a crucial role in various malignancies. Regular monitoring of the variations in Tf levels can be useful for managing related diseases, especially for the prognosis of certain cancers. We fabricated an immunosensor based on graphene oxide (GO) nanosheets to indirectly detect Tf levels in cancer patients. The GO nanosheets were deposited onto an indium tin oxide (ITO)-coated glass substrate and annealed at 120 °C to obtain reduced GO (rGO) films, followed by the immobilization of an antibody, anti-Tf. The materials and sensor probe used were systematically characterized by UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were also used for the stepwise sensor probe characterizations and Tf detection in serum samples, respectively. The anti-Tf/rGO/ITO immunosensor DPV output demonstrated an excellent Tf detection capability in the linear range of 0.1 mg mL-1 to 12 mg mL-1 compared to the enzyme-linked immunosorbent assay (ELISA) detection range, with a limit of detection (LOD) of 0.010 ± 0.007 mg mL-1. Furthermore, the results of the fabricated immunosensor were compared with those of the ELISA and autobioanalyzer techniques, showing an outstanding match with < 5% error and demonstrating the immunosensor's clinical potential.
Collapse
Affiliation(s)
- Harleen Kaur
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | | | - Venkata Madhavi Bellala
- Department of Pathology, GITAM Institute of Medical Sciences and Research, Visakhapatnam 530045, India
| | - Sandeep Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
4
|
Gade PS, Sonkar RM, Bhatt P. Graphene oxide-mediated fluorescence turn-on GO-FAM-FRET aptasensor for detection of sterigmatocystin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3890-3897. [PMID: 36165950 DOI: 10.1039/d2ay01405j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sterigmatocystin (STC) is a toxic fungal secondary metabolite recognized by the FAO and WHO as a genotoxic and carcinogenic substance. STC contaminates several foods and feed commodities, posing a health risk to humans. The present study proposes to develop a graphene oxide-mediated aptasensor platform for the one-step detection of STC. In this study, DNA aptamers were generated against STC by using a target immobilization-free graphene oxide (GO)-SELEX protocol. The champion aptamers were subjected to in silico maturation using a genetic algorithm to improve binding affinity. Further, MSA-C6 and STC interactions were characterized by MD simulation, bio-layer interferometry (KD 27.9 nM) and flow cytometry. GO was immobilized on a polypropylene surface and functionalized with FAM labelled MSA-C6 to develop a simple one-step fluorescence turn-on aptasensor. The linear detection range of the aptasensor was found to be 80-720 ppb with LOD 23.56 ± 4.93 ppb and LOQ 132.43 ± 3.25 ppb. Insignificant interference of salts and detergents as well as negligible cross-reactivity with other structurally similar mycotoxins were observed. Recovery studies in simulated contaminated samples indicated appreciable recoveries (71-89%) using aptasensing assay. The results of the study indicate the successful development of a simple one-step detection platform for STC, useful for the measurement and monitoring of samples for the presence of STC. It also reports a high-affinity aptamer, which can be exploited in other sensing platforms.
Collapse
Affiliation(s)
- Pravin Savata Gade
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Rutuja Murlidhar Sonkar
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Praveena Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| |
Collapse
|
5
|
Fappiano L, Carriera F, Iannone A, Notardonato I, Avino P. A Review on Recent Sensing Methods for Determining Formaldehyde in Agri-Food Chain: A Comparison with the Conventional Analytical Approaches. Foods 2022; 11:1351. [PMID: 35564074 PMCID: PMC9102064 DOI: 10.3390/foods11091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde, the simplest molecule of the aldehyde group, is a gaseous compound at room temperature and pressure, is colorless, and has a strong, pungent odor. It is soluble in water, ethanol, and diethyl ether and is used in solution or polymerized form. Its maximum daily dosage established by the EPA is 0.2 μg g-1 of body weight whereas that established by the WHO is between 1.5 and 14 mg g-1: it is in category 1A of carcinogens by IARC. From an analytical point of view, formaldehyde is traditionally analyzed by HPLC with UV-Vis detection. Nowadays, the need to analyze this compound quickly and in situ is increasing. This work proposes a critical review of methods for analyzing formaldehyde in food using sensing methods. A search carried out on the Scopus database documented more than 50 papers published in the last 5 years. The increase in interest in the recognition of the presence of formaldehyde in food has occurred in recent years, above all due to an awareness of the damage it can cause to human health. This paper focuses on some new sensors by analyzing their performance and comparing them with various no-sensing methods but focusing on the determination of formaldehyde in food products. The sensors reported are of various types, but they all share a good LOD, good accuracy, and a reduced analysis time. Some of them are also biodegradable and others have a very low cost, many are portable and easy to use, therefore usable for the recognition of food adulterations on site.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy; (L.F.); (F.C.); (A.I.); (I.N.)
| |
Collapse
|